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Abstract: Significant differences exist in human brain functions affected by time of day and by
people’s diurnal preferences (chronotypes) that are rarely considered in brain studies. In the current
study, using network neuroscience and resting-state functional MRI (rs-fMRI) data, we examined
the effect of both time of day and the individual’s chronotype on whole-brain network organization.
In this regard, 62 participants (39 women; mean age: 23.97 ± 3.26 years; half morning- versus half
evening-type) were scanned about 1 and 10 h after wake-up time for morning and evening sessions,
respectively. We found evidence for a time-of-day effect on connectivity profiles but not for the effect
of chronotype. Compared with the morning session, we found relatively higher small-worldness (an
index that represents more efficient network organization) in the evening session, which suggests
the dominance of sleep inertia over the circadian and homeostatic processes in the first hours after
waking. Furthermore, local graph measures were changed, predominantly across the left hemisphere,
in areas such as the precentral gyrus, putamen, inferior frontal gyrus (orbital part), inferior temporal
gyrus, as well as the bilateral cerebellum. These findings show the variability of the functional neural
network architecture during the day and improve our understanding of the role of time of day in
resting-state functional networks.

Keywords: brain connectivity; resting-state fMRI; circadian rhythm; chronotypes; graph theory

1. Introduction

Most living organisms express a rhythmic cycle across a 24 h period (circadian rhythm)
that controls several physiological processes such as sleep–wake patterns [1,2], metabolic
activity [3], and body temperature [4], as well as various brain functions [5] such as atten-
tion [6], working memory [7], decision bias [8], motor [9], and visual detection [10] tasks.

As well as circadian rhythms, individuals have biologically different inclinations for
when to sleep and when they are at their highest alertness and energy level, which are

Brain Sci. 2021, 11, 111. https://doi.org/10.3390/brainsci11010111 https://www.mdpi.com/journal/brainsci

https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0003-3196-6759
https://orcid.org/0000-0002-0726-5795
https://orcid.org/0000-0002-9134-3441
https://orcid.org/0000-0002-5012-260X
https://orcid.org/0000-0003-3996-386X
https://orcid.org/0000-0002-4452-1794
https://doi.org/10.3390/brainsci11010111
https://doi.org/10.3390/brainsci11010111
https://doi.org/10.3390/brainsci11010111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/brainsci11010111
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/2076-3425/11/1/111?type=check_update&version=3


Brain Sci. 2021, 11, 111 2 of 20

referred to as chronotypes [11]. Accordingly, people can be divided into morning-type (or
early larks), evening-type (or night owls), and intermediate-type (or “neither-type”) [12];
the circadian typology moves toward later hours in night owls compared with early
larks [13]. Chronotype differences have been reported to be highly influential to people’s
cognition, behavior, and daily neural activity [1,5,12,14–16].

Although effects of circadian rhythms and chronotypes on whole-brain connectivity
have been examined (some cases have only considered time of day [17]), the results are
often contradictory and inconsistent. For example, a group of researchers believe that
resting-state brain networks maintain a constant topological organization throughout the
day [18,19], while others believe that brain networks, especially default mode, sensorimotor,
and visual networks, show significant changes as the day progresses when we are at
rest [20–22]. Additionally, Orban et al. [23], contrary to the common belief that “global
brain signal is low in the morning and then increases in the midafternoon, and drops in
the early evening”, showed that the global signal fluctuation is continuously decreasing
during the day.

Utilizing a combination of graph-based knowledge and noninvasive imaging modality
such as functional MRI (fMRI) helps to investigate (locally or globally) the brain functional
connectivity at high temporal resolution [24–29]. In recent years, several studies have been
conducted to identify topological changes in the brain networks that help us better under-
stand the mechanisms underlying human cognition and neurological disorders [30–39].
For example, Lunsford-Avery et al. (2020) studied the relation between the regularity
of sleep/wake patterns and brain connectome among adolescents and young adults to
measure how these naturalistic patterns contribute to default mode network (DMN) topol-
ogy [31]. In another study, Farahani et al. (2019) examined the effects of sleep restriction on
the brain functional network and found significant topological alterations mostly across
the limbic system, DMN, and visual network [33]. Disrupted brain network topology was
examined in studies on patients with Parkinson’s disease [32], chronic insomnia [36], major
depressive disorder [39], as well as preterm infants [35].

The main purpose of this study is to examine variations of neural activity at different
times of the day in both chronotypes and detect circadian fluctuations of brain functional
networks using rs-fMRI data. Based on our previous findings, we hypothesized that
topological changes were mostly because of time of day rather than chronotype, and areas
such as the default mode and sensorimotor networks underwent the most changes. To
this end, we apply a graph-theoretic framework to extract the global and local changes in
functional connectivity patterns and determine the informative regions that differ during
the course of the day. Furthermore, we examine whether graph properties are correlated
with the cognitive variables derived from the assessments and questionnaires across
participants. The results provide a better understanding of the functional topology of
the brain at rest over the course of the day.

2. Materials and Methods
2.1. Participants

Through online announcements, 5354 volunteers were selected to fill out the Chrono-
type Questionnaire [40] for assessing circadian preferences, the Epworth Sleepiness Scale
(ESS) [41] for measuring daytime sleepiness, as well as a sleep–wake assessment. A total
of 451 participants divided into morning (MT) or evening types (ET) were selected for
PER3 VNTR polymorphism genotyping—only the subjects who were homozygous for the
PER3 5/5 alleles (MT) and PER3 4/4 alleles (ET) were included. The procedure resulted in
73 healthy and young individuals in both chronotypes. Other selection criteria included
age between 20 and 35 years, right-handedness (assessed by the Edinburgh Handedness
Inventory [42]), no sleep deprivation, no neurological illness, and normal or corrected-
to-normal vision. The selected individuals were scanned twice, first about 1 h (morning
session) and then 10 h (evening session) after waking up. Session order was counter-
balanced across participants. The final research sample for further analysis consisted of
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62 subjects (39 women, mean age: 23.97 ± 3.26 years). Participants were asked to have
adequate sleep for 1 week before the experiment, and actigraphs were used to monitor
their sleep length and quality during that week as well as during the experiment days. Par-
ticipants were prohibited from consuming alcohol (2 days) and caffeine (1 day) before the
scanning sessions, and to refrain from strenuous activity during the experiment. The Ethics
Committee for Biomedical Research at the Military Institute of Aviation Medicine, (Warsaw,
Poland; 26 February 2013) and the Institute of Applied Psychology Ethics Committee of
the Jagiellonian University (Kraków, Poland; 21 February 2017) approved the study, and
an informed consent was obtained from all participants in accordance with the Declaration
of Helsinki. Demographics, questionnaires, and actigraphy results are provided in Table 1.

