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Abstract: Delayed motor tasks require timely interaction between immobility and action. The neural
substrates of these processes probably reside in the premotor and motor circuits; however, fine-
grained anatomical/functional information is still lacking. Participants performed a delayed simple
reaction task, structured as a ready-set-go sequence, with a fixed, predictable, SET-period. Responses
were given with lip movements. During the SET-period, we performed a systematic dense-mapping
of the bilateral dorsal premotor region (dPM) by means of single transcranial magnetic stimulation
(TMS) pulses on an 18-spot mapping grid, interleaved with sham TMS which served as a baseline.
Reaction times (RTs) in TMS trials over each grid spot were compared to RTs in sham trials to build
a statistical parametric z-map. The results reveal a rostro-caudal functional gradient in the dPM.
TMS of the rostral dPM induced a shift from reactive towards predictive response strategies. TMS
of the caudal dPM interfered with the SET-period duration. By means of dense TMS mapping, we
have drawn a putative functional map of the role of the dPM during the SET-period. A higher-order
rostral component is involved in setting action strategies and a caudal, lower-order, part is probably
involved in the inhibitory control of motor output.

Keywords: action inhibition; motor control; face movements; transcranial magnetic stimulation;
dense sampling mapping

1. Introduction
1.1. The Neural Bases of Immobility Behavior

Behavioral control encompasses a mosaic of different processes, ranging from moving
at the right time with the appropriate action to reactively or proactively withholding,
postponing, inhibiting, or even changing action plans due to prompted or unprompted
incentives [1-4]. Hence, what is behaviorally described as not moving is not simply the
lack of movement, instead it requires active and accurate control for shaping the motor
strategy for stillness that could lead to initiating and performing subsequent actions when
the right time comes or to cancel the preloaded actions in case of need [5,6]. In particular,
one behavioral aspect in which the interplay between withholding an action and releasing
it is of paramount importance is the so-called SET-period that precedes a delayed cued
action. The neural activity in the SET-period of a delayed task is generally considered
to be related to action preparation and to keeping a memory trace of the cued action in
non-human and human data [7,8]. However, in terms of successful behavior, the SET-
period is characterized not only by the need to keep an action ready to be released, but
also by the necessity not to move. Hence, at least a part of the SET-period’s neural activity
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must be inhibitory (see, for instance, [9,10]). In addition to this, the brain’s strategies
to cope with an SET-period could in turn be either a bottom-up reactive response to an
external imperative GO cue or, whenever the timing of the GO cue is predictable, a top-
down, proactive internal estimation of the time of the cue onset. Preventing unwanted
anticipated responses usually implies an interplay between inhibition and facilitation
of the involved effectors [1,6,11-14]. At the beginning of the SET-period, the inhibitory
information should prevail and, subsequently, a reversal from inhibition to facilitation
should overcome when the right time to release the action is coming [9,10]. The neural
substrates of this strategic process reside in the premotor-motor circuit and in the frontal
cortices for their cortical trait, and in the subthalamic nucleus (STN) for the subcortical
part. For the cortical part, there is consistent evidence in monkeys and humans suggesting
that the dorsal and medial premotor cortices might be critically involved in these features.
Dorsally, the dorsal premotor cortex (dPM) neurons exhibit a rich variety of set-related
activity, being time-locked to the ongoing inhibitory behavior [13,15-22]. Medially, the
supplementary and pre supplementary motor areas complex (SMA proper and pre-SMA)
were together described as the “negative motor area” [4,23,24] and associated with several
“negative” or inhibitory motor phenomena in humans [19,25,26]. Of course, there is
evidence that SMA proper and pre-SMA impact motor behavior not only in stopping it,
but also in initiating it, or even forcing it. Damage to these regions produces different
degrees of impairment in motor initiation, from the akinetic pattern of the so called SMA
syndrome [27] to utilization behavior and alien hand syndrome, where the impulse to act
cannot be stopped far beyond conscious intentions [28]. Finally, also functional magnetic
resonance (fMRI) studies pointed at both the dPM and SMA complex as an important
node in the fronto-parietal network for response inhibition and control, even in the case of
withholding and then cancellation of movements [24,29-31]. Concerning the interaction
between the cortical trait and the subcortical one, it has been shown that the STN has a
key role during conflicting choices decisions and inhibitory control. First, STN activation
interacts with the globus pallidus, which in turn suppresses the thalamus and M1 [32].
Taking advantage of transcranial magnetic stimulation (TMS), Coxon and colleagues [33]
confirmed a short-interval-intracortical inhibition, which increased in contralateral M1 with
respect to the responding hand when subjects successfully inhibited their response. Second,
it has been suggested that STN activity is crucial for delaying movements until sufficient
information to select the correct option is available [34,35], avoiding impulsive decisions in
the frontal cortex. More recently, bilateral deep brain stimulation (DBS) of STN during a
STOP-signal task has been repeatedly shown to improve reactive (see, for instance, [36-39])
and proactive inhibition of upper limb movements [40]. This latter work also showed that
bilateral stimulation of STN in Parkinson’s (PD) patients restores a planning strategy for
reaching arm movement, generating context-appropriate movements.

