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Abstract: Preclinical research using different rodent model systems has largely contributed to the
scientific progress in the pain field, however, it suffers from interspecies differences, limited access
to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major
advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow
donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors
(iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present
study, we characterized iDNs based on the expression of well described nociceptive markers and
ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons.
Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory
transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75),
hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated
calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic
GABAA receptors, were used to address the characteristics of the iDN phenotype. We further
combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these
ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization
of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human
specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased,
disease-specific personalized drug development.

Keywords: TRPV1; HCN channel; voltage-gated calcium channel; KCC3; synaptic varicosity; p75;
sensory neuron; pain; analgesic

1. Introduction

Over the past decades, animal experiments have been the gold standard for pain research and,
without question, have tremendously contributed to the current knowledge in the field. However,
besides ethical concerns, the results achieved in rodent models are confounded by interspecies
differences when translating findings to humans. Translational approaches using human tissues have
become increasingly important, however, are limited by ethical concerns and the accessibility of human
life tissue. The dorsal root ganglia (DRG) and the trigeminal ganglia, which contain the majority of
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primary sensory neurons, are unattainable in a living human being and have even proven complicated
to be obtained post mortem [1]. The caveat of species-to-species differences has become evident
by recent studies that have compared specific nociceptive markers between human post-mortem
and mouse neurons obtained from the DRG; the human proteome includes 286 proteins that are not
even expressed in rodent DRG [2]. Functional neuron-like cells differentiated from human induced
pluripotent stem cells (iPSCs) provide an elegant way to circumvent interspecies differences, and a
protocol to robustly generate human iPSCs-derived nociceptors (iDNs) with low inter cell line difference
has become available [3,4]. In patch-clamp experiments, iDNs express tetrodotoxin-sensitive (TTXs)
and -resistant (TTXr) voltage-gated sodium currents with unexpected differences to their counterparts
from rodent DRG. Novel mechanistic insight into the development of rare congenital disorders with
an inability to feel pain or extreme pain has emerged from patient-derived nociceptor studies [5–12].
Even transdifferentiation from fibroblasts has successfully generated neuron-like cells, which express
the multimodal transducer ion channel TRPV1 and can be used to study pain mechanisms [13].
However, although such differentiation protocols are well established, functional analyses of iDNs
as a quality control have not sufficiently been provided to date. Despite the intriguing potential of
patient-derived iDNs, surprisingly, little information is available to date regarding the functional
expression of relevant other ion channels and receptors such as hyperpolarization-activated and cyclic
nucleotide-gated pacemaker channels (HCN), setting nociceptor excitability and ongoing discharge
after injury [14] of voltage-gated Ca2+ channels or ionotropic GABAA receptors, which are relevant
for synaptic transmission in the superficial dorsal horn [15–18] and the existence of possible synaptic
connections between iDNs potentially forming neuronal networks in a dish.

To start filling this gap, we used a modified protocol for optimized human iDN differentiation [4]
and recorded evoked Ca2+ transients at different time points during differentiation (D40 and D60) to
obtain novel insights into the presence and function of relevant ion channels in iDNs with a specific
focus on the high voltage-gated calcium channels of the CaV2-type (CaV2.1–2.3), HCN channels
(HCN1–4), as well as ionotropic GABAA receptors and directly compared human iDNs with mouse
primary sensory neuron cultures.

2. Materials and Methods

2.1. Differentiation of Human iPSCs into Nociceptors by Small Molecule Inhibition

The human iPSC line had been generated within the StemBANCC project (part of an Innovative
Medicines Initiative) based on a commercially available fibroblast line (Lonza, Basel, Switzerland)
sourced from a healthy male donor [19]. The cells were routinely cultured on cell culture plastic ware
(Greiner, Kremsmünster, Austria) coated with a murine ECM preparation (Matrigel™ at 8 µg/cm2,
Corning). Cells were fed daily with mTeSR1 medium (STEMCELL Technologies) and passaged twice a
week by calcium withdrawal (0.02% Ethylenediaminetetraacetic acid (EDTA) in phosphate-buffered
saline (PBS). The cells were used from the earliest available passage number (P24) up to P40 maximum.

