Supplementary Materials

Synthetic Procedures

All Fmoc-protected amino acids, Fmoc-Wang resins, DIC (N,N' -Diisopropylcarbodiimide), Oxyma 2-(1Hbenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphaten(HBTU), and 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b] pyridinium 3-oxide hexafluorophosphate (HATU) were purchased were purchased from Iris Biotech GmbH (Marktredwitz, Germany). Peptide grade DMF was obtained from Scharlau (Barcelona, Spain). Triisopropyl silane (TIS) and 1,2-Ethanedithiol (EDT), DIPEA, diisopropyl ether (iPr₂O), diethylether (Et₂O) and Dry MeOH were purchased from Sigma Aldrich(Milano, Italy). HPLC-grade MeCN was purchased from Carlo Erba (Italy). Fmoc-*L*-Asn[β -D-Glc(OAc)4]-OH were synthesized as previously described [*Paolini I, Nuti F, Pozo-Carrero MC, Barbetti F, Kolesinska B, Kaminski ZJ, Chelli M, Papini AM. A convenient microwaveassisted synthesis of N-glycosyl amino acids, Tetrahedron Letters 2007, 48*(16), 2901-2904].

General Procedure

General Procedure of Microwave-Assisted Solid Phase Synthesis

The β -turn glucopeptide CSF114(Glc) (1) was synthesized by microwave-assisted solid-phase synthesis (MW-SPPS) following the Fmoc/tBu strategy, using the Liberty BlueTM automated microwave peptide synthesizer (CEM Corporation, Matthews, NC, USA) following the protocol previously described [*Rizzolo F, Sabatino G, Chelli M, Rovero P, Papini AM. A convenient microwave-enhanced solid-phase synthesis of difficult peptide sequences: case study of Gramicidin A and CSF114(Glc).* Int J Pept Res Ther 2007, 13(1-2), 203-208]. Coupling of Fmoc-L-Asn[β -D-Glc(OAc)4]-OH was performed using the adequately protected amino acids (2.5 eq), HATU as activator (2.5 eq), and DIPEA (3.5 eq) with 30W at 75°C in 300 sec.

General Procedure for in Batch SPPS on Manual Synthesizer

Peptides **2–26** were synthesized on a manual in batch synthesizer (PLS 4 × 4, Advanced ChemTech) using Teflon reactors (10 mL), on pre-loaded Wang resins and following the Fmoc/tBu SPPS procedure. The resin was swollen with DMF (1 mL/100 mg of resin) for 20 min before use. The synthesis was performed repeating the cycle described below for each amino acid: swelling: DMF (1 mL/100 mg of resin) for 5 min; Fmoc-deprotection: resin was washed twice with 20% piperidine in DMF (1 mL/100 mg of resin, one washing for 5 min and one for 20 min); resin-washings: DMF (3×5 min); the couplings were performed by Fmoc-amino acids (2.5 equiv), HBTU (2.5 equiv) and DIPEA (2.5 equiv) for 30 min. Each coupling was checked by Kaiser test and repeated if necessary; resin-washings: DMF (3 × 5 min) and DCM (3 × 5 min), Kaiser test. Uncertain peptide coupling results were checked by the ninhydrin test as described by Kaiser. [*Kaiser E, Colescott RL, Bossinger CD, Cook PI. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides, Anal Biochem 1970, 34(2), 595-598*] or micro-cleavages performed with a microwave apparatus CEM DiscoverTM single-mode MW reactor (CEM Corporation, Matthews, NC, USA).On completion of the synthesis the resin was washed with DCM and dried in *vacuo*.

General Cleavage Procedure

Cleavage from the resin and side-chain deprotections of peptides **2–8** (Table S1) were performed using a mixture of TFA/TIS/ethanedithiole/H₂O/ (93:2.5:2.5:2.5 v:v:v:v). The resin was treated for 2.5 h (1 mL/100 mg of resin) at r.t. Then it was filtered off and the solution was concentrated flushing with N₂. The peptides were precipitated from cold Et₂O, centrifuged and lyophilized.