1.2. A Specific Dorsal Premotor-Primary Motor Circuit Controls Immobility during the SET-Period

In our group, we ran a series of experiments using TMS to investigate the role of
the dPM in inhibitory control during the SET-period of delayed motor tasks. First, we
demonstrated the existence of direct inhibitory connections between a specific sub-sector
of the dPM along the superior frontal sulcus and the primary motor cortex (M1) in baseline
conditions, i.e., when the subject was standing voluntarily still [41]. In a subsequent experi-
ment, we showed that such inhibitory connections between dPM and M1 are task specific
and are prominent in the middle portion of the SET-period [13]. In a last experiment [42],
we demonstrated that dPM stimulation during a GO-NOGO task selectively impaired the
capacity to withhold the motor response in NOGO trials. Taken together, our previous
results indicated that a specific direct connection between the dPM and M1 mediate the
capacity not to move during the set-period when this is required for successful behavior.
Despite the growing body of evidence, to date we still lack a fine-grained functional spe-
cialization for the control behavior of these areas in healthy humans. Little is known about
the gradients concerning their predictive and reactive behavior, and many open questions
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about the precise cortical involvement in withholding and preparatory phase of instructed
actions are still on the table [31,43,44].

1.3. Dense TMS Mapping and Experimental Protocol

To start filling this gap in knowledge described above, we performed a systematic
dense-mapping of the bilateral dorsal and medial premotor cortices by means of TMS
during a task requiring healthy participants to perform a delayed lower facial movement,
reacting to an imperative external cue after a fixed-time (800 ms) preparatory SET-period.
There are two main advantages of our approach. First, the adoption of a dense-mapping
stimulation protocol (dense TMS mapping, as defined in [45]). This consists in applying
TMS to a broad, evenly distributed grid of stimulation points in a given region of interest,
to build a cortical map of the effects of TMS. The outcome of such mapping procedure is a
standardized statistical parameter map that allows for comparisons between subjects and
therefore to build a population map. The main advantage of the use of TMS dense maps is
that the anatomical location of TMS is not decided a priori, therefore avoiding logical short-
circuits between the choice of a single area to be stimulated and the anatomical inferences on
the function of that area. Using dense grids of TMS targets allows for performing functional
mapping of cortical functions that is independent of a priori hypotheses on anatomical
localization, resulting in robust spatial information on functional brain maps [46-48]. Here,
a grid of 18 active TMS spots was drawn on the dPM of each subject with coverage of both
hemispheres (nine spots per side). The choice of a bilateral mapping is due to the fact that
preparatory inhibitory mechanisms have been shown to be symmetrical between the two
hemispheres [49] for upper limb movements, not relying on the right hemisphere only;,
but more likely on the cooperation between the two hemispheres, as shown in [50]. They
compared the inhibitory performance of right-dominant (RPD) and left-dominant (RPD)
PD patients and they did not find any difference in either reactive or proactive inhibition
between LPD and RPD patients, even though patients were impaired with respect to
healthy controls. More recently, analogue results have been found in PD patients in the
early stage of the disease, when the disease is unilateral [51]. Second, participants were
instructed to respond with the lips as effector, rather than with the upper limb, allowing
for the possibility to stimulate a wide range of spots in the lateral and medial premotor
cortices with the assurance that those stimuli are not directly addressing the facial M1,
thus not impacting on the effector involved in the task. Indeed, M1 representation of
the lower face is far from the portion of the cortex we stimulated (see [52] for a detailed
review) so that any effects of dPM TMS cannot be attributed to unwanted M1 stimulation.
In addition, the lower face has a strong degree of corticalization in motor control, fully
comparable to that of the distal upper limb [52]. The experimental measure was Reaction
Times (RTs), which have been considered the main outcome to assess the efficiency of
processes that occur during motor preparation following a cortical perturbation [53-55].
Since we plan to target with TMS a region that is supposedly involved in immobility
behavior, we expect to observe a TMS-related shortening of RTs compared to sham TMS,
to be interpreted as a reduced capacity to inhibit the motor cortex. The actual results
showed a more complex pattern in which TMS of a caudal region produced the expected
shortening of RTs and TMS of a rostral region in the dPM produced an overall shift
in action strategy, towards predictive behavior. Moreover, investigating the effects of
TMS on the capacity not to move during the SET-period, as we performed here, could
not only be of paramount importance in healthy subjects, but it can also be a relatively
easy measure for comparing them with clinical populations, such as PD, attention-deficit
hyperactivity disorder (ADHD), substance addiction or pathological gambling. It could
enable us to disentangling differential cortical contribution from motor preparation and
action inhibition, as well as to tell apart normal predictive and reactive behaviors.
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2. Materials and Methods
2.1. Participants