Differentiation of human iPSCs to iDNs was performed by dual SMAD inhibition, leading to neural
crest-like cells followed by an overlapping inhibition of glycogen synthase kinase 3 (GSK3β), vascular
endothelial growth factor (VEGF), and Notch signaling (3i inhibition), and finally long-term maintenance
in neurobasal medium infused with the neurotrophic factors glial cell line-derived neurotrophic factor
(GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF), as firstly described
by Chambers, Qi, Mica, Lee, Zhang, Niu, Bilsland, Cao, Stevens, Whiting, Shi and Studer [4]. This
protocol was adapted by using 8 days rather than 6 days of 3i inhibition and N2/B27 Neurobasal
medium supplemented with NGF, BDNF, and GDNF (Thermo Fischer, Waltham, MA, USA) omitting
NT3 for maturation of iDNs (Figure 1A). Briefly, a single cell solution of human iPSCs was prepared
using TrypLE Express and 8 × 104 cells were seeded into Matrigel-coated 6-well plates and maintained
in mTeSR1 medium. For this and all the subsequent passages, 10 µM of Rho-associated coiled-coil
containing protein kinase (ROCK) inhibitor (Y27632, Sigma-Aldrich, St. Louis, MO, USA) was added
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at the time of the passage, for 1 day, to increase cell survival. The human iPSC cells were maintained in
mTeSR1 medium until they reached 60–70% confluency before differentiation was initiated.
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promoted by inhibition of GSK3β, VEGF, and Notch signaling by SU5402, CHIR99021, and DAPT. 
From D12 on, iDNs were passaged and cultured for several weeks in Neurobasal Medium 
supplemented with 25 ng/mL NGF, BDNF, and GDNF; (B) Both iDNs and mouse dorsal root ganglion 
neurons (mDRG) expressed the transcription factor BRN3a. Individual iDNs robustly expressed 
BRN3A in the soma, similar to adult mouse neurons, 100% BRN3A+ cells were detected based on 
DAPI counterstaining, respectively; (C) ISL1 was strongly expressed both in iDNs and mouse 
neurons, typical somatic clustering of iDNs occurred with aggregates of 10-40 neurons, and 100% 
ISL1+ cells were detected based on DAPI counterstaining, respectively. Cells from 2-3 individual 
differentiations were used, scale bar 40 µm. 

Subsequently, dual SMAD inhibition was initiated, thereby suppressing TGF-beta and BMP4, in 
knockout serum replacement (KSR) medium Knockout DMEM (Gibco), 15% KO serum replacement 

Figure 1. Differentiation of human induced pluripotent stem cells (iPSCs) into nociceptors.
(A) Schematic representation of the human iPSC differentiation protocol into human iPSC-derived
nociceptors (iDNs). Dual SMAD inhibition by LDN193189 and SB431542 was used to induce the
neuralization process in knockout serum replacement (KSR) media. Nociceptor induction was further
promoted by inhibition of GSK3β, VEGF, and Notch signaling by SU5402, CHIR99021, and DAPT.
From D12 on, iDNs were passaged and cultured for several weeks in Neurobasal Medium supplemented
with 25 ng/mL NGF, BDNF, and GDNF; (B) Both iDNs and mouse dorsal root ganglion neurons (mDRG)
expressed the transcription factor BRN3a. Individual iDNs robustly expressed BRN3A in the soma,
similar to adult mouse neurons, 100% BRN3A+ cells were detected based on DAPI counterstaining,
respectively; (C) ISL1 was strongly expressed both in iDNs and mouse neurons, typical somatic
clustering of iDNs occurred with aggregates of 10–40 neurons, and 100% ISL1+ cells were detected
based on DAPI counterstaining, respectively. Cells from 2–3 individual differentiations were used,
scale bar 40 µm.
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Subsequently, dual SMAD inhibition was initiated, thereby suppressing TGF-beta and BMP4,
in knockout serum replacement (KSR) medium Knockout DMEM (Gibco), 15% KO serum replacement
(Gibco), 1% non-essential amino acids (PAA), 2 mM Glutamax (Gibco), 1x penicillin/streptomycin
(Sigma-Aldrich), and 100 µM β-mercaptoethanol (Gibco) supplemented with 100 nM of LDN-1931189
(Stemgent, ALK2/3 inhibitor, 100 nM, D0–D5), and 10 µM SB431542 (selleckchem.com, ALK5 inhibitor,
10 µM, D0–D5) for 5 days.

Additionally, 3 µM CHIR99021 (selleckchem.com, GSK3β inhibitor, D2–D12), 10 µM DAPT
(selleckchem.com, Notch inhibitor, 10µM, D2–D12), and 10µM SU5402 (Sigma-Aldrich, VEGF inhibitor;
10 µM, D2–D12) were added from D2–D12. From D4 on, N2/B27 medium (Gibco Neurobasal™medium,
supplemented with 1% N2 (Gibco), 2% B27 without Vitamin A (Gibco), and 2 mM Glutamax (Gibco)),
and 1× penicillin/streptomycin (Sigma-Aldrich) was added to the KSR medium and incremented every
second day by 25%. For a schematic representation of the exact medium and inhibitor application,
see Figure 1A.