Table 1. Demographics, questionnaires, and actigraphy results.

Variables (Mean ± SD) MT (n = 31) ET (n = 31) Significance

Sex (M/F) a 11/20 12/19 X2(1) = 0.069; p = 0.793
Age (years) b 24.45 ± 3.83 23.48 ± 2.55 U(62) = 446; p = 0.623

ME b 15.71 ± 2.41 28.45 ± 2.39 U(62) < 0.001; p < 0.001
AM b 21.47 ± 3.58 22.26 ± 3.51 U(62) = 426; p = 0.437
ESS b 5.52 ± 2.48 5.87 ± 3.01 U(62) = 441; p = 0.576
EHI b 86.83 ± 12.92 89.19 ± 13.93 U(62) = 414; p = 0.330

VNTR of PER3 5/5 4/4 -
Declared waketime (hh:mm) c 07:07 ± 62 min 07:25 ± 48 min t(60) = −1.90; p = 0.062
Declared bedtime (hh:mm) c 23:24 ± 55 min 00:06 ± 49 min t(60) = −3.50; p = 0.001

Declared length of perfect sleep (hh:mm) c 08:50 ± 42 min 08:38 ± 54 min t(60) = 1.54; p = 0.128
Actigraphy-derived waketime (hh:mm) c 07:43 ± 70 min 08:16 ± 69 min t(60) = −1.28; p = 0.168
Actigraphy-derived bedtime (hh:mm) c 23:58 ± 58 min 00:48 ± 58 min t(60) = −3.13; p = 0.002

Actigraphy-derived length of real sleep (hh:mm) c 07:53 ± 51 min 07:36 ± 40 min t(60) = −1.18; p = 0.266

MT—morning types, ET—evening types, ME—morningness/eveningness scale (Chronotype Questionnaire), AM—amplitude scale
(Chronotype Questionnaire), ESS—Epworth Sleepiness Scale, EHI—Epworth Handedness Inventory, a chi-square test, b Mann–Whitney U
test, c Student’s t-test.

2.2. Data Acquisition

Magnetic resonance imaging scans were performed using a 3T Siemens Skyra MRI sys-
tem with a 64-channel head coil. Structural images were collected for each participant using
a sagittal three-dimensional T1-weighted MPRAGE sequence. Functional resting-state
blood oxygenation level-dependent (BOLD) signals were obtained through a gradient-echo
single-short echo planar imaging sequence (10 min/run) using the following parameters:
repetition time/echo time (TR/TE) = 1800/27 ms; field of view = 256 × 256 mm2; slice
thickness = 4 mm (no gap); voxel size = 4 × 4 × 4 mm3. A total of 34 interleaved transverse
slices and 335 volumes were obtained from selected participants. During the resting state,
participants were instructed to lie in the scanner with their eyes open while thinking
of nothing, and to remain awake throughout the scanning session. Participants’ awake-
ness was monitored by an eye tracking system (Eyelink 1000, SR Research, Mississauga,
ON, Canada).

2.3. Data Preprocessing

Data were preprocessed using DPABI v. 4.2 and SPM 12, both working under Matlab
v.2018a (The Mathworks Inc., Natick, MA, USA). To avoid instability of the initial MRI
signals, the first 10 time points were discarded, and the data were then corrected for slice
timing and head motion. Participants with movements in one or more of the orthogo-
nal directions above 3 mm or rotation above 3◦ were excluded from the analysis; four
participants were excluded due to excessive head movements. Subsequently, functional
scans were coregistered using T1 images and normalized to the Montreal Neurological
Institute (MNI) space using DARTEL [43] and a voxel size of 3 × 3 × 3 mm3. In total, seven
participants were excluded because of the low quality of the normalization. The functional
data were spatially smoothed with a 4 mm Full Width at Half Maximum (FWHM) kernel.
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The 24 motion parameters that were derived from the realignment step were regressed out
from the functional data by linear regression, as well as five principal components from
both cerebrospinal fluid and white matter signals using principal components analysis
integrated in a component-based noise correction method [44]. The global signal was
included because of its potential in providing additional valuable information [45], and the
signal was band-pass filtered (0.01–0.1 Hz).

2.4. Network Construction and Analysis

In this study, we parcellated the whole brain into 116 distinct regions of interest (ROIs;
90 cortical and subcortical and 26 cerebellar) using the automated anatomical labeling
(AAL) atlas [46]. The average time courses across all voxels within each region were
extracted. Next, by means of Pearson’s correlation coefficients, we calculated the pairwise
functional connectivity between ROIs. The results were transformed using Fisher’s r-to-z
transformation for better normalization. Thus, a symmetrical adjacency matrix with a
size of 116 × 116 was built for each participant (Figure 1). We applied a density-based
thresholding on the obtained networks to maintain the strongest links and eliminate weaker
ones [47]. The network density was set between 0.05 and 0.275 with a step of 0.025. Finally,
we binarized the matrices to overcome the complexity issue.

A B

C D

Figure 1. Correlation matrices (A,B) (transformed Fisher’s r-to-z) and 10% binarized matrices (C,D) for morning and
evening sessions, respectively (averaged across all participants in each session). See Appendix A Table A1 for the description
of the areas.
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2.5. Graph Measure Computation

We extracted a set of global and local properties of the binary networks for each
participant using the Brain Connectivity Toolbox (BCT) [28]. Global properties such as
global efficiency, modularity, average shortest path, small-worldness, and assortativity can
be used to provide global information flow and functional specialization. Local properties
such as degree, betweenness centrality, nodal efficiency, nodal clustering coefficient, and
participant coefficient (for details on the measures see [28]), were computed for each
region separately, reflecting the centrality of nodes and existence of hubs (connector or
provincial) in the network. All measures were extracted from the thresholded and binarized
networks with the sparsity between 0.05 and 0.275 (step of 0.025). The reason for choosing
this interval was to reduce computational complexity while preventing the creation of
disconnected graphs.

3. Results
3.1. Global Analysis

We found a significant increase in small-worldness (the ratio of normalized clustering
coefficient to normalized path length) from the morning to the evening session (Figure 2) at
higher densities (p < 0.01, Bonferroni corrected), whereas the changes were not significant
in terms of chronotypes. No significant variations were observed for other global measures.
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Figure 2. Results of paired t-test on the small-worldness at the threshold values of 0.05 to 0.275. Asterisks (*) in the figures
show a significant difference in small-worldness between sessions (p < 0.01, Bonferroni corrected).