Seventeen healthy participants took part in this study (9 female, age range 19-35).
They all provided informed consent and were screened for any contraindication to TMS [56].
They were right-handed, as assessed by the Edinburgh handedness inventory [57], with
no previous history of neurological or psychiatric disorders. The study was conducted in
the Department of Neuroscience, Biomedicine and Movement of the University of Verona,
with procedures compliant with the revised Helsinki declaration (2009) and approved by
the Department’ ethical committee.

2.2. Experimental Protocol

Participants were sitting comfortably, with the head placed on a chin rest secured to a
table and an additional lateral head-constraint, which assured head stability, prevention
of fatigue and minimal unrelated movements during the execution of the orofacial action.
They were asked to rest with eyes open, wearing earplugs for the whole experiment, and
to hold the wood stick between their lips. The experimental protocol consisted in a simple
“warned” or “delayed” reaction time task [9,10,58]. Single-pulse TMS were delivered in
an event-related timing, ranging from 600 to 790 after the SET-period onset. Stimuli were
presented with Matlab software, on a 75 Hz (1680 x 1050 resolution) 20" monitor, at 45 cm
of distance from the participant’s eyes. Each trial (Figure 1) started with an SET-period
of a predictable duration (800 ms) indicated with a green fixation cross, during which
participants had to stay still and be READY, followed by a GO signal. The GO signal
lasted up to 600 ms and was indicated with a circle in the middle of the screen. After
the response (lifting a stick with their lips as fast as possible from a starting to an ending
point) was given, the corresponding reaction time was displayed on the screen, serving as
feedback of individual performance. Then, the variable inter-trial interval occurred (with a
duration ranging from 2000 to 4000 ms), instructing participants to REST. Any anticipation
of the response prior to the GO was considered an error. It should be noted that, given the
nature of the SET-period, the onset of the GO signal was entirely predictable throughout
the experiment.

TMS
600-790 ms
Vb
HEEI oo |
2000-4000 ms 800 ms 600 ms max

Figure 1. Schematic representation of each single trial of the experiment and its time course. The
inter-trial interval lasted from 2000 to 4000 ms, then the READY cue appeared for 800 ms, identifying
the SET-period requiring participants to be ready but not to move. In the last 200 ms of the SET-period,
TMS was randomly delivered [13], with a jitter applied to avoid the expectation of the magnetic
stimuli (no effect of the jitter on the performance). Then, the GO signal informed participants to lift
the stick with their mouth as quickly as possible, in a 600 ms range for a possible response.

2.3. Apparatus for Lip Response Collection

All participants were required to hold a wood stick with their lips devoted to collect
the motor responses, as reported in our previous works [13,41,42]. At the end of the stick
there was a 15 g weight, with the aim to stabilize the apparatus and make the return to
the starting point easier (Figure 2). The proper motor response consisted in lifting the
stick from a starting point until the end position was met, after which no more lifting was
possible. At the instant when the end position was reached, a circuit was closed providing
a +5 V square-wave output. The output signal was transmitted to a PC via the serial port
by the Matlab software. After each trial, response time (RespT) was displayed on the screen
to give online feedback to the participants.



Brain Sci. 2021, 11, 534

50f16

TMS coil

Response
switch ,.

Figure 2. Schematic illustration of the experimental setup.