On day 12, 30,000 cells were passaged onto Matrigel-coated cell culture imaging dishes (ibidi
GmbH, Munich, Germany) or glass coverslips and maintained in N2/B27 medium (exchanged
every 2–3 days) supplemented with NGF (hNGF, PeproTech, 25 ng/mL), BDNF (hBDNF, PeproTech,
10 ng/mL), and GDNF (hGDNF, PeproTech, 25 ng/mL), for the remaining time. Alternatively, cells
were cryopreserved in liquid nitrogen at D12, so that final maturation could be performed at a later
time points.

Cytosine-β-D-arabinofuranoside (4 µM, Sigma-Aldrich) was administered on D14 for ~24 h to
reduce the amount of non-differentiated proliferating cells and iDNs were maintained in N2/B27
medium up to 48 days.

2.2. Primary Sensory Neuron Culture

Male, 10–12-week-old C57BL/6J mice were used for further experiments. Mice were housed at
a constant 12 h light/dark cycle with ad libitum access to water and chow. Lumbar DRG explants
were harvested from adult mice and primary sensory cultures prepared as previously published [20].
Briefly, after extraction, the connective tissue was removed and ganglia were incubated in Liberase
Blendzyme 1 (collagenase + thermolysin, 9 mg/100 mL DMEM, Roche, Basel, Switzerland) for
2 × 30 min. Subsequently, DRGs were washed and treated with 1× trypsin-EDTA for 15 min, followed
by a washing step with TNB™medium supplemented with L-glutamine (Invitrogen, Waltham, MA,
USA), penicillin G sodium, streptomycin sulfate (Invitrogen), and protein-lipid complex (Biochrom,
Harvard Bioscience Inc. Holliston, MA, USA). Dissociation of DRG was performed using a fire-polished
glass pipette and non-neuronal cells were removed by centrifugation with a 3.5% BSA-gradient.
Then, sensory neurons were resuspended in TNB™medium supplemented with 25 ng/mL NGF and
plated on poly-L-lysine/laminin coated coverslips. Cells were used for immunofluorescence microscopy
after 23 days of incubation at 37 ◦C and 5% CO2.

2.3. Immunofluorescence Microscopy

The AD2 (SbAd-02-01) iPSC-derived iDNs were fixed on D26, D36, D50, and D60 in 4%
paraformaldehyde in PBS at room temperature, for 10 min. Fixed iDNs were treated with 5% normal
goat serum in PBS supplemented with 0.2% BSA and 0.2% Triton X-100, for 30 min. Primary antibodies
were applied at 4 ◦C overnight, in a humidified chamber, and detected by fluorochrome-conjugated
secondary antibodies (Alexa goat anti-rabbit A594 (#A32740), goat anti-mouse A594 (#A32742), goat
anti-rabbit A488 (#A32731), and goat anti-mouse A488 (#A32723), 1:4000, Invitrogen). Primary
antibodies used were anti-synapsin (1:1000, mouse monoclonal, Synaptic Systems (SySy); #106011
reference [21]); anti-BRN3A (1:500 rabbit polyclonal, SySy, #411003, reference [22]); anti-ISL-1 (1:500,
rabbit polyclonal, SySy, #406003 reference [23]); anti-CaV2.1 (1:1000, rabbit polyclonal, SySy, #152103
k.o verified); anti-CaV2.2 (1:1000, rabbit polyclonal, SySy, #152313 reference [24]); anti-CaV2.3 (1:1000,
rabbit polyclonal, SySy, #152403 reference [25]); anti-RUNX1 (1:200, rabbit polyclonal, Abcam, #23980



Brain Sci. 2020, 10, 344 5 of 19

reference [26]); anti-p75 (1:200, rabbit polyclonal, Abcam, #AB52987 reference [27]); anti-NKCC3 (1:500,
rabbit polyclonal, Thermo Fisher Scientific #PA5-56975); anti-TRPV1 (1:200, rabbit polyclonal, Alomone
Labs, #ACC-030 reference [28]); anti-TUJ1 (1:600, mouse monoclonal, R&D Systems, #MAB1195
reference [29]); anti-GABAAR (β2,3 chain, representing the most abundant subunit chains of GABAARs)
(1:1000, mouse monoclonal, Chemicon, #MAB341 reference [21]); and anti-HNC1–4 (1:600, Alomone
Labs, HCN1 #APC-056, HCN2 #APC-030, HCN3 #APC-057, and HCN4 #APC-052, reference [30]).
Nuclei were counterstained with DAPI (4′,6-diamidino-2-phenylindol) 1:10,000, (Thermo Fisher
Scientific). Images were recorded using an Axioimager 2 Microscope (Carl Zeiss Microscopy) with
cooled CCD camera (SPOT Imaging Solutions). Average fluorescence intensities were quantified using
Metaview software (version 7.8.0.0, Molecular Devices, LLC, San Jose) with the line scan plug-in to
quantify fluorescent intensity along a defined line cutting the individual axonal structures.