3.2. Local Analysis

Table 2 shows the results of the paired t-test on the brain regions that differed statis-
tically between the morning and evening sessions using local metrics, including degree
centrality, betweenness centrality, clustering coefficient, and nodal efficiency. According to
Table 2, several meaningful changes were evident, mostly across the left hemisphere, in
areas such as the precentral gyrus, orbital part of inferior frontal gyrus, lentiform nucleus
(particularly the putamen), inferior temporal gyrus, and a series of regions inside the
cerebellum. No significant differences were observed for other local measures (p > 0.001,
Bonferroni corrected). Moreover, the results of degree centrality and betweenness centrality
of all 116 brain areas are visualized in Figure 3. Compared with the morning session, the
evening session showed significantly decreased degree centrality in the left precentral
gyrus, the dorsolateral part of left superior frontal gyrus, the left supplementary motor
area, the supramarginal and angular gyri of the left inferior parietal lobe, the left putamen,
the left thalamus, and bilateral inferior temporal gyrus, and increased degree centrality in
some areas within the cerebellum (p < 0.001, Bonferroni corrected).
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Figure 3. Area under the curve in the morning session (blue) and the evening session (gray) for degree centrality (A) and
betweenness centrality (B) of all 116 brain regions. Significant diurnal fluctuations are represented by red lines. See Table A1
for the description of the areas.

Table 2. List of brain regions of interest (ROIs) that changed throughout the day (significance level was set at p < 0.01 and
p-values were adjusted for the Bonferroni correction).

ROI (Network)
MNI Coordinates

AAL Label
p-Value

x y z DC BC CC NE

1 (DMN) −38.65 −5.68 50.94 Precentral_L 0.00043 0.00021 0.00024
3 (DMN) −18.45 34.81 42.20 Frontal_Sup_L 0.00040 0.00045
15 (FPN) −35.98 30.71 −12.11 Frontal_Inf_Orb_L 0.00043 0.00003 0.00025
19 (SMN) −5.32 4.85 61.38 Supp_Motor_Area_L 0.00015 0.00010
54 (VN) 38.16 −81.99 −7.61 Occipital_Inf_R 0.00030
61 (FPN) −42.80 −45.82 46.74 Parietal_Inf_L 0.00042 0.00042
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Table 2. Cont.

ROI (Network)
MNI Coordinates

AAL Label
p-Value

x y z DC BC CC NE

63 (SMN) −55.79 −33.64 30.45 SupraMarginal_L 0.00065 0.00044
65 (FPN) −44.14 −60.82 35.59 Angular_L 0.00004
73 (LS) −23.91 3.86 2.40 Putamen_L 0.00002 0.00043 0.00002
77 (LS) −10.85 −17.56 7.98 Thalamus_L 0.00043 0.00046
78 (LS) 13.00 −17.55 8.09 Thalamus_R 0.00014

83 (FPN) −39.88 15.14 −20.18 Temporal_Pole_Sup_L 0.00033
86 (DMN) 57.47 −37.23 −1.47 Temporal_Mid_R 0.00025
89 (VN) −49.77 −28.05 −23.17 Temporal_Inf_L 0.00015 0.00011
90 (VN) 53.69 −31.07 −22.32 Temporal_Inf_R 0.00028 0.00060 0.00029
91 (CRB) −35.00 −67.00 −29.00 Cerebellum_Crus1_L 0.00066 0.00006 0.00069
92 (CRB) 38.00 −67.00 −30.00 Cerebellum_Crus1_R 0.00011 0.00081 0.00008
93 (CRB) −28.00 −73.00 −38.00 Cerebellum_Crus2_L 0.00033 0.00037 0.00022
94 (CRB) 33.00 −69.00 −40.00 Cerebellum_Crus2_R 0.00096 0.00073

101 (CRB) −31.00 −60.00 −45.00 Cerebellum_7b_L 0.00035
103 (CRB) −25.00 −55.00 −48.00 Cerebellum_8_L 0.00039 0.00006 0.00059
107 (CRB) −22.00 −34.00 −42.00 Cerebellum_10_L 0.00052

DC—Degree Centrality, BC—Betweenness Centrality, CC—Clustering Coefficient, NE—Nodal Efficiency.

3.3. Hub Analysis

We also identified network hubs along with their types (i.e., connector or provincial) in
morning and evening sessions within the sensorimotor, visual, frontoparietal, default mode,
limbic, and cerebellar networks (Table 3). The results are based on the mean connectivity
matrix (across all participants for each corresponding session) and a network density
of 0.1. According to Table 3, differences between the two sessions were located in regions
such as the left supramarginal gyrus; right superior temporal pole; right thalamus; left
lobule VIII of cerebellar hemisphere; and lobules IV, V, and VI of vermis. Interestingly,
the sensorimotor network was the densest part of the brain at rest with the most hubs
(mostly provincial, i.e., within modular connections) compared with the other networks. In
contrast, the hubs in default mode, limbic, and cerebellar networks were mainly connector
type (i.e., between modular connections).

Table 3. Hub regions in different brain networks (at a sparsity of 0.1).

Network
Morning Evening

L R L R

Sensorimotor

Rolandic_Oper_L P Rolandic_Oper_R P Rolandic_Oper_L P Rolandic_Oper_R P

Insula_L P Insula_R P Insula_L P Insula_R P

Postcentral_L P Postcentral_R P Postcentral_L P Postcentral_R P

SupraMarginal_L P SupraMarginal_RC - SupraMarginal_RC

Temporal_Sup_L P Temporal_Sup_R P Temporal_Sup_L P Temporal_Sup_R P

Visual
Lingual_L P Lingual_R P Lingual_L P Lingual_R P

Fusiform_L P Fusiform_R P Fusiform_L P Fusiform_R P

Frontoparietal - - - Temporal_Pole_Sup_R C

Default Mode Precentral_L C Precentral_R C Precentral_L C Precentral_R C

Limbic
Cingulum_Mid_L C Cingulum_Mid_R C Cingulum_Mid_L C Cingulum_Mid_R C

- Thalamus_R P - -

Cerebellar

Cerebellum_4_5_L C Cerebellum_4_5_R C Cerebellum_4_5_L C Cerebellum_4_5_R P

Cerebellum_6_L C Cerebellum_6_R C Cerebellum_6_L C Cerebellum_6_R C

Vermis_4_5 P - Cerebellum_8_L C -
Vermis_6 P -

L/R—Left or Right Hemisphere, P—Provincial, C—Connector.
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3.4. Correlation Analysis