2.4. Building of the TMS Dense Grid

TMS was delivered using a dense grid protocol [45] to 9 points located in the premotor
and supplementary motor areas for both hemispheres, resulting in a total of 18 points
stimulated. They were outlined in the medial-lateral axis and in the rostro—caudal axis
starting from the functional localization of hand and foot representations in the M1 in
both hemispheres (see Figure 3). To draw a grid on the scalp’s subject, the hand and foot
representations were defined as the spot on the scalp where the larger MEP from first dorsal
interosseus (hand) and the tibialis muscle (foot) could be obtained with the lowest intensity.
Then, a spot halfway between the hand and foot hotspots was marked. These 3 spots were
used as targets for ineffective (sham) TMS (white spots with ‘s’ label in Figure 3B). The
remaining spots were found by moving 1.5 cm rostrally from the 3 sham spots. The full
geometry of the grid is illustrated in Figure 3, together with a putative projection of the
cortical targets on a brain surface template.

z-value

rostral
1

Figure 3. (A) Grid spots of z-values of the population analysis on RTs (negative z-values indicate shorter RTs in TMS
compared to sham). Active TMS spots are indicated with a number. Sham TMS spots are indicated with the letter 'S’.
(B) Projection of the cortical targets on a brain surface template, with the eighteen effective spots and the sham (S) spots.
Red: Central Sulcus, Green: Precentral Sulcus, Blue: Superior Frontal Sulcus. LEG indicates the leg motor hotspot. HAND
indicates the hand motor hotspot.
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2.5. TMS

Magnetic stimulation was achieved by means of a biphasic magnetic stimulator
(Magstim rapid) connected to a figure-of-eight coil with 70 mm windings oriented perpen-
dicularly to the midline with the handle pointing with a medio-lateral orientation of the
induced current, and the coil adjusted according to the stimulated point. Stimulation inten-
sity was set at the 110% of the resting motor threshold (RMT) for the intrinsic hand muscle
first dorsal interosseus. In our former study [13], we described an inhibitory activity of the
dorsal premotor cortex on ipsilateral mouth-related M1 during the SET-period, which was
found throughout the SET-period, peaking in its mid-portion, invariantly with respect to
the duration of the SET-period. According to our model, the second half of the SET-period
is characterized by the interaction between the inhibitory and excitatory processes. We
therefore applied in the present study single-pulse TMS to evenly cover the later part of the
SET-period. To avoid expectation of TMS pulses, the stimuli were delivered in each trial
jittered from 600 to 790 after the SET-period onset according to a square-wave distribution.

2.6. Data Analysis

All analyses were performed with the MATLAB software, and the full script that
was used for data analysis, together with the full dataset, is publicly available at the
page https:/ /osf.io/xcjb3/ (accessed on 23 March 2021) of the Open Science Framework
repository. We collected a total of 16 trials per each of the TMS spots. RTs were taken with
reference to the GO signal. Therefore, negative RTs corresponded to anticipatory responses.
Responses given before TMS were excluded from analysis (overall 1.24% of trials). We
planned to exclude any response given after 1000 ms from the GO signal. For any further
analysis, the trials in sham TMS spots were pooled together, irrespective of which spot they
were obtained from. Sham trials were therefore a total of 92 trials per subject. The main
analysis was carried out with RTs as the dependent variable. The main analytical strategy
was to perform a within-subject analysis on single trials for each TMS spot compared to
sham. The resulting statistical parameters characterizing each TMS spot in each participant
were then merged in a population analysis that was used to build the population scalp
map of TMS functional effects.

First, we compared within single subjects and, for each TMS spot, the trials in which
effective TMS was delivered with the trials in which sham TMS was delivered by means
of Mann-Whitney’s U test (MWU). Each MWU produces an output characterized by a
statistical parameter referred to as ‘z’, standardized and comparable between subjects. A
negative value of z associated with a single TMS spot indicates that in that subject, the RTs
associated with TMS on that spot are shorter than the RTs in the sham condition. Vice-versa,
positive z-values indicate that effective TMS on that spot is associated with longer RTs than
sham TMS. Ultimately, every subject was characterized by 18 z-values, one for each TMS
spot, that indicated the relative effect of TMS on that spot compared to sham.

Then, we performed population analysis, by a single-sample MWU, comparing the
z-values of the population in each of the 18 TMS spots against the null hypothesis of a
mean value = 0. The resulting statistics informed us for each of the effective TMS spots
whether the population had individual z-values that were significantly swayed on each
side of the 0 value. In this way, the data of the whole population were reduced to a set of
18 z-values that expressed the population’s tendency to perform with faster or slower RTs
in the real TMS compared to the sham TMS in each of the 18 effective TMS spots. Such
z-values were then used to build the z-map of the scalp surface. For statistical significance,
the threshold for the p-value associated with each of the spots in the z-map was corrected
for 18 multiple comparisons and therefore set to p = 0.0027. Note that negative z values
indicate that TMS over a specific spot produced trials with shorter RTs than sham TMS.

