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Abstract: The focus of fine-grained image classification tasks is to ignore interference information
and grasp local features. This challenge is what the visual attention mechanism excels at. Firstly,
we have constructed a two-level attention convolutional network, which characterizes the object-level
attention and the pixel-level attention. Then, we combine the two kinds of attention through a
second-order response transform algorithm. Furthermore, we propose a clustering-based grouping
attention model, which implies the part-level attention. The grouping attention method is to stretch
all the semantic features, in a deeper convolution layer of the network, into vectors. These vectors are
clustered by a vector dot product, and each category represents a special semantic. The grouping
attention algorithm implements the functions of group convolution and feature clustering, which can
greatly reduce the network parameters and improve the recognition rate and interpretability of the
network. Finally, the low-level visual features and high-level semantic information are merged by a
multi-level feature fusion method to accurately classify fine-grained images. We have achieved good
results without using pre-training networks and fine-tuning techniques.

Keywords: fine-grained image classification; visual attention mechanism; two-level attention model;
grouping attention model; multi-level feature fusion

1. Introduction

Fine-grained image classification is an important branch in the field of computer vision [1–5].
The attribute of “large differences within the class and small differences between classes” determines
that it is a difficult problem. Compared with traditional image classification, fine-grained image
classification has more realistic significance and research value. Positioning local visual differences with
sufficient discrimination and fully learning their subtle features is the key to completing fine-grained
image classification. The continuous development of machine learning, especially deep learning,
provides a means for fine-grained image classification.

The fine-grained image classification model can be divided into strong supervised classification
models [6–9] and weakly supervised classification models [10–13]. A strong supervised classification
model uses additional manual annotation information, in addition to the category labels of the
images. Different from the strong supervised classification model, a weakly supervised classification
model relies entirely on the algorithm itself to perform the detection of objects and local regions.
The powerful feature extraction capabilities of convolutional neural networks (CNNs) [14–16] play
an important role in this process. Fine-grained image classification requires tracking and learning
object-level and part-level features. It makes it easy for us to associate it with visual attention models.
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The commonly-used attention models are divided into two types: bottom-up attention models [17–19]
and top-down attention models [20–22]. In addition, the visual system theory proves that the left
hemisphere of the human brain is better at characterizing local information, while the right hemisphere
is better at characterizing the overall information. This provides us with an idea to improve CNNs.

In recent years, the attention model based on convolutional neural networks [23–25] has gradually
become a common means. We propose a network structure with a two-level attention model, where one
branch describes object-level attention and the other branch characterizes pixel-level attention. At the
same time, we propose a clustering-based grouping attention mechanism to achieve part-level attention
of images by clustering feature channels. In addition, we also consider the combination of low-level
visual features and high-level semantic information of the network to express image information.
The entire network better accomplishes fine-grained image classification tasks by extracting and
learning these more efficient multi-level attention features.

2. Related Work

2.1. Two-Level Attention Model

The attention mechanism has the ability to pay attention to something, while ignoring something
else. The ITTI model [26] introduced the attention mechanism for the first time, where it was
used for saliency detection. Dzmitry [27] employed a single-layer Attention Model to solve the
problem of machine translation. The Inception series [28–30] expanded the width of the CNNs to
achieve adaptability to different convolutional scales. B-CNN [31] simulates two pathways of the
visual nervous system, trying to combine two different features through pair-wise feature interaction.
Various improved models of it [32,33] aimed to reduce the computational complexity of the network
by reducing the feature dimension. Wang [34] proposed a Second-Order Response Transform (SORT)
method, which added an element-based product transformation to the linear sum of dual-branch
module. Based on the above research on attention models and multi-branch network structures,
we build a two-level attentional block (TA-block). Inspired by the channel attention model [23,25],
we combine feature recalibration, based on self-learning, and channel importance representation, based
on global pooling, to focus on object-level attention. Inspired by the spatial attention model [24,25],
we aggregate the self-learning pixel scoring mechanism and the spatial importance representation,
based on channel pooling, to focus on pixel-level attention. Then, we adopt the SORT method to
fuse the attentions of the two levels. Two-level attention model (TA-model) is connected by multiple
TA-blocks.

