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Abstract: Anodal transcranial direct current stimulation (tDCS) is a painless noninvasive method
that reportedly improves cognitive function in Alzheimer’s disease (AD) by stimulating the brain.
However, its underlying mechanism remains unclear. Thus, the present study investigates the
cognitive effects in a 5xFAD AD mouse model using electrophysiological and pathological methods.
We used male 5xFAD C57BL/6J and male C57BL/6J wild-type mice; the dementia model was confirmed
through DNA sequencing. The verified AD and wild-type mice were randomly assigned into four
groups of five mice each: an induced AD group receiving tDCS treatment (Stim-AD), an induced
AD group not receiving tDCS (noStim-AD), a non-induction group receiving tDCS (Stim-WT), and a
non-induction group not receiving tDCS (noStim-WT). In the Stim group, mice received tDCS in the
frontal bregma areas at an intensity of 200 µA for 20 min. After 2 weeks of treatment, we decapitated
the mice, removed the hippocampus from the brain, confirmed its neuronal activation through
excitatory postsynaptic potential (EPSP) recording, and performed molecular experiments on the
remaining tissue using western blots. EPSP significantly increased in the Stim-AD group compared
to that in the noStim-AD, which was comparable to that in the non-induced groups, Stim-WT and
noStim-WT. There were no significant differences in cyclic amp-response element binding protein
(CREB), phosphorylated CREB (pCREB), and Brain-derived neurotrophic factor (BDNF) levels in the
Stim-AD group compared to those in the noStim-AD group. This study demonstrated that a tDCS
in both frontal lobes of a transgenic 5xFAD mouse model affects long-term potentiation, indicating
possible enhancement of cognitive function.
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1. Introduction

Alzheimer’s disease (AD), with anterograde amnesia as its key symptom, is a neurodegenerative
disorder characterized by brain dysfunction including the loss of cognitive function and behavior.
AD dementia is particularly prevalent in the elderly population and deteriorates the quality of life
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in the aging population [1]. According to reported data, medical treatments for dementia include
cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists [2].

However, these drugs are ineffective in some patients, are expensive, and are prone to side effects
after long-term use. Thus, alternative or supplementary therapy is drawing significant attention [3,4].

Since direct stimulation is clinically ineffective, the indirect method of noninvasive transcranial
magnetic/electrical stimulation is being actively researched. This stimulation method has been applied
in various fields and proven effective according to clinical and animal research. Transcranial direct
current stimulation (tDCS) is a brain stimulation technique used to neuromodulate a brain area through
small electrodes that emit a weak direct current on the skull [5].

Clinical studies have reported that tDCS improves cognitive function in patients of stroke,
Parkinson’s disease, and AD with cognitive impairment [6–10]. Since the brain tissue cannot be directly
examined, it is difficult in clinical research to verify the presence of cognitive enhancement and its
exact mechanism [11,12]. Therefore, uncovering the exact mechanism of tDCS cannot be achieved
through clinical research alone. To overcome such limitations, animal models are being used and many
studies have shed light on the mechanism behind the cognitive enhancement effect [13–17].

Nevertheless, most animal studies of dementia involve artificial models that artificially induce
cognitive deficits or cause acute neurological problems that damage brain function. To complement
this limitation, genetic models similar to the induced disease model have been generated, as well as
genetic animal models of dementia [18,19].

In the present study, we aimed to identify the effects of tDCS on cognitive function improvement
and the underlying mechanism using the genetic dementia model 5xFAD.

2. Materials and Methods

We crossed wild-type (C57BL/6J (Damul Science in Korea)) female mice and 5X five familial AD
(FAD) amyloid beta precursor protein (APP) KM 670/671NL (Sweden)) male mice to obtain a mixed
strain and selected aged mice with cognitive deficits. Three weeks post birth, we collected the ear
tissue of the offspring for genotyping and used only male mice confirmed as 5xFAD or wild type. After
confirming the mutation, we experimented with mice that were 4 months old. Because 5xFAD mice
were violent, they were individually housed, with food ad libitum under a 12 h:12 h light–dark cycle at
a temperature of 23–30 ◦C. All animal experiments were approved by the Institutional Animal Care
and Use Committee of Chonnam National University (CNU IACUC-H-2018-53).

2.1. The tDCS Treatment

For tDCS stimulation, we used a battery-driven, constant-current stimulator (HDCprog
manufactured by Newronika s.r.l., Italy and distributed by Magstim Co. Ltd., UK). For the two-channel
anodal method, we positioned cup-shaped active electrodes (1 cm × 1 cm) on the frontal skull of both
hemispheres, whereas for the cathodal method, a 0.5-cm sponge pad was placed on the neck. Electrical
stimulation was performed at an intensity of 0.2 mA for 20 min over a period of 2 weeks (5 consecutive
days followed by a 2-day break). Animals were randomly allocated into four groups (five animals per
group), with the Stim-AD group 5xFAD mice receiving tDCS treatment, the noStim-AD 5xFAD mice
receiving no tDCS, the Stim-WT wild-type mice receiving tDCS, and the noStim-WT group wild-type
mice receiving no tDCS. The noStim-AD and noStim-WT groups were left in the cage for 20 min
without the stimulation pads on. Stim-AD and Stim-WT mice had two small circular pads on the head.