2.4. Microfluorimetric Ca2+ Measurements

The Ca2+ measurements of iDNs were performed as we previously described [31]. The iDNs
were loaded with 3 µM of Fura-2 AM (Invitrogen) in extracellular solution (ECS) containing as follows:
145 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM D-glucose, and 10 mM HEPES with pH
adjusted to 7.3 with NaOH, for 30 min, at 37 ◦C, in 5% CO2. Subsequently, cells were washed with ECS.
Calcium imaging was performed on an IX71 microscope (Olympus) with 20×/0.85 N.A. oil-immersion
objective. The Omicron LEDHUB System was used for excitation of Fura-2 at 340 nm and 380 nm
wavelengths, and emission was detected at 510 nm. The F340/F380 excitation ratio was calculated after
background correction. The baseline was recorded over 10 s prior to each treatment. To elucidate
treatment-induced Ca2+ transients in an unbiased way, an increase of 10% over baseline F340/F380
ratio was applied as the threshold. The percentage of active cells was calculated and compared for
each treatment and time point.

2.5. Statistical Analyses

Statistical analyses were performed in Python (v3.8; https://www.python.org) using the
open-source packages “scipy.stats” (https://www.scipy.org), “numpy” (https://www.numpy.org),
and “pandas” (https://pandas.pydata.org), as well as GraphPad Prism (v8) (GraphPad Software,
San Diego). Data are presented as mean ± standard error of the mean (SEM) or as percentages.
Two-way ANOVA with Dunett’s correction for multiple comparisons or Chi-square test without Yates
correction was applied as indicated. The significance threshold was set to p < 0.05. For graphical
illustration, Adobe Photoshop CC 2020 (Adobe San Jose, CA, USA), CorelDraw v8 (Ottawa, ON,
Canada), and the Python packages “Seaborn”, “Matplotlib”, and “Pandas” were used.

3. Results

3.1. Expression of Early Transcription Factors Regulating Sensory Differentiation

Characterization of early stage iDNs and sensory neurons obtained from mature mouse DRG was
performed by quantification of BRN3A and ISL1 expression, which are two transcription factors with
critical implications for sensory neuron development [32]. In line with previous reports, immature iDNs
(D26), as well as mouse sensory neurons, showed a robust somatic expression of both transcription
factors (Figure 1B,C) [33]. The iDNs showed a stable somatic expression of BRN3A (Figure 1B), and ISL1
expression was detectable similar to BRN3A in 100% of iDNs depending on the DAPI counterstaining
with a threshold of >10 µm as a positive selection criterion (Figure 1C). Furthermore, D26 iDNs showed
a characteristic somatic clustering, as described previously [4]; neurites stained positive for the neuron
specific β-III tubulin marker TUJ1 and putative axo-axonal synaptic varicosities were visible.

https://www.python.org
https://www.scipy.org
https://www.numpy.org
https://pandas.pydata.org
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3.2. RUNX1 and p75 Expression Reveal a Nociceptor Neuron Phenotype

Runt-related transcription factors (RUNX) play essential roles during the development of
somatosensory neurons. In particular, RUNX1 determines the nociceptor phenotype for pain, itch,
and thermal sensation in mature nociceptive neurons [34,35]. RUNX1 together with the T-cell leukemia
homeobox 3 protein (TLX3) regulate the development and survival of TrkA expressing nociceptive
sensory neurons [36,37], and RUNX1 also plays a pivotal role for the development of low-threshold
C-mechanoreceptors (CLTMs) [38]. However, RUNX1 expression persists longer in RET+ neurons
during development, but extinguishes in adult TrkA+ neurons [34]. In the current study, we detected
stable expression of RUNX1 both in iDNs and mouse neurons (Figure 2A). RUNX1 was expressed
in all TUJ1 positive iDNs (Figure 2B). In order to further dissect the phenotype of iDNs, the low
affinity nerve growth factor receptor p75 as a broadly accepted nociceptive marker was included in
the characterization [39–41] and p75 was shown to be required for the sensory neuron diversity by
potentiating RET signaling [42], as well as RET was shown to be activated subsequently after RUNX1
expression in previously established iDN differentiation protocols [4]. We detected a robust expression
of p75 in iDNs (Figure 2C), and ~79% of iDNs showed p75 abundance as compared with mouse DRGs
(~64%) (Figure 2D), and therefore in conjunction with the high expression of RUNX1 resembling a
non-peptidergic iDN phenotype (Figure 2C,D). Consequently, the gross majority of differentiated iDNs
developed a nociceptive phenotype which resembled well the phenotype of small size sensory neurons
obtained from adult mice [34].
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stainings for TRPV1/TUJ1/DAPI, we identified ~44% of all iDNs to robustly express TRPV1 in the 
soma at D36, stagnating to ~46% at D62 as compared with ~74% in mouse DRGs (Figure 3D). This 
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Figure 2. RUNX1 and p75 expression indicative of nociceptor-like phenotype of iDNs. (A) Representative
image of D36 iDNs as compared with mouse neurons (mDRG); (B) Both iDNs and mouse DRGs showed
a robust RUNX1 soma expression pattern in 100% of DAPI+ cells. Counting threshold was set to
>10 µm based on DAPI counterstaining; (C) p75-IR cells in D36 iDNs as compared with mouse neurons;
(D) ~79% of iDNs were positive for p75, whereas only ~64% were positive in mouse neuron cultures.
Cells from 2–3 individual differentiations were used, two-tailed t-test, * p = 0.025, error bars indicate
SEM, scale bar 40 µm.