Cleavage from the resin and side-chain deprotections of peptides **9–26** (Tables S2 and S3) were carried out with TFA/TIS/H₂O (95:2.5:2.5 v:v:v) for 3 h at r.t. The resin was filtered off and the

solution concentrated under N₂ flow. Crude products were precipitated with cold diisopropyl ether. The solid was centrifuged and washed with diisopropyl ether twice, and then lyophilized. *Synthesis of the N-Glc Peptides*

N-Glc peptide epitopes **2–22** (Tables 1 and 2) were synthesized on a manual in batch synthesizer, starting from Rink Amide resin (250 mg, 0.63 mmol/g). *N*-Glc peptide epitopes **2–22** were acetylated on the N-terminal function with Ac₂O (10 equiv) and NMM (10 equiv) in DMF for 2 h. The peptides were cleaved and side-chains were deprotected as described in the general cleavage procedure. The deprotection of the hydroxyl functions of glucose was performed with MeONa/MeOH. The peptides were lyophilized and purified.

Synthesis of N-Glc Multiple Epitope Peptides (N-Glc MEPs)

N-Glc MEPs **23–26** (Figure 4) were synthesized, starting from Fmoc₄-Lys₂-Lys- β -Ala-Wang resin (100 mg, 0.2 mmol/g). Fmoc-*L*-Asn(β -GlcAc4)-OH (2.5 equiv), Fmoc-NH-(PEG)-COOH (19-atoms spacer) (N1-(9-Fluorenylmethoxycarbonyl)-1,13-diamino-4,7,10-trioxatridecan-succinamic acid) (2.5 equiv), Fmoc-NH-(PEG)-COOH (9-atoms spacer) (Fmoc-8-amino-3,6-dioxaoctanoic acid) (2.5 equiv) were coupled with HATU (2.5 equiv) and NMM (5 equiv) in DMF for 1 h. *N*-Glc MEPs **23–26** were acetylated on the N-terminal function with Ac₂O (10 equiv) and NMM (10 equiv) in DMF for 2 h. The peptides were cleaved and side-chains were deprotected as described in the general cleavage procedure. The deprotection of the hydroxyl functions of glucose was performed with MeONa/MeOH. The peptides were lyophilized and purified.

Purification step and characterization by RP-HPLC-MS

All peptides **1–26** were purified by semipreparative RP-HPLC on a Waters instrument (Separation Module 2695, detector diode array 2996) using a Phenomenex (Torrance, CA, USA) Jupiter column C18 (10 μ m, 250 × 10 mm), at 4 mL/min with solvent system A (0.1% TFA in H₂O) and B (0.1% TFA in CH₃CN). The purity of the peptides was analysed by analytical HPLC using a Waters ACQUITY HPLC coupled to a single quadrupole ESI-MS (Waters 3100 Mass Detector) supplied with a BEH C18 (1.7 μ m 2.1 × 50 mm) column at 35 °C, at 0.6 mL/min with solvent system A (0.1% TFA in H₂O) and B (0.1% TFA in CH3CN).

The peptides were purified by semi-preparative RP-HPLC and characterized by RP-HPLC and ESI-MS, obtaining a final purity \geq 98%. Data were acquired and processed using MassLynx software (Waters, Milford, MA, USA). The analytical data are reported in details in Tables S1-S3.

Peptides	HPLC (Rt, min)	ESI-MS (m/z) found (calcd)	
$[Asn^{7}(Glc)]CSF114 (1-18) (2)$	14.58ª	1145.1 ^d (2288.1)	
[Asn ⁷ (Glc)]CSF114 (1-16) (3)	13.55ª	1023.6 ^d (2046.1)	
$[Asn^{7}(Glc)]CSF114 (1-14) (4)$	13.81 ^a	893.5 ^d (1786.0)	
$[Asn^{7}(Glc)]CSF114(2-13)$ (5)	15.40ª	807.4 ^d (1613.9)	
$[Asn^{7}(Glc)]CSF114(4-11)$ (6)	6.51 ^a	1100.8 (1101.2)	
$[Asn^{7}(Glc)]CSF114(5-10)$ (7)	3.85 ^b	901.4 (902.9)	
[Asn ⁷ (Glc)]CSF114(6-9) (8)	3.77°	685.7 (686.7)	

Table S1. Shortened CSF114(Glc)-sequences of peptides 2–8.