2.7. Post-Hoc Data Analysis on Trials Displaying Predictive Behavior

The distribution of RTs in the population appeared to be biphasic, with an early
peak due to predictive, anticipatory behavior and a second peak due to reactive behavior
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(Figure 3). In the light of this finding, we decided to perform a post-hoc mapping analysis
to investigate the effect of TMS on the relative relying of the participant on predictive or
on reactive behavior. To do so, we classified each trial as predictive or reactive according
to whether the response was given before or after 130 ms, based on the RT distribution
shown in Figure 3. We then devised a score that is the ratio between reactive trials and total
trials, which was calculated for each participant and each spot. This index, named hereafter
‘reactive index’ is distributed between 0 (no reactive trials, only predictive trials) and 1 (only
reactive trials, no predictive trials). We then performed a population analysis, comparing
the reactive indexes from each spot to the reactive indexes in the sham condition, by means
of MWU. The result was a z-value for each of the effective TMS spots that we used to
build a z-map, similar to that constructed for the RT results. For statistical significance,
the threshold for the p-value associated with each of the spots in the z-map was corrected
for 18 multiple comparisons and therefore set to p = 0.0027. Note that negative z values
indicate that TMS over a specific spot was associated with more predictive trials than sham.

2.8. Post-Hoc Data Analysis on Anticipation Errors

To understand whether the decrease in RTs, and the shift to a predictive strategy
following TMS, was also associated with increased anticipation errors, we performed a
mapping analysis identical to that described in the previous step (post-hoc data analysis
on trials displaying predictive behavior) but classifying trials as correct (RT >= 0 ms) or
as anticipation errors (RT < 0 ms). We then devised a score that is the ratio between
anticipation error trials and total trials, which was calculated for each participant and
each spot. This index is distributed between 0 (all trials are anticipation errors) and 1 (no
trial is an anticipation error). We then performed a population analysis, comparing the
error indices from each spot to the reactive indexes in the sham condition, by means of
MWU. The result was a z-value for each of the effective TMS spots that we used to build a
z-map, like that constructed for the RT results. For statistical significance, the threshold for
the p-value associated with each of the spots in the z-map was corrected for 18 multiple
comparisons and therefore set to p = 0.0027. Note that negative z values indicate that TMS
over a specific spot produced more anticipation errors than sham.

3. Results

None of the subjects complained of any short- or long-term side effects of TMS. In
particular, none reported seizures, syncope, headache, or hearing impairment. No trial
was discarded for RT exceeding 1000 ms. The full dataset of single-trial data is publicly
available at the page https:/ /osf.io/xcjb3/ (accessed on 23 March 2021) of the Open Science
Framework repository.

The main analysis showed several TMS spots in which the RTs were shortened com-
pared to sham TMS, and no spot in which they were increased. The full statistical results
are shown in Table 1.

The scalp map of the functional effects of TMS is shown in Figure 3. The TMS spots
that induced a significant shortening of RTs were clustered in a dorso-caudal region of
the dorsal premotor cortex, bilaterally, with an almost symmetrical pattern between right
and left.

A descriptive analysis of the distribution of RTs indicated a global biphasic distribution,
which we interpreted as an expression of anticipatory, predictive behavior (early peak) and
a second peak due to reactive behavior, illustrated in Figure 4. Predictive adjustments could
also be ascribed to the, more or less implicit, learning that GO signal has a fixed timing,
in this sense becoming totally predictable by the participants. The arbitrary delimitation
between reactive and predictive behavior was set at 130 ms from the GO signal.
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Table 1. Results of main analyses on RTs. Z-values (p-value) for each spot are reported. The corre-
spondent map including grid-spot numbering is shown in Figure 2. Data exceeding the significance
threshold (p = 0.0027) are shown in bold.

Grid Spot Right Hemisphere Left Hemisphere
1 —3.43 (0.0006) —3.62 (0.0003)
2 —3.29 (0.001) —3.62 (0.0003)
3 0.4 (0.69) —1.63 (0.1)
4 0.5 (0.62) —2.82 (0.005)
5 —3.29 (0.001) —3.62 (0.0003)
6 —3.34 (0.001) —3.62 (0.0003)
7 —3.15 (0.002) —1.59 (0.11)
8 —0.78 (0.43) ~1.4(0.16)
9 0.36 (0.72) —2.72(0.01)
90
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-200 -100 0 100 200 300 400 500 600 700 800

time from GO-cue (ms)

Figure 4. Distribution of reaction times (RTs) from all trials, in the whole population (n = 17).
Each colored line represents a single subject. Biphasic distribution is visible with a first peak in
the 0-130 ms range and a second peak in the 131-500 ms range. Note that negative RTs indicate
responses given before the GO cue.