Finally, we performed correlation analyses to examine the associations between local
measures and questionnaire scores (e.g., morningness/eveningness (ME) scale, amplitude
(AM) scale, and ESS). The results are displayed in Table 4 (p < 0.01, Bonferroni corrected).
For the morning session, we found significant negative associations between ME score
and nodal properties of right hippocampus and right parahippocampal gyrus, as well as
positive associations between ME score and nodal metrics (degree and nodal efficiency)
of the right lenticular nucleus and pallidum. We found significant positive associations
between AM score and nodal metrics (degree and nodal efficiency) of the left precentral
gyrus and left postcentral gyrus, as well as negative associations between AM score
and degree and betweenness centrality of the right lobule X of cerebellum. Finally, the
only significant correlation with ESS score was its positive associations with degree and
nodal efficiency of the left postcentral gyrus. In the evening session, we found significant
negative associations between AM score and nodal metrics (nodal clustering coefficient
and local efficiency) of the right hippocampus, as well as positive associations between
ME score and degree centrality of the right pallidum. Furthermore, positive and negative
correlations were observed for ME and AM, respectively, with nodal metrics within the
left parahippocampal gyrus. No significant correlations were found between ESS and
brain metrics.

Table 4. Partial correlations between nodal metrics with ME, AM, and ESS scores (n = 62; significance level was set at
p < 0.01 and p-values were adjusted for the Bonferroni correction).

ROI Local Metrics
Partial Correlation (p-Value)

ME AM ESS

Morning

Hippocampus_R Degree Centrality −0.408 (0.0020) - -
Nodal Efficiency −0.361 (0.0080) - -

ParaHippocampal_R Nodal Clustering Coefficient −0.367 (0.0068) - -
Nodal Local Efficiency −0.374 (0.0054) - -

Pallidum_R
Degree Centrality 0.424 (0.0010) - -
Nodal Efficiency 0.445 (0.0006) - -

Precentral_L
Degree Centrality - 0.361 (0.0080) -
Nodal Efficiency - 0.402 (0.0024) -

Nodal Shortest Path - −0.465 (0.0002) -

Postcentral_L
Degree Centrality - 0.395 (0.0030) 0.388 (0.0036)
Nodal Efficiency - 0.407 (0.0020) 0.358 (0.0086)

Nodal Shortest Path - −0.410 (0.0018) -

Cerebellum_10_R
Degree Centrality - −0.378 (0.0048) -

Betweenness Centrality - −0.377 (0.0050) -

Evening

Hippocampus_R Nodal Clustering Coefficient - −0.440 (0.0006) -
Nodal Local Efficiency - −0.467 (0.0002) -

ParaHippocampal_L Nodal Local Efficiency - −0.356 (0.0092) -
Nodal Shortest Path 0.382 (0.0044) - -

Pallidum_R Degree Centrality 0.353 (0.0098) - -

ME—Morningness/Eveningness Scale, AM—Amplitude Scale, ESS—Epworth Sleepiness Scale.

4. Discussion

In this paper, we investigated the effect of time of day and the individual’s chronotype
on the functional brain networks of 62 healthy participants using rs-fMRI data and a graph-
based approach. In the global analysis, we found that small-worldness increased over
the course of the day (p < 0.01, Bonferroni corrected). In the local analysis, we identified
significant diurnal variations, mostly across the left hemisphere, in areas including the
precentral gyrus, putamen, inferior frontal gyrus (orbital part), inferior temporal gyrus,
as well as in the bilateral cerebellum (p < 0.001, Bonferroni corrected). In the hub analysis,
we found that the sensorimotor network was the densest area of the brain (in terms of
hub numbers) in both the morning and evening sessions with primarily provincial type
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hubs, whereas hubs in default mode, limbic, and cerebellar networks were mostly of
the connector type. The effect of chronotype and interaction between time of day and
chronotype (so-called synchrony effect) were not observed in global and local analyses,
which is in line with our previous study [48]. The synchrony effect was confirmed in a
variety of cognitive domains [5,49] and in task fMRI characterized by high complexity [15].
In relation to the resting-state data, some recent reports revealed the influence of chronotype
on resting-state functional connectivity (with contradicting results) [50,51]; however, they
did not confirm the synchrony effect. Our findings regarding global and local connectivity
profiles indicate the variability of the brain’s functional organization between morning
and evening resting-state sessions as a universal phenomenon, independent of circadian
typology. Finally, in the correlation analysis, we found evidence of associations between
questionnaire scores and local metrics in several regions in both sessions, mostly related
to morning. In the following, we discuss in more detail the significant diurnal changes
related to small-worldness, local characteristics, hub, and correlation analysis.

4.1. Diurnal Variations in Small-Worldness

A small-world network is an intermediary between random and regular networks,
consisting of a large number of short-range connections together with a few long-range
shortcuts [52]. Mathematically, small-world networks have a high clustering coefficient
and short average path length, which makes them superior to other networks in terms
of functional segregation and integration, respectively [28,53]. A higher small-worldness
global property of brain networks has been shown in younger versus older individuals [54]
and in healthy controls compared with patients with Alzheimer’s disease [55]. According
to our rs-fMRI findings, a lower value of small-worldness in the morning compared with
the evening reflects a less efficient functional topology and greater wiring cost. The results
could be explained by an effect called “sleep inertia”, which is believed to be the third
process (Process W) of sleep regulation together with circadian rhythm (Process C) and
homeostatic process (Process S) [56]. It refers to the transitional state between sleep and
wake, characterized by impaired performance and reduced vigilance in the minutes or
even hours after waking up [57]. This conflicts with the common intuitive belief that in the
morning hours, the brain is recovered after the full night of sleep and should work most
effectively. The occurrence and length of sleep inertia depend on the individual and on the
sleep stage in which waking occurred or on previous sleep deprivation [58,59]. However,
the exact function and neurophysiological basis of sleep inertia are still not fully known
(for a review see [56]). Vallat et al. (2019) suggest that this phenomenon is caused by the
loss of functional brain network segregation from the default mode network, which is also
observed during sleep and periods of elevated sleepiness. Then, a progressive restoration
of the functional segregation of the brain networks is possibly responsible for sleep inertia
dissipation after awakening [60].