3.3. TRPV1 Experession in iDNs

The superfamily of the transient receptor potential (TRP) channels has emerged as the largest
group of molecules involved in the transduction of various physical stimuli into neuronal signals in
primary sensory neurons [43]. Here, we focused on the noxious heat sensitive channel TRPV1 that
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can be activated by the vanilloid capsaicin, the main pungent of hot chilli peppers. Stable TRPV1
immunoreactivity (IR) was detected in iDNs and mouse DRGs (Figure 3A–C). By performing triple
stainings for TRPV1/TUJ1/DAPI, we identified ~44% of all iDNs to robustly express TRPV1 in the soma
at D36, stagnating to ~46% at D62 as compared with ~74% in mouse DRGs (Figure 3D). This result could
indicate a mature iDN phenotype at D36. Interestingly, putative TUJ1-IR synaptic varicosities that
stained positive for TRPV1 were visible along neurites as quantified by line scan analysis (Figures 3B
and 4). To further evaluate these synaptic varicosities, a staining for the presynaptic vesicle-associated
protein, synapsin, an early marker for presynaptic vesicle recruitment, was performed [44]. Costaining
of synapsin with the toxin phalloidin, an F+actin neurite marker, revealed synapsin-positive varicosities
in iDNs, thereby, indicating that synaptogenesis, indeed, occurred in these neurons (Figure 4).
The majority of the axonal varicosities in iDNs showing phalloidin-IR were also immunoreactive for
synapsin both in regions distal and proximal to the next iDN cluster (Figure 4A,B).
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Figure 3. Robust TRPV1 expression in iDNs. (A) Robust TRPV1 expression in D36 iDNs, counting
threshold was set to >10 µm based on DAPI counterstaining; (B) Neurite regions revealed TRPV1
abundance in individual TUJ1-IR varicosities. Relative fluorescence intensity measurements using
line scans for individual TUJ1-IR clusters (enlargement) revealed putative synapses including TRPV1
clustering in synaptic regions, line scan was set to 3 µm; (C) Mouse DRG neurons (mDRG) were used as
controls; (D) Quantification of TRPV1+ cells based on the total number of DAPI+ cells in D36 and D62
iDNs. By D36, already ~44% of iDNs showed a strong TRPV1 expression stagnating to ~46% by D62.
A significantly higher percentage of ~74% of mouse neurons stained positive for TRPV1. 2–3 individual
differentiations were used, one-way ANOVA with Dunett’s multiple comparisons, *** p < 0.001, error
bars indicate SEM.
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in nociceptive neurons, and thus play a crucial role in pace making activity [45]. To further underpin 
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Figure 4. Characterization of synaptic varicosities on D50 iDNs. iDNs were labeled with a synapsin
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(A) and proximal neurites (B). 2–3 individual differentiations were used, bar 20 µm, 1 µm (enlargement),
line scan was set to 3 µm.

3.4. Expression of Pacemaker Channel HCN1–3 but Not HCN4 in iDNs and mDRG Neurons

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels drive the repetitive firing in
nociceptive neurons, and thus play a crucial role in pace making activity [45]. To further underpin
the mature phenotype of iDNs, expression of HCN1–4 was assessed on D26 iDNs and mouse sensory
neurons. Immunofluorescent analysis revealed a strong HCN1–3-IR (Figure 5A–C) but not HCN4-IR
(Figure 5D) both in D26 iDNs and mouse neurons. In order to explore whether this expression
of pacemaker channels was functionally relevant, the spontaneous activity of iDNs was assessed
by microfluorometric calcium measurements (Figure 5E). Approximately 70% of iDNs exhibited
spontaneous Ca2+ transients indicative of spontaneous action potential firing, which was defined by a
spontaneous calcium influx, increasing the peak to baseline F340/F380 ratio by a factor of 1.1 in iDNs.
Each peak was independently evaluated to a newly calculated baseline preceding the peak 30 s in
advance, to compensate for general baseline transient changes (Figure 5E).
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Figure 5. Ongoing activity and expression of pacemaker channels HCN1–3 in iDNs. (A–C) Immunoreactivity
of HCN1–3 was reproducibly detected both in iDNs and mDRG neurons (arrowheads). 100% of cells
showed immunoreactivity of HCN1–3 based on DAPI counterstaining, respectively; (D) HCN4 was
not expressed in D26 iDNs or in mDRG controls, scale bar 40 µm; (E) iDNs exhibit a low baseline Ca2+