The mapping analysis to assess the effect of TMS on the ratio between predictive and
reactive behavior showed that TMS induced a general shift towards predictive behavior as
indicated by a decrease in the ‘reactive index’. This effect reached statistical difference in
four symmetrical points in the mid portion of the superior frontal gyrus bilaterally. The
map is shown in Figure 5 and the statistical results are shown in Table 2. The mapping
analysis to assess the effect of TMS on the occurrence of anticipation errors showed that
TMS did not produce significant changes in the number of anticipation errors. The map is
shown in Figure 6 and the statistical results are shown in Table 3.
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Figure 5. Grid spots of z-values of the population analysis on the ratio between predictive trials

to reactive trials. Conventions as in Figure 3. Negative z-values indicate an increased number of

predictive trials in TMS compared to sham.

Table 2. Analysis on the prevalence of predictive behavior compared to reactive behavior. Figure

Z-values (p-value) for each spot are shown. The correspondent map including grid-spot numbering

is shown in Figure 3. Data exceeding the significance threshold (p = 0.0027) are shown in bold.

Grid Spot Right Hemisphere Left Hemisphere

1 —2.26 (0.0238) —2.66 (0.0079)
2 —3.01 (0.0026) —4.35 (0.0001)
3 —1.49 (0.14) —1.67 (0.09)

4 —1.92 (0.05) —1.42 (0.157)

5 —2.69 (0.0071) —1.36 (0.1724)
6 —3.39 (0.001) —3.46 (0.0005)
7 —1.81 (0.07) —1.56 (0.12)

8 —0.99 (0.32) 1.13 (0.26)

9 —0.28 (0.78) —2.68 (0.01)

Table 3. Analysis on the prevalence of anticipation errors compared to reactive behavior. Figure

Z-values (p-value) for each spot are shown. The correspondent map including grid-spot numbering

is shown in Figure 3. Data exceeding the significance threshold (p = 0.0027) are shown in bold.

Grid Spot Right Hemisphere Left Hemisphere
1 1.1 (0.271) 1.1 (0.271)
2 1.1 (0.271) —2.79 (0.0052)
3 —0.56 (0.58) 1.1 (0.27)
4 0(1) —1.67 (0.095)
5 0.53 (0.5966) 0(1)
6 —0.56 (0.576) 1.68 (0.0927)
7 —2.24 (0.025) 2.27 (0.02)
8 0(1) 1.68 (0.09)
9 0(1) 1.1(0.27)
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Figure 6. Grid spots of z-values of the population analysis on anticipation errors. Conventions as in
Figure 3. Negative z-values indicate an increased number of anticipatory errors in TMS compared
to sham.

4. Discussion

The main aim of the present study was to assess a topographic distribution of control
and inhibitory functions in the dorsal and medial premotor cortices of healthy volunteers
performing an instructed action with a facial effector. We applied a dense TMS mapping
protocol [45] during the 800 ms lasting preparatory phase of a delayed reaction time
task [13,58]. Our findings show that the stimulation of a large mid-portion of the dPM
induced a significant shortening of RTs. The effective spots clustered bilaterally along the
line of the SFG, with an almost symmetrical pattern between right and left (Figure 3).

A following observation showed that in all participants RTs presented a clear biphasic
distribution, unveiling two possible behavioral strategies (Figure 4) that coexisted in all
participants. RTs in the early peak are attributed to a predictive behavior because they
are significantly shorter than any possible voluntary reactive response to the GO signal.
In predictive trials, the subject calculated the timing of the predictable GO signal and
produced a motor response without waiting for the GO signal’s occurrence. RTs in the
second peak are, on the contrary, likely due to reactive behavior, in which the subject
waited for the GO signal and responded to it.

A further analysis investigated the effect of TMS on the distribution of predictive vs.
reactive behavior. We found that a sub-group of the TMS spots that produced shortened RTs
also produced a significant shift towards predictive behavior, thus causing the shortening
of RTs. A final post-hoc analysis indicated that the shortening of RTs and the shift towards a
predictive strategy was not accompanied by an increase in anticipation errors and therefore
did not worsen overall performance. Summing up, TMS did not alter behavior in terms of
efficiency but rather did so in terms of change of strategy.