In the present study, we found that the global small-worldness index was higher in
the evening after the whole day of functioning, compared with the morning, regardless
of the participant’s chronotype. Results on small-worldness of human brain networks in
relation to time of day and participant fatigue level remain mixed and even contradictory.
Our results are in line with observations made by Liu et al. (2014) [61], who found that
small-worldness properties of resting-state networks in sleep-deprived individuals are
higher than those in well-rested individuals. Researchers have interpreted this effect as an
indicator of a compensatory reorganization of the human brain network under conditions
of resource shortages. In the current study, participants had good quality and length
of sleep the night before the experiment, which was confirmed by data obtained from
their wrist actigraphs. However, these results can be interpreted as possibly related to the
homeostatic process [62] that is in control of sleep regulation and accumulates during time
spent awake.
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4.2. Diurnal Variations in Nodal Properties

In this subsection, we discuss the topological changes of the brain regions across the
day in detail. Our findings here are classified based on the predefined brain networks in
this study, that is, default mode network, frontoparietal network, sensorimotor network,
visual network, limbic system, and cerebellar network.

4.2.1. Default Mode Network (DMN)

Our results showed that time of day affected degree, betweenness centrality, and nodal
efficiency in the precentral, superior frontal, and middle temporal gyri. These results can
be seen as a proof of DMN variability through the day. The DMN was initially presumed to
be exceptionally active when the mind is not focused, being in a state of wakeful rest and
wandering [63]. The DMN is thought to be implicated in various aspects of self-referential
processing [64], such as thinking about ourselves, remembering the past, and making
plans for the future [65], and it is sometimes referred to as an anti-task network because
the DMN is deactivated during goal-oriented tasks [66,67]. Diurnal variation of DMN
was also found in the study of Jiang et al. (2016) [17], which revealed increased regional
homogeneity (ReHo) and amplitude of low-frequency fluctuations (ALFF) in the morning
hours compared with the evening. Results of this study are congruent with ours, showing
that the precentral gyrus, also known as the primary motor cortex, is more significant for the
network in the morning hours. However, Jiang et al. (2016) [17] observed decreased ReHo
and ALFF in the superior frontal gyrus in the morning resting-state procedure, whereas our
results indicated higher nodal efficiency of the same region in the morning. The superior
frontal gyrus is thought to be associated with higher cognitive functions; however, its
contribution remains obscure [68]. Disagreement in current studies investigating circadian
rhythms prompts further exploration of the aforementioned subject. A meta-analysis by
Fusar-Poli et al. (2009) [69] found that increased activity of the middle temporal gyrus
(MTG) was present when participants were presented with emotional faces. The MTG was
also identified as being recruited in automatic semantic processing and being especially
active during demanding task execution [70].

A recent study by Xu et al. (2019) shed some light on the functional complexity of the
MTG [71]. These authors identified four sub-regions, each with different specialization
in, among others, social cognition and semantic and language processing, demonstrating
MTG involvement in many cognitive functions. Our results showed increased betweenness
centrality in the right MTG during the morning session compared with the evening session.
Higher values of betweenness centrality suggest that MTG as a node participates in a large
number of shortest paths, being a hub-like node, such that, on average, more information
will pass through MTG than other nodes inside a network.

4.2.2. Frontoparietal Network (FPN)

Diurnal changes were also observed in regard to local properties of the FPN, the
network involved in executive control [72]. Similar to that in other brain networks, these
alterations were observed in the left hemisphere. First, the orbital part of the left infe-
rior frontal gyrus showed decreased degree centrality and betweenness centrality in the
evening compared with the morning session. Additionally, the left inferior parietal lobe
showed an analogous pattern of diurnal differences, with lower degree centrality in the
evening compared with the morning hours. Taken together, these results show that both
the inferior frontal and inferior parietal lobes have fewer functional connections with
other brain networks in the evening, and the inferior frontal gyrus also had fewer short
paths, which may suggest that its role is less central to the network in the evening [28].
Importantly, part of the parietal lobe, the left angular gyrus, showed higher betweenness
centrality in the evening than in the morning. This might suggest that whereas the role of
inferior frontal gyrus is diminished in the evening, the role of left angular gyrus becomes
more central to the network, because a higher fraction of short paths is typical for the
bridging nodes [28]. The left inferior gyrus is linked, among others, to inhibitory control
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of responses [73], whereas the left inferior parietal cortex is linked to attention shifting
and mediating attentional flexibility [74]. Accordingly, increased resting-state functional
connectivity between the left angular gyrus and other brain regions has been linked to
sustained attention deficits in patients with multiple sclerosis [75]. In addition, diurnal
changes in other local property measures, such as nodal efficiency, were present in both the
left inferior frontal and parietal regions, whereas the left superior temporal pole showed
diurnal variations in clustering coefficient. These findings reveal diurnal variability in local
integration within the neighborhood of the inferior frontal and parietal nodes, as well as
changes in clustered connectivity, that is, in the interconnectedness of nodes within the
neighborhood of the left superior temporal pole [28]. Taken together, our results suggest
that the control processes mediated by the FPN are less efficient in the evening hours,
especially in terms of inhibition. Consistently, time-of-day effects on the brain activity
of the frontal and parietal regions and on related processes have been demonstrated in
previous studies [76,77].

4.2.3. Sensorimotor Network (SMN)

The SMN, involved in the processing of sensory information and motor reactions, has
diurnal rhythmicity, as confirmed by several studies [20,78]. In the current study, two nodes
that are part of the SMN—the supplementary motor area and supramarginal gyrus—had
different degree centrality and nodal efficiency according to the time of day. A previous
study revealed that the left supplementary motor area has increased functional connectivity
in the evening hours [48], which indicates alterations in daily activity of the SMN. The
results of the current study are in contrast to previous results, showing fewer connections
coming out of this structure in the evening, according to the graph measures. In reference
to the supramarginal gyrus, Song et al. (2018) demonstrated the synchrony effect, such that
evening types showed higher activity during the evening session compared with morning
types [79]. We did not observe this synchrony effect in any of the graph measures; however,
the study of Song et al. (2018) [79] was conducted using task fMRI, not resting-state fMRI.