2.2. Brain Tissue Preparation

We sacrificed mice 2 weeks post treatment and immediately extracted the brains. Brains were
immersed in Artificial cerebrospinal fluid (ACSF) (125 mM NaCl, 2.8 mM KCl, 26 mM NaHCO3, 1.25
mM NaH2PO4, 2 mM CaCl2, 1 mM MgSO4) and 10 mM freezing liquid, and were then placed on a
cooling pad to dissect the hippocampus. Hippocampal slices of Stim-AD, noStim-AD, Stim-WT, and
noStim-WT mice were prepared using the rotary slicer and automatic chopper to generate 400-µm
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thick samples (Mickle Laboratory Engineering Co. Ltd.). The slices were stabilized for at least an hour
in ACSF and gassed with 95% O2 and 5% CO2.

2.3. Excitatory Postsynaptic Potential (EPSP) Recording

Hippocampal slices were transferred to a glass-bottomed submersion recording chamber and
continuously perfused with ACSF (95% O2/5% CO2) at room temperature. We used bipolar nichrome
electrodes for each slice recording and an isolation unit for the stimulator. For the recording electrode,
we used a glass micropipette filled with 3M NaCl, mounted in an electrode holder. We recorded
the field excitatory postsynaptic potential (fEPSP) in the stratum corneum of the CA1 region while
delivering 10-µs pulses through a bipolar tungsten electrode at 15-s intervals. To assess synaptic
transmission, we used the initial slope of the fEPSP. We adjusted the baseline to the value that elicited
a response equal to about 30% of the maximal response. For Long-term potentiation (LTP) induction,
we applied high-frequency stimulation (100 pulses at 100 Hz) in the Schaffer collateral. We used
the stimulation strength that elicited a stable baseline for 30 min in a follow-up recording and then
recorded LTP for 60 min. Data were analyzed using the WinLTP software.

2.4. Western Blot

We prepared hippocampal slices from the remaining brain tissue after recording EPSP. We
homogenized the samples on ice using a Radioimmunoprecipitation assay (RIPA) buffer and centrifuged
them at 4 ◦C for 30 min at 13,000 rpm. We used a Bicinchonic acid (BCA) assay for protein quantification.
We loaded the quantified protein onto separate 10–12% gels and transferred it to a Polyvinylidene
fluoride (PVDF) membrane. We first incubated the membrane in 5% non-fat milk for 1 h at room
temperature for blocking. The membrane was then rinsed three times in tris buffered saline buffer with
tween 20 (TBST). Next, we incubated the membrane overnight at 4 ◦C in primary antibody solution
(BDNF (1:1000), CREB (1:1000) and pCREB (1:1000)). The following morning, we rinsed the membrane
three times in TBST and incubated in the secondary antibody solution (rabbit immunoglobulin G (IgG)
(1:5000)) for 90 min at room temperature and rinsed three times in TBST. We incubated the membrane
in the chemiluminescent horseradish peroxidase (HRP) substrate kit and detected using UVITEC Mini
HD9 acquisition system (Alliance UVItec Ldt, Cambridge, UK).

2.5. Statistical Analysis

We performed a Kruskal–Wallis test to identify the interactions and differences between groups
(noStim-AD, Stim-AD, noStim-WT, and Stim-WT) and Tukey’s test using ranks as a post hoc analysis.
All data are presented as mean ± SD or mean ± SE, the statistical analysis was done using SPSS ver.25.0
(IBM, SPSS, Armonk, NY, USA), and the significance level was set to p < 0.05.

3. Results

3.1. tDCS Could Improve the Slope of f-EPSP

We confirmed between-group differences among the four groups. Groups other than noStim-AD
(Stim-AD, Stim-WT, and noStim-WT) showed similar results. Stim-AD mice (153.2 ± 21.4%)
demonstrated a more significant improvement than noStim-AD (113.9 ± 18.8%) (p = 0.024). The value
of noStim-WT (154.2 ± 13.1%) was significantly higher than the value of noStim-AD (p = 0.021). There
was no significance difference among the Stim-AD, Stim-WT (147.9 ± 22.2%), and noStim-WT groups
(Figure 1). The result suggests that tDCS induces no difference in the WT model but does induce
changes in hippocampal synaptic plasticity in the AD model.
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Figure 1. The numbers represent the field excitatory postsynaptic potential (fEPSP) response of each
group. The 5xFAD induced Alzheimer’s disease (AD) mice and wild-type (WT) mice that received
2 weeks of Transcranial direct current stimulation (tDCS) showed significant changes in hippocampal
Long-term potentiation (LTP) compared to those that received no stimulation. (a) We recorded the
hippocampal LTP in 5xFAD mice that either received tDCS or no stimulation. (b) The bars represent
the LTP amplitudes of the two AD groups of 5xFAD mice as calculated from the mean fEPSP slope over
90 min. Significance relative to noStim-AD was * p < 0.05. (c) We recorded the hippocampal LTP in WT
mice that either received tDCS or no stimulation. (d) The bars represent the LTP amplitudes of the
two WT groups as calculated from the mean fEPSP slope over 90 min. Stim-AD is a 5xFAD mouse
with tDCS, while noStim-AD is a 5xFAD mouse without tDCS. Stim-WT is a WT mouse with tDCS
while noStim-WT is a WT mouse without tDCS. Data are presented as mean ± SE and we performed a
Kruskal–Wallis test and Tukey’s test using ranks as a post hoc analysis.