4.1. A Shift from Reactive to Predictive Behavior

Participants were asked to react to imperative external cues, the READY and the GO
cues, and deal with a completely predictable internal estimation of the time between these
two cues. Therefore, for a successful performance, this promptness should develop in
combination with the internal estimation of the time of the cue onset. Indeed, the disruption
of inhibitory cortical nodes reacting to external cues, which leads to a shortening of RTs
and to an increase in anticipatory errors, is not the only possible explanation of our results.
One may argue that our stimulation interferes with the internal time estimation ability.
It is indeed possible that here we are witness to two distinct but intertwined strategies:
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the preparatory inhibition of a preloaded action and the internal time estimation of the
SET-period. Our task can be solved in a proactively, top-down manner, independently from
the actual presence of GO signal, or reactively, relying on bottom-up processes, in response
to the visual cues. It should be noted that the two strategies are mutually incompatible,
and that each strategy has a clear behavioral signature in the RT (Figure 4).

We interpret the current results in terms of local specialization of the dPM for reactive
behavior. We hypothesize that, if the dPM is causally needed to carry out reactive behavior,
TMS over the dPM during the SET-period has weakened the instantaneous propensity to
use the reactive strategy and therefore allowed for a predictive strategy to be carried out. It
is likely that such predictive strategy is on the contrary carried out by other portions of the
premotor cortex, i.e., the medial premotor cortex or SMA.

There is consistent evidence in the literature showing that during tasks requiring a
predictive response, the premotor areas of the medial wall, SMA and pre-SMA contain
ramping signals that constitute the neural bases of time prediction (for a review, see [59]).
The SMA is therefore strongly and causally involved in predictive behavior (i.e., estimate
the time to the GO signal and respond before the GO signal has been processed by the
motor system). On the contrary, the dPM is commonly associated with rule-dependent
sensorimotor associations, which are at the basis of the reactive behavior (i.e., wait for the
GO signal and react to it) as reviewed in [60]. We therefore interpret the current results
as a neural imbalance between the dPM and the SMA, induced by TMS, resulting in an
imbalance between predictive and reactive behavior. Another key concept, according
to which the lateral and medial premotor cortices have been categorized, regards this
framework: externally cued actions (represented in the dPM) versus internally generated
actions (represented in the SMA). Moreover, the external/internal action framework fits
well with the current data. The reactive strategy is, by definition, an externally cued,
exogenous behavior. The predictive strategy is fully generated in the subject’s motor
system, without any need of sensory input. In fact, most responses given through the
predictive strategy occur well before the sensory information on the GO signal has reached
the motor system and are therefore entirely independent of external information.

It is worth noting that, according to our interpretation, the interval between TMS
and the mouth responses given in the predictive modality is actually very short, being
potentially comprised between 0 and 330 ms. It could be argued that such a short time is
not enough to reset the strategy of the single trial from reactive to predictive, especially
because the predictive strategy requires the estimation of the set-period from its beginning,
well before TMS is applied. We hypothesize that for the TMS-induced switch to be possible,
both strategies, predictive and reactive are running simultaneously in every trial. The
concept of parallel processing in the motor system has been proposed previously, namely,
by the biased selection model by Cisek and Kalaska [61]. Subsequently, several evidences
speak for the simultaneous coexistence of different potential actions up to the motor output
in several domains of action [62,63]. It is therefore not unlikely that the two motor strategies,
predictive and reactive, might be simultaneously present and trial-by-trial biases shift the
actual behavior from one to the other.

4.2. A Caudal-Rostral Specialization in the dPM

The main aim of the present work was to assess the function role of the dPM in
preparatory inhibition. This has been the subject of considerable debate, since several
markers of motor inhibition can be observed during the period preceding a voluntary
movement, both in response selection and response initiation [2,22,64]. We learned from
studies addressing the direct stimulation of the primary motor cortex that the decrease
in MEP amplitude during the SET-period is reflecting cortico-spinal pathway inhibition,
revealing a suppression component of action preparation [10,11]. This modulation suggests
that inhibitory processes occur in parallel with the activation mechanisms and indicates
that optimal time preparation is accompanied by a suppression in activity of the cortico-
spinal tract. Some lines of research support the idea that inhibitory processes in dPM
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are recruited in parallel with facilitating preparatory activity [2], generating inhibitory
information targeting the M1, to prevent premature movements [42,65].