4.2.4. Visual Network (VN)

The within-subject variability in VN is well known [80,81]; for example, sleep debt
and self-reported “sleepiness” are positively correlated with functional connectivity in
the VN [82,83]. However, VN changes regarding time of day have not been thoroughly
examined. In our study, diurnal variability was found in this network, regardless of the
participant’s chronotype. In the right inferior occipital gyrus (IOG.R), we found different be-
tweenness centrality according to the time of day. In the left inferior temporal gyrus (ITG.L),
alterations in degree centrality and nodal efficiency were noted. Diurnal variability in the
right inferior temporal gyrus (ITG.R) involved all three factors. This means that particular
nodes of visual network have fewer functional links and shortest paths to other nodes in the
brain in the evening than in the morning. These results are consistent with previous studies,
in which a decrease in resting-state functional connectivity was observed between regions
of VN from morning to evening [17,48,83,84]. In contrast, Gratton et al. (2018) found no
time-of-day effect on VN [85]. According to Cordani et al. (2018) [86], resting-state BOLD
signal in the visual cortex increases significantly between 8:00 and 17:00, and then it de-
creases significantly at 20:00 and increases (but not significantly) again at 23:00. There is
still no satisfying and clear explanation of this phenomenon of sensory processing within
the circadian VN [87,88]. Cordani et al. (2018) suggested that the human visual cortex is
modulated by daylight changes, with compensatory mechanisms at dawn and dusk [86].

4.2.5. Limbic System (LS)

We found two subcortical areas, traditionally considered parts of the LS, that showed
differences in local properties depending on the time of day: the putamen and the thalamus.
The putamen (one of the basal nuclei) and the caudate nucleus compose the dorsal striatum.
Primarily, the structure is thought to play an important role in movement preparation and
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execution and in learning [89]. In the context of circadian variability, changes in activation
were shown mainly for the left putamen [90]. It has been reported that the putamen
response to rewards is lower in the afternoon or early evening compared with that in the
morning hours [91,92]. In line with those reports, our findings (i.e., differences in local
connectivity indicators) implied that the left putamen is less functionally connected with
other brain areas in the evening. The thalamus is seen as a hub that passes sensory and
motor information between the cerebral cortex and subcortical areas while taking part in
regulation of the sleep–wake cycle [93]. The paraventricular thalamus (PVT) is known
to be especially important in this regulation because it is reciprocally connected to the
suprachiasmatic nuclei (SCN) and receives photic and circadian timing information [94].
Additionally, the thalamus shows circadian rhythmicity [83]. Here, we found that compared
with morning hours, degree centrality in the left thalamus was decreased in the evening.
Interestingly, Muto et al. (2016) indicated that subcortical areas, including basal ganglia
and the thalamus, exhibit circadian modulation that follows the melatonin profile [83].

4.2.6. Cerebellar Network (CRB)

Graph analyses revealed diurnal differences in the CRB associated with higher mea-
sures of network centrality such as nodal efficiency and degree and betweenness centrality
in the evening compared with the morning. These results indicate the high ability of
bilateral Crus I and II but also left lobules VIIB, VIII, and X of the cerebellar hemisphere to
transmit the information to other regions included in the CRB [95]. Dynamic interaction is
related to greater efficiency and thereby better functioning of the whole cerebellum, which,
apart from basic motor control such as voluntary limb movements, balance, and maintain-
ing posture [96], is associated with the visual attention process and working memory [97].
Diurnal rhythmicity of resting-state cerebellar activity has not been sufficiently examined
yet; however, a task study conducted by Bonzano et al. (2016) showed higher morning
activity of the cerebellum during both actual and mental movement tasks [98], which is
contradictory to our results, which revealed higher efficiency of the CRB during evening
fMRI sessions. Sami et al. (2014) showed an association between memory consolidation
and Crus II [99], whereas our results revealed larger centrality measures in the same area.
Moreover, Tzvi et al. (2015) reported striatal–cerebellar networks to mediate consolidation
in a motor learning task [100]. Because of the lack of knowledge on resting-state fMRI
time-of-day differences in the CRB, there is a clear need for further investigation.

4.3. Provincial and Connector Hubs

Hubs, a set of highly interconnected brain areas [101], are a set of integrative nodes and
have a key role in functional connectivity networks within the human brain [102]. They are
involved in transmitting the information across different areas of the brain by incorporating
parallel and distributed networks [103] and have a key role in network organization [104].
In the present study, we tested participants twice a day, in the morning and in the evening,
to identify the brain hubs under the resting state conditions within both experimental ses-
sions. The analysis recognized the common—for morning and evening—provincial hubs
(i.e., within modular connections) as a bilateral rolandic operculum, insula, postcentral
gyrus, superior temporal gyrus, lingual gyrus fusiform gyrus, precentral gyrus, midcingu-
late area, and cerebellum. We also found the common—for both testing sessions—connector
hubs (i.e., between modular connections) to be bilateral precentra gyrus, midcingulate area,
and lobule VI of the cerebellar hemisphere. The differences between the two experimental
sessions were located in regions such as the left supramarginal gyrus; right superior tem-
poral pole; right thalamus; left lobule VIII of cerebellar hemisphere; and lobules IV, V, and
VI of the vermis. The sensorimotor network was the densest part of the brain at rest, with
the most hubs (mostly provincial) compared with the other networks. In contrast, the hubs
in default mode, limbic, and cerebellar networks were mainly connectors.
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4.4. Correlation Analysis

Correlation analysis indicates that more evening-oriented individuals (or late chrono-
types) show lower degree centrality and nodal efficiency in the right hippocampus, lower
nodal clustering coefficient and local efficiency in the right parahippocampal area, and
higher degree centrality and nodal efficiency in right pallidum if examined in the morning,
and shorter nodal paths in the left parahippocampal area, higher degree centrality in the
right pallidum, and higher global assortativity in the evening. This may be interpreted,
in a simplified way, so that later chronotype is associated with lower effectiveness of
information transmission in the hippocampus and parahippocampal area during morning
hours, while the transmission in the pallidum seems to be enhanced—both in the morning
and evening. The morningness–eveningness dimension of chronotype refers to diurnal
preferences and awareness of own performance level. In this context, lowered information
flow in some structures in morning hours may be seen as a key indicator of eveningness.
The pallidum node is more challenging to interpret. However, if one pays attention to the
hedonic aspects of pallidum functions, it may be interesting to consider it in the context
of individual differences in reward system sensitivity. Some research, applying various
methodologies, suggest that evening types may be better “equipped” for processing plea-
sure and reward, e.g., Hasler et al. (2017) found a greater ventral striatum response to
winning in young male evening-oriented individuals [105], while results of the cortical
thickness analysis of Rosenberg et al. (2018) revealed greater grey matter volumes for late
chronotypes in the left anterior insula [106]. Additionally, Norbury (2020) indicated (in a
group of older adults) that self-reported eveningness was associated with increased grey
matter volume in brain regions implicated in risk and reward processing (bilateral nucleus
accumbens, caudate, putamen, and thalamus) and orbitofrontal cortex [107]. Finally, higher
global assortativity linked with eveningness and manifested in evening hours may be seen
as indirect proof of the accuracy of the subjective ME scale.