3.2. Expression of tDCS Protein Level

We performed western blot analysis to identify the molecular mechanism underlying the long-term
effects of tDCS on cognitive enhancement. There were no significant differences in CREB, pCREB, or
BDNF protein expression in the Stim-AD group relative to the noStim-AD group. (Figure 2).
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Figure 2. Levels of cyclic amp-response element binding protein (CREB), phosphorylated CREB
(pCREB), and Brain-derived neurotrophic factor (BDNF) expression. (a) Western blot of the hippocampal
samples from each group shows the representative bands of CREB, pCREB, and BDNF. (b) The bars
represent the quantitative CREB expression levels. (c) The bars represent the quantitative pCREB
expression levels. (d) The bars represent the quantitative BDNF expression levels. Data are presented as
mean ± SD and we performed a Kruskal–Wallis test and Tukey’s test using ranks as a post hoc analysis.

4. Discussion

This study investigated the effects of tDCS on the improvement of cognitive function in an
Alzheimer’s dementia mouse model. After 2 weeks of treatment (five sessions per week), LTP was
enhanced and neuronal activity in the hippocampus also increased, as suggested by the increase in
pCREB and CREB. The possible mechanism involved is that tDCS stimulates the cortex, which in turn
influences the deeply nested hippocampus.

Clinically, it has been reported that tDCS significantly affects cognitive enhancement in patients
with mild Alzheimer’s dementia and improves spatial task performance and memory [20,21]. However,
clinical studies are limited since brain tissues cannot be directly analyzed. We thus aimed to identify
the effects and mechanism of tDCS using animal models. The 5xFAD dementia model mouse is a
genetic dementia model with features resembling those of Alzheimer’s dementia (e.g., increased Aβ

plaque levels, neurosis, synapse degeneration, neuronal loss, and progressive cognitive deficit) [19].
Since the hippocampus is the control tower of the brain for learning and memory and plays an

important role in regulating cognitive function, hippocampal LTP is used as a proxy of basic synapse
metabolism for learning and memory [22]. In the present study, we stimulated the brain using tDCS
for 2 weeks, extracted the hippocampus in vivo and recorded the EPSP. The results showed that LTP
was enhanced in the Stim-AD group of 5xFAD mice compared to that in the noStim-AD group, which
was similar to the noStim-WT LTP results. This suggests that that the outcome of tDCS in dementia
mice is hippocampal LTP. These results are consistent with previous clinical findings, where tDCS
induced cortical changes or simulated the effects of LTP [23,24].

To explore the mechanism of stimulation, we examined the levels of BDNF, CREB, and pCREB,
which are factors involved in cellular regeneration and proliferation in the brain. BDNF, a critical
regulator of synaptic plasticity, serves as a molecular switch for LTP induction and initiation of
biochemical changes [25,26]. In this study, BDNF levels showed non-significant differences in the
Stim-AD group compared to those in the noStim-AD group. Since the degree of BDNF increase may
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change with the amount of time elapsed after stimulation, time-dependent changes must be monitored
in future research [27].

CREB and pCREB, reported to improve cognitive deficits in Alzheimer’s dementia, work as a
trigger for memory formation in spatial and social learning and regulate the expression of synapse- or
memory-related genes [27–30]. The results of this experiment showed that CREB and pCREB showed
non-significant differences in the Stim-AD group compared to those in the noStim-AD group.

Recent studies using the 3xTg model, generated by injecting an APPswe, PS1M146V, and tau-
expressing P301L mutant, have reported findings contradictory to ours: tDCS had no significant effect
on memory enhancement [14,19]. This may be due to the different parameters used: while Gondard
et al. performed tDCS at an intensity of 50 µA for 3 weeks, in the present study, we stimulated the
mice brains at 200 µA for 2 weeks while using a different transgenic model (5xFAD): the 5xFAD model
generated by the co-expression of a total of five FAD mutations (APP K670N/M671L (Sweden), I716V
(Florida), V717I (London), PSq M146L, and L286V) [3,19]. This resulted in a different stimulus that may
be connected to tDCS parameters (e.g., the stimulation method, intensity, duration, area, and electrode
size), consistent with previous findings that tDCS-induced brain activation depends on variables like
electrode size, position, and conductive medium [31]. Therefore, more research is needed to find the
appropriate parameters of tDCS, as the results may vary with the different parameters used.

However, this study has a limitation that a behvioral test was not conducted to confirm the models
and to observe the clinical function.

5. Conclusions

In conclusion, this study showed that tDCS application in 5xFAD mice, a genetic animal model
designed as a disease model, induces LTP response via the continuous production of pCREB, CREB,
and BDNF and presented a mechanism for memory enhancement in Alzheimer’s dementia.
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