2.2. Grouping Attention Model

The earliest group convolutional network began with AlexNet [14]. IGCNets [35] first performs
a group convolution operation, and then strengthens the relationship between the channels by
interleaved group convolution. Xception [36] further treats each channel as a group and performs
depth-wise convolution operations. ShuffleNet [37] uses point-wise group convolution and channel
shuffle to increase the contact among channels. These methods improve network performance, but do
not evaluate similarities among channels. Two-Level Attention [38] performs spectral clustering on the
features of each candidate region to obtain N clusters, thereby performing local region detection on
the test samples. PDFS-CNN [39] aggregates the filters which have a significant consistent response to
a particular pattern to achieve channel clustering. MA-CNN [40] reorders feature channels to generate
multiple-component features and learns better fine-grained features from components in a mutually
enhanced manner. Relative to CNNs, the Capsule Network [41] learns the hierarchical structure of
different parts of the image through different capsule modules. CNNs usually involves a large number
of feature channels, in order to learn high-level semantics. In fact, there is inevitably a situation of
high similarity in these high-level semantics. The above models form the part-level attention module,
through their respective algorithms. These ideas are extremely valuable, but highly computationally
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complex. Grouping attention models directly cluster these high-level semantics by vector dot product,
thereby dividing the feature channels into groups with huge semantic differences. It considers both
semantic differences among channels and the complexity of the network.

2.3. Multi-Level Feature Fusion

From the visualization work of some deep CNNs [42–44], it can be seen that different levels
of convolution features describe object features and their surroundings from different perspectives.
How to obtain low-level visual features while taking into account high-level semantic information has
become a new breakthrough in image processing. Hariharan et al. [45–47] better achieved fine-grained
segmentation, object detection, and semantic pixel segmentation by aggregating low-level features
with high-level features. Jin et al. [48] proposed using a recurrent neural network to transfer high-level
semantic information and low-level spatial features to each other for the analysis of scene images.
Based on the two-level attention and grouping attention models, this paper combines the attention
features of multiple intermediate layers and delivers them layer-by-layer. The network then learns the
high-order information of different levels to provide convolutional features from different perspectives.
Finally, we better guide the fine-grained image classification by combining low-level visual features
and advanced semantic information.

3. Approach

3.1. Two-Level Attention Model

B-CNN [31] obtained a second-order feature representation through a bilinear structure,
which makes it advantageous in fine-grained image classification tasks. We embraced this observation
and adopted a multi-block two-branch structure model in this study. Combined with the characteristics
of fine-grained images, we built a convolutional neural network of the two-level attention model
(TA-model). The first branch of each block captures pixel-level attention, and the other branch locks
object-level attention. As B-CNN obtains second-order features by multiplying pair-wise feature
matrixes, the computational complexity is extremely high. In this paper, the SORT [34] method is used
for the two-level attention feature fusion. The TA-block structure is shown in Figure 1.
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Figure 1. The structure schematic of the two-level attention block (TA-block).

The dotted box in Figure 1 represents a two-level attention block (TA-block). The TA-model is
composed of multiple TA-blocks. The upper half of the dashed box shows pixel-level feature attention,
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Xin represents the input feature maps of TA-model, and X1 is obtained by Xin through a convolution
operation, where the convolution kernel is Ka = [Ka1, Ka2, ..., Kac2]:

X1 = ConV(Ka, Xin) =
c2

∑
i=1

Kai � Xin (1)

where � indicates the convolution operation, and the number of feature channels is increased from c1
to c2. Next, U consists of three parts, which integrates the self-learning feature map of LIR-CNN [24]
and the maximum and average channel pooling feature maps of CBAM [25]. They are implemented
by Equations (2)–(5), respectively.

U1 = ConV(Kb, X1) = Kb1 � X1 (2)

U2 = MaxPool(X1, axis = 3) (3)

U3 = AvgPool(X1, axis = 3) (4)

U = Relu(Concat(U1, U2, U3)) (5)

where Kb = [Kb1] shows that there is only one convolution kernel, and the convolution result is a feature
map of a single channel. “MaxPool(∗)” and “AvgPool(∗)”, respectively, represent the max-pooling
and average-pooling operations along the feature channel direction (“axis = 3”). The Relu activation
function guarantees the non-linearity and sparsity of the network. The “Concat(∗)” function means
that U1, U2, and U3 are stacked along the feature channel direction.