concentration but regular transient increases (ratio F340/F380) indicative of spontaneous discharge
activity (n = 30). Pie chart indicating the percentage of spontaneously active iDNs (70%) as compared
with inactive iDNs (30%) at D60.
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3.5. Expression of CaV2 High Voltage-Activated Calcium Channels

Ion channels have proven to be indispensably important for synaptic, and thus, consequently, for
nociceptor function. In addition to voltage-gated sodium channels, which have been extensively studied
and described as nociceptive ion channels [5,8,9,12,46–49], here, we focused on high voltage-activated
calcium channels of the CaV2.1/PQ-type, CaV2.2/N-type, and CaV2.3/R-type. All three high voltage
activated CaV2 channels contribute to nociception [50], and therefore were included in the present
comparison between human iDNs (D50) and mouse DRG neurons. We found robust expression of all
three CaV2 channels, i.e., CaV2.1/PQ-type, CaV2.2/N-type, and CaV2.3/R-type, which were clustering
along neuronal TUJ1+ neurites (Figure 6A–F). In order to address the subcellular location of individual
CaV2 channel subtypes, in particular, in putative synaptic varicosities of iDNs, line scan measurements
were performed. Relative fluorescence intensity measurements revealed putative synaptic localization
patterns of individual CaV2 channel subtypes (red) on TUJ1-IR synaptic varicosities, indicating putative
axo-axonal synaptic connections between differentiated iDNs (Figure 6A–C). This was strikingly
different in mouse neuron cultures, where stable CaV2 channel expression was found on TUJ-IR
neurites, however, no putative axo-axonal synaptic varicosities were observed (Figure 6D–F).
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Figure 6. Expression of CaV2 high voltage activated calcium channels. (A–C) D50 iDNs showed robust
expression of all CaV2 high voltage activated calcium channels in regions of the soma, neurites, as well
as axonal varicosities. Arrowheads indicate individual (A) CaV2.1/PQ-type, (B) CaV2.2/N-type, and
(C) CaV2.3/R-type clusters along neurite structures of iDNs. Line scan measurements for individual
CaV2 clusters on TUJ1-IR+ varicosities revealed their location within putative synaptic structures
in iDN cultures, line scan was set to 3 µm. (D–F) Mouse neurons (mDRG) served as controls,
line scans performed on neurite segments, no axonal varicosities were detected, 2–3 individual
differentiations, scale bars 20µm (overview, soma), 10µm (enlargement, axon), 1µm (axonal varicosities,
putative synapses).

3.6. GABAA Receptors and Transporters in iDNs

In the adult peripheral nervous system, activation of ionotropic GABAA receptors (GABAAR) can
cause neuron excitation because of the high concentration of intracellular chloride in these neurons
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(for review see [51]). Potassium-chloride cotransporters (KCCs) appear to play a critical role in
hyperalgesia and allodynia following peripheral inflammation or nerve injury [52]. As an example,
we investigated localization patterns of KCC3 and GABAAR (β-2/3 subunit)-IR in iDNs and mouse
sensory neurons. Whereas both proteins were expressed in iDNs and mouse sensory neurons, D40
iDNs showed a different co-clustering pattern as indicated by line scan analysis of neurite segments
(Figure 7A,B). This could indicate that D40 iDNs show a lower degree of KCC3/GABAAR co-clustering,
however, whether this is functionally relevant will be addressed in further experiments.
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Figure 7. Quantification of KCC3/GABAAR clustering on iDNs and mouse DRG neurons. (A,B) Both
day 40 iDNs and mouse DRG neurons stained positive for KCC3-IR and GABAAR labeling (arrow
heads neurite selections). Line scan analyses on 20 µm neurite structures were performed. (A) Lower
intensity levels of GABAAR clustering in iDNs were elucidated as compared with mouse DRGs (B).
2–3 individual differentiations, scale bars 20 µm and 10 µm (enlargement), line scan was set to 20 µm.