Analytical HPLC gradients at 1 mL min⁻¹; solvent system A: 0.1% TFA in H₂O, B: 0.1% TFA in CH₃CN; ^a 5–50% B in 20 min; ^b 0–30% B in 20 min; ^c 0–5% B in 20 min; ^d Detected as [M+2H]²⁺.

Peptides	HPLC (Rt, min)	ESI-MS (m/z) Found ^c (calcd)
Ac-N(Glc)GS-NH ₂ (9)	3.27 ^a	502.22 (502.45)
Ac-N(Glc)GT-NH ₂ (10)	3.54 ^a	494.17 (494.48)
Ac-N(Glc)KS-NH ₂ (11)	3.54 ^a	551.35 (551.26)

$Ac-N(Glc)KT-NH_2$ (12)	4.01 ^a	565.35 (565.28)
$Ac-N(Glc)GH-NH_2$ (13)	3.69 ^a	530.21 (530.52)
Ac-N(Glc)KH-NH2 (14)	3.69 ^a	601.32 (601.29)
$Ac-N(Glc)AT-NH_2$ (15)	3.64 ^a	508.74 (508.51)
Ac-ERN(Glc)GS-NH ₂ (16)	3.85 ^b	765.48 (765.76)
Ac-ERN(Glc)GT-NH ₂ (17)	3.80 ^b	779.12 (779.79)
Ac-ERN(Glc)KS-NH ₂ (18)	3.97 ^b	695.02 (694.68)
Ac-ERN(Glc)KT-NH ₂ (19)	3.88 ^b	837.13 (836.88)
Ac-ERN(Glc)GH-NH ₂ (20)	3.87 ^b	814.93 (815.36)
Ac-ERN(Glc)KH-NH ₂ (21)	3.76 ^b	808.96 (809.91)
Ac-KGN(Glc)AT-NH ₂ (22)	3.84 ^b	887.01 (886.95)

Analytical HPLC gradients at 1 mL min⁻¹; solvent systems A: 0.1% TFA in H₂O, B: 0.1% TFA in CH₃CN; ^a0-50% B in 15 min; ^b0-30% B in 10 min; ^c Detected as [M+H]⁺.

 Table S3. Analytical data of the Multiple N-Glucosylated Peptide Epitopes (N-Glc MEPs) 23–26.

N-Glc MEP	Analytical RP-HPLC gradients	HPLC (R _t , min)	ESI-MS (m/z) Found ^a (calcd)
23	02-35% B 8 min	3.94	1016.42 (1017.98) [M+2H] ²⁺
24	05-40% B 8 min	3.96	1416.63 (1415.73) [M+3H] ³⁺
25	05-40% B 8 min	4.52	1219.93 (1219.26) [M+4H] ⁴⁺
26	03-25% B 8 min	4.01	1338.81 (1339.28) [M+3H] ³⁺

Analytical HPLC gradients at 0,6 mL/min; solvent systems: A: 0.1% TFA in H₂O, B: 0.1% TFA in CH₃CN; ^a Detected as [M+H]+.

Figure S1. Received Operating Characteristic (ROC) analysis. ROC curve analysis of anti-CSF114(Glc) antibodies and anti-*N*-Glc MEPs **23–26** in Multiple Sclerosis versus controls determined by SP-ELISA.

Table S4. Calculated half maximal inhibitory concentration (IC50). Calculated Log 1/IC50 with the Std errors and the IC50 with the Corresponding Confidence Interval (CI) for the shortened peptides versus CSF114(Glc).