U
′
= Sigmoid(ConV(Kc, U)) = Sigmoid(Kc1 �U) (6)

where Kc = [Kc1] is also a single convolution kernel. After the convolution operation, U is activated
by the Sigmoid function to obtain a two-dimensional table U′ with a value range of [0–1]. This table
records the importance of each pixel in the image. Then, we multiply this table by the position
corresponding to X1, as in Equation (7).

X
′
1 = Multiply(U

′
, X1) = U

′ ⊗ X1 (7)

X̃1 = Add(X
′
1, X1) = X

′
1 ⊕ X1 (8)

where ⊗ indicates that the corresponding position of each feature channel is multiplied by U′, and X′1
is the feature map after being processed by the pixel-level attention. As the ResNet structure is used
in this paper, X̃1 is obtained by adding the corresponding positions of X1 and X′1, where ⊕ indicates
matrix addition.

The lower half of the dashed box indicates the object-level features. First, we calculate the
importance of each feature channel for the final classification result, and then assign these importance
factors to the corresponding feature channels. Finally, according to the design of the ResNet structure,
we sum the feature maps before and after the TA-model processing. Equations 9–16 illustrate the steps
to achieve this process.

X2 = ConV(Kd, X) =
c2

∑
i=1

Kdi � X (9)

where � denotes a convolution operation, and Kd is a convolution kernel of X to X2: Kd = [Kd1, Kd2,
..., Kdc2].

V1 = DWConV(Ke, X2) =
c2

∑
i=1

(Kei � X2i) (10)

V2 = GlobleMaxPool(X2) (11)
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V3 = GlobleAvgPool(X2) (12)

V = Relu(Concat(V1, V2, V3)) (13)

where “DWConV” means depth-wish convolution [41], and Ke is the convolution kernel of X2 to V1,
Ke = [Ke1, Ke2, ..., Kec2], where the number of channels of the convolution kernel is 1. “GlobleMaxPool”
and “GlobleAvgPool” represent global max-pooling and global average-pooling, respectively. Finally,
V1, V2, and V3 are connected in series along the direction of the feature channel and activated by the
Relu function to obtain V.

V
′
= Sigmoid(ConV(K f , V)) = Sigmoid(K f 1 �V) (14)

After the convolution and activation operations, V obtains the vector V′ that characterizes the
importance of the feature channels. The convolution kernel is K f (K f = [K f 1]) and the activation
function is Relu.

X
′
2 = Multiply(V

′
, X2) = V

′ ⊗ X2 (15)

X̃2 = Add(X
′
2, X2) = X

′
2 ⊕ X2 (16)

where X′2 is obtained by multiplying all values of each feature channel by an important factor, and this
operation is described by ⊗. The ⊕ operation indicates that the positions corresponding to V′ and X2

are summed.
X̃ = X̃1 � X̃2 = X̃1 + X̃2 +

√
Relu(X̃1)⊗ Relu(X̃2) + ε (17)

Equation (17) implements the feature fusion of the two attention branches. The � sign indicates
that the feature fusion is performed using the SORT method. Here, the Relu function can be used to
avoid negative numbers in the square root, and take the offset ε = 0.0001. After TA-model processing,
Xin is convoluted into X̃, with a certain high level of semantics.

3.2. Grouping Attention Model

The lower layers of the CNN handle low-level visual features, while the higher layers process
high-level semantic information. The feature maps (X̃) acquired by the TA-model processing in
Section 3.1 already have high semantic features. Each of its feature channels denotes semantics with a
certain local meaning in the image. In this section, we further group these semantics into an attention
model with local characterization. The structure diagram of the grouping attention model (GA-model)
is shown in Figure 2.
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Figure 2. The structure schematic of the grouping attention model (GA-model).

As shown in Figure 2, X̃ is obtained by a TA-block, and then we process each feature channel of X̃.
V is a set of vectors that are stretched by X̃. The gray head represents the direction of the vector, and the
length of the vector is “W×H”. Next, we perform a dot product on the vectors. The dot product result
of the two vectors is a scalar value. The larger the value, the higher the similarity between the two
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vectors, and vice versa. With vector dot products, we group vectors with high similarity into a class to
better represent local semantics. V′ is a clustered vector set, and we rearrange X̃ according to the order
of this set to get X̃′. At this time, X′ is a plurality of semantic units after grouping attention. Next,
a group convolution (GC-block) [35] operation is performed for each semantic unit. In this way, we can
execute feature learning for each semantic unit. It is worth mentioning that the group convolution
itself can greatly reduce the amount of parameters of the network. Finally, we concatenate multiple
semantic units along the feature channel direction to get X. The implementation algorithm of X̃ to X̃′

is as shown in Algorithm A1 (Appendix A).