3.7. Functional Characterization of iDNs

In order to further functionally characterize iDNs, microfluorimetric Ca2+ measurements of iDNs
were performed on D40 (Figure 8A–C) and D60 (Figure 8D–F). For this, cells exhibiting a neuronal
morphology were selected for further analysis (D40 189 iDNs and D60 98 iDNs). Averaged time-series
analysis of calcium transients of all selected iDNs revealed prominent calcium transients already on D40,
after administration of 25 nM capsaicin, 50 µM GABA, and 25 mM KCl (Figure 8A–C). Interestingly,
there was a pronounced discrepancy between the percentages of iDNs expressing TRPV1-IR (Figure 3D)
and of iDNS responding to the TRPV1 activator capsaicin with fast rising Ca2+ transients indicative of
Ca2+ influx (Figure 8D–F). Additionally, administration of GABA, which activates both GABAA as
well as GABAB receptors, induced depolarizations in the majority of iDNs, comparable with those
found in rodent DRGs (Figure 8C,F).

However, no significant differences in substance induced Ca2+ transients were determined between
D40 and D60, indicating a high degree of functional maturation of iDNs regarding the expression
of relevant markers and ion channels already by D40, however, full functionality still lagged behind
(Figure 8A–F).

Collectively, our study of human iDNs and the direct comparison to mouse sensory neurons
of a selected nociceptive marker panel (summarized in Table 1) provides not only morphological
evidence for human iDNs developing specific nociceptor phenotypes but, more importantly, provides
converging evidence supporting their suitability as a model to study nociceptive mechanisms.
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Figure 8. Ca2+ transients evoked by chemical nociceptor stimuli in iDNs on D40 (A–C) and D60 (D–F).
Time-series analysis of substance induced Ca2+ transients following administration of extracellular
solution (ECS, grey), capsaicin 25 nM (red), GABA 50 µM (yellow) and 25 mM KCl (dark grey) was
quantified and visualized. The mean F340/F380 for each positive cell (succeeding the peak-to-baseline
threshold of 1.1) was determined and substance induced reaction was compared qualitatively.
The stacked bar charts (C,F) indicate the percentage of positively reacting and non-reacting cells
upon administration of each individual substance. Chi-square test did not identify any significant
differences between D40 and D60 (p-value > 0.05).

Table 1. Summary of the used markers, level of expression, and morphological abundance in iDNs and
mouse sensory neurons.

Marker iDN mDRG

BRN3A 100% (high and low expressing cells) 100%
ISL1 100% 100%

RUNX1 100% (high and low expressing cells) 100%
p75 ~79% ~64%

TRPV1 ~45% ~74%
SYN positive varicosities/boutons no varicosities/boutons

HCN1–3 100% 100%
HCN4 not expressed not expressed
CaV2.1
CaV2.2
CaV2.3

expressed, synaptic localization patterns expressed on neurites, no synaptic
localization patterns

KCC3/GABAAR expressed/lower levels expressed/higher levels
higher degree of colocalization

TUJ1/Phall neurites and varicosities/boutons only on neurites

4. Discussion

Over the past decades, rodent models have been indispensable for pain research and have
largely contributed to our current knowledge about molecular mechanisms of pain [53]. However,
the field has sought alternatives due to a limited translation to the human disease situation caused
by species-to-species differences [54]. For many years, research on human tissues could only be
performed by using post-mortem tissue, which faces restrictions, in particular, as far as functional
assays are concerned [1]. An emerging opportunity to circumvent the apparent translational paresis
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in pain research is the application of new model systems derived from human iPSCs that allow
directed cell-type specific programming into iDNs. This approach has become applicable on a larger
scale after robust differentiation protocols became available [4,55–57]. First attempts to personalize
research towards pain disorders arising from gain-of-function mutations of voltage-gated Na+ channels
have exploited these possibilities [58,59]. More recently, iDN transdifferentiation protocols have
speeded up the use of iDNs from patients suffering from monogenetic pain disorders for which, so far,
mechanistic insight is unavailable [60]. Specific immunohistochemical markers such as RUNX1, p75,
BRN3A, and TRPV1 generally mark the successful transition of human iPSCs towards a nociceptor
phenotype [4,34,42,43] and have proven the successful differentiation of iDNs in the current study.
However, the functional characteristics of iDNs and their similarities to human nociceptors are still
insufficiently explored. In the present study, therefore we provide a detailed characterization of iDNs
differentiated from human iPSCs and functional evidence how iDNs partially resemble their rodent
counterparts by a comparison with mouse DRG neurons.