In our former work [13,41,42], we provided strong evidence of the direct role of the
dPM in inhibitory control of M1 and of corticospinal output (see introduction). In the
present work, by applying TMS in the phase of the task when dPM actually exerts the
inhibitory control over M1 (the SET-period), we expected to interfere with the inhibitory
process. We expected such interference to become evident behaviorally as a reduced
immobility, namely, as a shortening of reaction times. The results confirm this strong
tendency, though a part of the variance in RTs was explained by the shift towards a
predictive strategy. In the rostral spots (Spots 2 and 6), the presence of the strategy shift
effect could mask a simultaneous effect on RTs. Only a further differential analysis on the
effects of TMS on reactive and predictive trials separately could potentially disentangle
the two effects, but this was not possible due to the small and variable number of trials in
each condition. However, thanks to the dense mapping procedure, we could distinguish in
the dPM region a caudal region (Spots 1 and 5 bilaterally) which showed only shortening
of RTs, without a significant strategy shift, distinct from the rostral region (Spots 2 and
6 bilaterally) in which the main effect of TMS is that of a strategy shift. We hypothesize
that this distinction witnesses a caudo-rostral gradient within the dPM with the caudal
portion directly involved in the control of M1 and the rostral part involved in higher-order
processes such as response strategy. This hypothesis is supported by several data in the
literature that indicate a hierarchical caudal-rostral specialization gradient in the primate
dPM, in which the caudal part (F2 sector or dPM-proper codes conditional sensorimotor
associations and has direct connections to M1—see [61,60] for a review) and the rostral part
have higher-order functions, not related to direct action execution [67-69]. The latter, caudal
portion is likely to be corresponding to the dPM region involved in the direct inhibitory
control described in our previous works [13,41,42]. Although they do not assess proactive
inhibitory control, some human’s invasive data could also suggest this specialization
gradient. Mattia and colleagues [70] recorded from intracranial electrodes in epileptic
patients that underwent presurgical evaluation, showing that M1 and dPM were more
involved in reactive inhibitory control than more anterior prefrontal regions.

4.3. Limitation of the Present Study

The present study displays some limitations. The first of such limitations is the fact
that it was not possible to use individual magnetic resonance imaging (MRIs). Although
a further study relying on individual MRIs will be beneficial to improve our anatomical
resolution and details, here, we partially overcome this limitation using the dense grid
protocol, covering bilaterally the dPMC. Stimulation points were localized starting from the
functional identification of hand and foot representations in the M1 in both hemispheres
and then a comparable grid on each scalp’s subject was marked, a putative projection of the
cortical targets on a brain surface template was established, and stimulation intensity was
adjusted accordingly. Therefore, although it is necessary to refer to putative cortical targets,
the fine functional identification and constant online control of the spots’” location in the
surface template and with respect to the selected hotspots in M1, along with the dense grid
protocol, assured a high level of anatomical accuracy, demonstrating that this approach
also is easily feasible in conditions in which the individual MRIs are not available.

The second limitation is the fact that the unveiling of reactive/predictive strategies
was somehow serendipitous. Indeed, the main aim of the present study was to investigate
the role of different sectors of the dPMC in action inhibition, with site of stimulation as
the sole variable. We found that a different portion of the cortex not only is involved in
a differential fashion in the inhibitory control and in the release of the preloaded action,
but is also engaged differently in the shifting from reactive to predictive action strate-
gies. However, such predictive shifts are possible since participants applied the form of
proactive/predictive adjustments while they predict the outcome of the GO signal. This
form of adjustments, however, might have some differences with respect to task in which
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subjects are aware of acting in different contexts and changing their behavioral strategy
accordingly. For instance, in [71], proactive inhibition was evaluated by comparing RTs
and MT of GO trials in a GO/NOGO task with those measured during the execution of
the same movements in the context of a simple RT task (GO-only trial). This phenomenon,
named context effect, represents an optimization of the motor strategy in the two different
contexts, [71]. Future studies need to address this issue, with a task designed to distinguish
between reactive and predictive strategies, in which subjects are aware of acting in different
contexts and changing their behavioral strategy accordingly.

5. Conclusions

The current study contributes to composing a detailed functional cartography of the
healthy premotor cortices during the performance of a simple movement to be released
as fast as possible when the right time comes. Taking advantage of a dense TMS spatial
mapping approach, with the assurance that our stimulation is not directly addressing the
lower facial M1—and thus not impacting the effector involved in the task—our stimulation
revealed a causal and different involvement of the subdivision of dPM in controlling lower
face movements. A rostral portion of the dPM represents a higher-order station where
reactive action strategies are defined. Conversely, a more caudal part of the dPM has no
role in instantiating action strategies but is likely to have a direct task-dependent inhibitory
influence on M1.
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