More distinct or “stronger” chronotypes (described by higher scores in the AM scale)
tend to show lower global clustering coefficient, network local efficiency, and average
path length as well as higher degree centrality and nodal efficiency in left precentral and
postcentral areas, shorter nodal paths in left precentral and postcentral regions, and lower
degree centrality and betweenness centrality in the right cerebellum in the morning, but
lower nodal clustering coefficient and local efficiency in the right hippocampus as well as
lower nodal local efficiency in the left parahippocampal area in the evening. These results
indicate that strong chronotype is associated with effective information transmission in gen-
eral sensing areas and less effective information transmission in the cerebellum in morning
hours and lowered ability of specialized processing in hippocampal and parahippocampal
areas in the evening. Subjective circadian amplitude is a complex construct referring to the
range of diurnal variations of arousal, reflected in the strength of morning–evening prefer-
ences, flexibility, and stability of the rhythm [40]. Without a doubt, diurnal arousal changes
indicate emotional lability and may be associated with emotional responsiveness and
general sensitivity. Thus, the enhanced information transmission/flow in general sensing
areas (precentral and postcentral) seems to be a logical correlate of large diurnal amplitude.

5. Conclusions

In the present study, we employed chronotype-based paradigms and performed graph-
theory based network analysis in resting-state functional MRI to explore the topological
differences in whole-brain functional networks between morning and evening sessions.
The study results revealed meaningful information about the topological alterations of the
brain network during the day. The results showed the effect of time of day on the functional
connectivity patterns, but with no significant difference in chronotype categories. The
chronotype-based paradigm is considered a highly sensitive tool for controlling circadian
and homeostatic parameters [5]. The lack of differences between the topological alterations
of the brain network during the day in the group of morning and evening-types suggests a
universal character of the described phenomenon.
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6. Limitations and Future Work

Several limitations in the current study should be considered for future directions.
The first limitation concerns the atlas used in this study. We applied the AAL atlas to define
116 (cortical and subcortical) graph nodes for brain network construction. Although there
is no consensus on which atlas is optimal for brain parcellation [108], some neuroscientists
believe that the AAL atlas leads to inefficient parcel homogeneity [109]. A recommended
atlas for handling this issue in future work is the cortical Schaefer/Yeo atlas [110]. Among
the many advantages of the Schaefer/Yeo atlas is that each node is preassigned to a system
based on a cross-validated study. Yet another limitation concerns the thresholding of
the functional matrices. In fact, while thresholding does control for differences in binary
density across subjects, it does not mean that the thresholded networks are representative
of a given subject. Finally, comparing to the t and F tests, nonparametric permutation
tests provide a more flexible and intuitive method for analyzing the data from functional
neuroimaging studies [111]. Applying permutation tests which allow inferences to be
made without prior assumptions should be considered in future studies.
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Appendix A

Table A1. Summary of each parcellation’s abbreviation, description, and MNI coordinates.

Abbreviation Description MNI Coordinates

SENSORIMOTOR NETWORK (SMN)

ROL.L Left Rolandic operculum −47.16, −8.48, 13.95
ROL.R Right Rolandic operculum 52.65, −6.25, 14.63
SMA.R Right supplementary motor area 8.62, 0.17, 61.85
INS.L Left insula −35.13, 6.65, 3.44
INS.R Right insula 39.02, 6.25, 2.08

PoCG.L Left postcentral gyrus −42.46, −22.63, 48.92
PoCG.R Right postcentral gyrus 41.43, −25.49, 52.55
SPG.L Left superior parietal lobule −23.45, −59.56, 58.96
SPG.R Right superior parietal lobule 26.11, −59.18, 62.06
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Abbreviation Description MNI Coordinates

SMG.L Left supramarginal gyrus −55.79, −33.64, 30.45
SMG.R Right supramarginal gyrus 57.61, −31.5, 34.48
PCL.L Left paracentral lobule −7.63, −25.36, 70.07
PCL.R Right paracentral lobule 7.48, −31.59, 68.09
HES.L Left transverse temporal gyrus −41.99, −18.88, 9.98
HES.R Right transverse temporal gyrus 45.86, −17.15, 10.41
STG.L Left superior temporal gyrus −53.16, −20.68, 7.13
STG.R Right superior temporal gyrus 58.15, −21.78, 6.8

TPOsup.R Right superior temporal pole 48.25, 14.75, −16.86
VISUAL NETWORK (VN)

CAL.L Left calcarine sulcus −7.14, −78.67, 6.44
CAL.R Right calcarine sulcus 15.99, −73.15, 9.4
CUN.L Left cuneus −5.93, −80.13, 27.22
CUN.R Right cuneus 13.51, −79.36, 28.23
LING.L Left lingual gyrus −14.62, −67.56, −4.63
LING.R Right lingual gyrus 16.29, −66.93, −3.87
SOG.L Left superior occipital gyrus −16.54, −84.26, 28.17
SOG.R Right superior occipital gyrus 24.29, −80.85, 30.59
MOG.L Left middle occipital gyrus −32.39, −80.73, 16.11
MOG.R Right middle occipital gyrus 37.39, −79.7, 19.42
IOG.L Left inferior occipital cortex −36.36, −78.29, −7.84
IOG.R Right inferior occipital cortex 38.16, −81.99, −7.61
FFG.L Left fusiform gyrus −31.16, −40.3, −20.23
FFG.R Right fusiform gyrus 33.97, −39.1, −20.18

FRONTOPARIETAL NETWORK (FPN)
MFG.L Left middle frontal gyrus −33.43, 32.73, 35.46
MFG.R Right middle frontal gyrus 37.59, 33.06, 34.04

ORBmid.L Left middle frontal gyrus, orbital part −30.65, 50.43, −9.62
ORBmid.R Right middle frontal gyrus, orbital part 33.18, 52.59, −10.73
IFGoperc.L Left inferior frontal gyrus, pars opercularis −48.43, 12.73, 19.02
IFGoperc.R Right inferior frontal gyrus, pars opercularis 50.2, 14.98, 21.41
IFGtriang.L Left inferior frontal gyrus, pars triangularis −45.58, 29.91, 13.99
IFGtriang.R Right inferior frontal gyrus, pars triangularis 50.33, 30.16, 14.17