In addition to voltage-gated Na+ channels, which have been extensively exploited for hereditary
painful neuropathies [5,8,9,12,49], all high voltage-activated CaV2 channels have important implications
in pain signaling, as reviewed by Bourinet, Altier, Hildebrand, Trang, Salter and Zamponi [50].
The impact of Cav channels on nociception has been elegantly demonstrated by the application of
specific toxins blocking each channel. For example, the CaV2.1 channel blocker agatoxin, a spider toxin,
was shown to inhibit inflammatory pain of the knee joints [61]. The CaV2.2/N-type channel blocker
conotoxin-GVIA, a sea snail toxin, elicits potent suppression of pain when delivered intrathecally in
rodents [62] and the CaV2.3 blocker SNX-482, another spider toxin, additionally elicited analgesia
in models of neuropathic pain [63]. In iDNs, we detected a robust expression of all CaV2 high
voltage-activated calcium channels at TUJ1-IR axonal varicosities, indicative of synapse formation.
These synaptic characterization data are important, considering the central roles of voltage-gated
calcium channels and their accessory α2δ subunits playing a critical role for neurotransmitter
release at presynaptic terminals and further representing direct targets for analgesic drugs including
Gabapentinoids [64–66]. In contrast, mouse nociceptors showed Ca2+ channel expression patterns
on axonal segments but no putative synaptic boutons, suggesting that adult nociceptors do not form
synaptic networks in culture.

The superfamily of the transient receptor potential (TRP) channels has emerged as the largest family
of transducer ion channels in primary sensory neurons [43]. Here, we focused on the nociceptor-specific,
heat sensitive TRPV1 channel which was detectable in the somata of ~44% of all iDNs by D36, ~46%
by D62, and ~74% of mouse sensory neurons. The discrepancy between the percentages of iDNs
expressing TRPV1-IR and of iDNs responding to the TRPV1 activator capsaicin was likely to be caused
by TRPV1 sequestration in vesicles by the interaction with t-SNARES of the Vit1b type [67]. Indeed,
TRPV1 and the transient receptor potential ankyrin1 (TRPA1) were found in VAMP1 containing
vesicles of cultured sensory neurons [68], and thus chemical nociceptor stimulation could not target
these fractions.

The iDN processes developed structural signatures resembling synaptic varicosities. Interestingly,
CaV2 and also TRPV1 immunoreactivity were found in such synapsin-positive varicosities in iDNs.
This finding is in accordance with previous reports that demonstrated a role of TRPV1 in synaptic vesicle
recycling [69,70]. The synapses and their key regulatory proteins, in the active zones including CaV2
VGCCs with their auxiliary subunits as part of the synaptic release machinery, are the communication
platforms between neurons, and thus critical targets for several analgesics [50,64]. Accordingly, this
species-to-species difference could represent an important pathophysiological bias between rodent and
human pain model systems and needs to be addressed in full detail.

Our results are also in line with previous reports on HCN1–3 channels that were found in different
flavors in small and large diameter rat DRG neurons, with nociceptors expressing, in particular, HCN2,
whereas HCN4 levels were negligible [71,72]. These data indicate that, already at D36, iDNs developed
a relatively mature nociceptive phenotype or even resembled a suitable model for neuropathic pain,
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since expression patterns of HCN channels and signatures of ongoing activity, which typically develop
after nerve injury, were observed in D26 iDNs [14,73–81].

Several functionally relevant receptors which are located in iDNs such as HCN channels,
the multimodal transducer channel TRPV1, as well as ionotropic GABAAR, are expressed on nociceptor
peripheral nerve terminals, slow fiber axons, cell bodies in the DRG, and their central processes
connecting to neurons in the spinal dorsal horn [82]. These receptors can serve dual functions.
For example, GABA is synthesized in fibroblasts and likely liberated upon injuries causing skin
disruption, and GABAA receptor-mediated nociceptor excitation is well accepted [83,84]. In addition,
GABAA receptors, at presynaptic terminals in the superficial dorsal horn, can be targeted for presynaptic
inhibition, which sets a brake to mechanical hypersensitivity [85]. However, whether GABA has
excitatory or inhibitory effects largely depends on the actual concentration of intracellular chloride in
these neurons (for review see [51]). Potassium-chloride cotransporters (KCCs) appear to play a critical
role in hyperalgesia and allodynia following peripheral inflammation or nerve injury, and typically
the KCC3 transcript is expressed at higher levels than the other cation-Cl- cotransporter transcripts in
adult DRG neurons [52]. Expression of KCC3, as reported, further suggests that iDNs resembled a
relatively mature nociceptor phenotype.

5. Conclusions

Altogether, iDNs generated with the modified protocol developed a surprisingly far developed
phenotype, which, from D36, combined attributes of nociceptive terminals such as TRPV1 transducer
channels with the machinery that is located at presynaptic terminals of primary afferent neurons
including all types of high voltage activated CaV2 channels. These findings underpin the enormous
potential of these neurons as an animal-free alternative for future personalized pain research, to unveil
pathophysiological mechanisms in humans and for unbiased, disease-specific, and patient-oriented
drug development.
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