Peptide	Log1/IC50 ±Std Error	IC50 (µM) [CI 95%]
CSF114(Glc) (1)	6.14 ± 0.083	$0.009 \ [0.006 \pm 0.009]$
[Asn ⁷ (Glc)]CSF114 (1-18) (2)	7.1 ± 0.13	$0.07 \; [0.027 \; \pm 0.2]$
[Asn ⁷ (Glc)]CSF114 (1-16) (3)	6.8 ± 0.44	$0.17 \ [0.007 \ \pm 4.2]$
[Asn ⁷ (Glc)]CSF114 (1-14) (4)	7.9 ± 0.045	$0.014 \ [0.009 \pm 0.01]$
[Asn ⁷ (Glc)]CSF114 (2–13) (5)	7.5 ± 0.22	$0.035 \ [0.006 \pm 0.17]$
$[Asn^{7}(Glc)]CSF114(4-11)$ (6)	6.2 ± 0.29	$0.56[0.087\pm3.62]$
$[Asn^{7}(Glc)]CSF114(5-10)(7)$	5.4 ± 0.10	3.5 [1.84 ±6.72]
[Asn ⁷ (Glc)]CSF114(6-9) (8)	5.7 ± 0.25	$2.2 \ [0.43 \pm 10.2]$

Table S5. Calculated Log 1/IC50 with the Std errors and the IC50 with the Corresponding Confidence Interval (CI) for the Peptides **9–22** and CSF114(Glc) (**1**).

Peptide	Log1/IC50 ±StdError	IC50(µM)[CI95%]
$Ac-N(Glc)GS-NH_2(9)$	5.137 ± 0.063	7.3 [4.8 ±0.11]
$Ac-N(Glc)GT-NH_2(10)$	5.129 ± 0.1170	$7.4 [3.5 \pm 15.7]$
$Ac-N(Glc)KS-NH_2(11)$	5.942 ± 0.1911	1.1 [33.7 ±3.87]
$Ac-N(Glc)KT-NH_2(12)$	6.010 ± 0.06024	$0.97 \ [66.5 \pm 1.44]$
$Ac-N(Glc)GH-NH_2(13)$	5.226 ± 0.04330	$6.94 [4.5 \pm 7.8]$
$Ac-N(Glc)KH-NH_2(14)$	5.160 ± 0.01636	6.93 [6.24 ±7.7]
$Ac-N(Glc)AT-NH_2(15)$	5.005 ± 0.05558	7 [6.93 ±14.1]
$Ac-ERN(Glc)GS-NH_2(16)$	5.677 ± 0.1444	$2.1 \ [0.84 \pm 5.3]$
$Ac-ERN(Glc)GT-NH_2(17)$	6.23 ± 0.14	$0.58 \ [0.24 \pm 1.43]$
Ac-ERN(Glc)KS-NH ₂ (18)	5.59 ± 0.19	2.53 [0.75 ±8.5]
Ac-ERN(Glc)KT-NH ₂ (19)	6.27 ± 0.022	$0.54 \ [0.46 \pm 0.62]$
Ac-ERN(Glc)GH-NH ₂ (20)	5.95 ± 0.112	$1.10 \ [0.54 \pm 2.26]$
Ac-ERN(Glc)KH-NH ₂ (21)	5.98 ± 0.1482	$1.03 \ [0.4 \pm 2.67]$
$Ac-KGN(Glc)AT-NH_2(22)$	6.22 ± 0.07	$0.60 \; [0.38 \pm 0.94]$
CSF114(Glc) (1)	6.46 ± 0.083	$0.34 \ [0.12 \pm 0.56]$

Figure S2. Competitive ELISA experiments with CSF114(Glc) and *N*-Glc MEP **24**. Inhibition curves of anti-CSF114(Glc) antibodies with *N*-Glc MEP **24** compared with CSF114(Glc) in a competitive ELISA. The results are expressed as percentage of inhibition (ordinate axis) of three representative MS sera: MS1 (A), MS2 (B) and MS3 (C) versus the peptide concentrations (M) in logarithmical scale.