ORBinf.L Left inferior frontal gyrus, pars orbitalis −35.98, 30.71, −12.11
ORBinf.R Right inferior frontal gyrus, pars orbitalis 41.22, 32.23, −11.91

SMA.L Left supplementary motor area −5.32, 4.85, 61.38
IPL.L Left inferior parietal lobule −42.8, −45.82, 46.74
IPL.R Right inferior parietal lobule 46.46, −46.29, 49.54

ANG.L Left angular gyrus −44.14, −60.82, 35.59
ANG.R Right angular gyrus 45.51, −59.98, 38.63

TPOsup.L Left superior temporal pole −39.88, 15.14, −20.18
ITG.L Left inferior temporal gyrus −49.77, −28.05, −23.17

DEFAULT MODE NETWORK (DMN)
PreCG.L Left precentral gyrus −38.65, −5.68, 50.94
PreCG.R Right precentral gyrus 41.37, −8.21, 52.09
SFGdor.L Left superior frontal gyrus −18.45, 34.81, 42.2
SFGdor.R Right superior frontal gyrus 21.9, 31.12, 43.82
ORBsup.L Left superior frontal gyrus, orbital part −16.56, 47.32, −13.31
ORBsup.R Right superior frontal gyrus, orbital part 18.49, 48.1, −14.02

OLF.R Right olfactory cortex 10.43, 15.91, −11.26
SFGmed.L Left medial frontal gyrus −4.8, 49.17, 30.89
SFGmed.R Right medial frontal gyrus 9.1, 50.84, 30.22

ORBsupmed.L Left medial orbitofrontal cortex −5.17, 54.06, −7.4
ORBsupmed.R Right medial orbitofrontal cortex 8.16, 51.67, −7.13

REC.L Left gyrus rectus −5.08, 37.07, −18.14
REC.R Right gyrus rectus 8.35, 35.64, −18.04
ACG.L Left anterior cingulate gyrus −4.04, 35.4, 13.95
ACG.R Right anterior cingulate gyrus 8.46, 37.01, 15.84
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PCG.L Left posterior cingulate gyrus −4.85, −42.92, 24.67
PCG.R Right posterior cingulate gyrus 7.44, −41.81, 21.87

PCUN.L Left precuneus −7.24, −56.07, 48.01
PCUN.R Right precuneus 9.98, −56.05, 43.77
MTG.L Left middle temporal gyrus −55.52, −33.8, −2.2
MTG.R Right middle temporal gyrus 57.47, −37.23, −1.47
ITG.R Right inferior temporal gyrus 53.69, −31.07, −22.32

LIMBIC SYSTEM (LS)
OLF.L Left olfactory cortex −8.06, 15.05, −11.46
DCG.L Left midcingulate area −5.48, −14.92, 41.57
DCG.R Right midcingulate area 8.02, −8.83, 39.79
HIP.L Left hippocampus −25.03, −20.74, −10.13
HIP.R Right hippocampus 29.23, −19.78, −10.33
PHG.L Left parahippocampal gyrus −21.17, −15.95, −20.7
PHG.R Right parahippocampal gyrus 25.38, −15.15, −20.47

AMYG.L Left amygdala −23.27, −0.67, −17.14
AMYG.R Right amygdala 27.32, 0.64, −17.5
CAU.L Left caudate nucleus −11.46, 11, 9.24
CAU.R Right caudate nucleus 14.84, 12.07, 9.42
PUT.L Left putamen −23.91, 3.86, 2.4
PUT.R Right putamen 27.78, 4.91, 2.46
PAL.L Left globus pallidus −17.75, −0.03, 0.21
PAL.R Right globus pallidus 21.2, 0.18, 0.23
THA.L Left thalamus −10.85, −17.56, 7.98
THA.R Right thalamus 13, −17.55, 8.09

TPOmid.L Left middle temporal pole −36.32, 14.59, −34.08
TPOmid.R Right middle temporal pole 44.22, 14.55, −32.23

CEREBELLAR NETWORK (CRB)
CRBLCrus1.L Left crus I of cerebellar hemisphere −36.07, −66.72, −28.93
CRBLCrus1.R Right crus I of cerebellar hemisphere 37.46, −67.14, −29.55
CRBLCrus2.L Left crus II of cerebellar hemisphere −28.64, −73.26, −38.20
CRBLCrus2.R Right crus II of cerebellar hemisphere 32.06, −69.02, −39.95

CRBL3.L Left lobule III of cerebellar hemisphere −8.80, −37.22, −18.58
CRBL3.R Right lobule III of cerebellar hemisphere 12.32, −34.47, −19.39
CRBL45.L Left lobule IV, V of cerebellar hemisphere −15.00, −43.49, −16.93
CRBL45.R Right lobule IV, V of cerebellar hemisphere 17.20, −42.86, −18.15
CRBL6.L Left lobule VI of cerebellar hemisphere −23.24, −59.10, −22.13
CRBL6.R Right lobule VI of cerebellar hemisphere 24.69, −58.32, −23.65
CRBL7b.L Left lobule VIIB of cerebellar hemisphere −32.36, −59.82, −45.45
CRBL7b.R Right lobule VIIB of cerebellar hemisphere 33.14, −63.18, −48.46
CRBL8.L Left lobule VIII of cerebellar hemisphere −25.75, −54.52, −47.68
CRBL8.R Right lobule VIII of cerebellar hemisphere 25.06, −56.34, −49.47
CRBL9.L Left lobule IX of cerebellar hemisphere −10.95, −48.95, −45.90
CRBL9.R Right lobule IX of cerebellar hemisphere 9.46, −49.50, −46.33
CRBL10.L Left lobule X of cerebellar hemisphere −22.61, −33.80, −41.76
CRBL10.R Right lobule X of cerebellar hemisphere 25.99, −33.84, −41.35
Vermis12 Lobule I, II of vermis 0.76, −38.79, −20.05
Vermis3 Lobule III of vermis 1.38, −39.93, −11.40

Vermis45 Lobule IV, V of vermis 1.22, −52.36, −6.11
Vermis6 Lobule VI of vermis 1.14, −67.06, −15.12
Vermis7 Lobule VII of vermis 1.15, −71.93, −25.14
Vermis8 Lobule VIII of vermis 1.15, −64.43, −34.08
Vermis9 Lobule IX of vermis 0.86, −54.87, −34.90

Vermis10 Lobule X of vermis 0.36, −45.80, −31.68
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