3.3. Multi-Level Feature Fusion

As the number of layers of the CNN increases, the information we obtain gradually evolves from
low-level visual features to high-level semantic information. Usually, we only use the semantic features
of the last layer for image processing. However, the low-level visual features often retain more spatial
structure and detail information. In this section, we have designed a new feature fusion method to
ensure that both the low-level visual features and high-level semantic information are fully utilized.
We will perform a simple convolution process on each module in the network and combine them
with the feature maps on the main path to perform fine-grained image classification. In particular,
for our proposed TA-model and GA-model, multi-level feature fusion can fuse information between
different branches of each module. For example, we can aggregate the attentions of the two branches
of the TA-block, or we can link the grouping attentions of the GC-block. Here, we did not choose to
simply sum the high-level information and the low-level features, but use the SORT method to obtain
high-order features to improve the non-linearity and robustness of the network. Finally, multi-level
feature fusion not only achieves the fusion between low-level visual features and high-level semantic
information, but also achieves the combination of local features and overall features. A schematic
diagram of multi-level feature fusion is shown in Figure 3.

TA block TA block GA block

T
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XinInput ~X
X
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Figure 3. The structure schematic of multi-level feature fusion.

As shown in Figure 3, the modules in the dashed box are TA-block, GA-block, and GC-block,
from left to right. Among them, the TA-model is composed of multiple TA-blocks in series,
and GA-model is constituted of GA-block and GC-block. The darker colored modules in the network
are convolved by the TA-block and GC-block, respectively. The� is a SORT operation, which represents
high-order information fusion between different hierarchical features. The resulting Xout are feature
maps for fine-grained image classification. Adding the global pooling module and the dense module
to Xout is the structure diagram of the entire network implementation.
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4. Experiments

4.1. Datasets and Experimental Details

In this section, we perform experiments on two fine-grained image datasets, Stanford Cars
[49] and FGVC-Aircraft [50]. The Stanford Cars dataset consists of 16,185 images in 196 categories.
This dataset is split into 8144 training images and 8041 test images. The FGVC-Aircraft dataset consists
of 10,000 images. They are divided into 100 categories. This dataset includes 6667 training images and
3333 test images. Figure 4 shows partial examples of these two datasets.

Figure 4. Examples from Stanford Cars dataset (left), FGVC-Aircraft dataset (right).

The algorithms in this paper are implemented on Keras 2.2.4. The backend of this framework
is Tensorflow 1.6.0. In addition, the programming language and version is Python 3.5.2 and the
graphics card model is a GeForce GTX 1080. The learning rates of the models were 0.1, 0.01, and 0.001,
at 0–150 epochs, 150–190 epochs, and 190–230 epochs. This paper uses convolutional networks
with residual structures. Network structures, such as ResNet-50, are not used, mainly because their
parameters are too large. This will result in some improved models, based on mainstream residual
networks which are difficult to complete in existing experimental environments. The two-level
attention and group attention residual network we propose can achieve more accurate feature learning,
such that a large number of feature maps are not needed before feature classification. The parameters
of Res-CNN and its various improved models are shown in Table 1.

Table 1. The simple structures of several convolutional networks with residual module.

Model Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Dence

Res-CNN

(16,7,3)
(16,5,3)
(16,3,3)

[ 64,3,2
64,3,1
64,3,1

] [ 96,3,2
96,3,1
96,3,1

] [ 160,3,2
160,3,1
160,3,1

] [ 192,3,2
192,3,1
192,3,1

] [ 192,3,2
192,3,1
192,3,1

]
GAP
(5,5)

Dence
(196/100)

[ 48,3,1
48,3,1
48,3,1

] [ 64,3,1
64,3,1
64,3,1

] [ 96,3,1
96,3,1
96,3,1

] [ 160,3,1
160,3,1
160,3,1

] [ 192,3,1
192,3,1
192,3,1

] [ 192,3,1
192,3,1
bs,3,1

]

TA-CNN TA-block TA-block TA-block TA-block TA-block TA-block

GA-CNN GA-block GC-block

TGA-CNN TA-block TA-block TA-block TA-block TA-block GA-model

MFF [16,2,2]
[ 16,1,1

32,2,2

] [ 32,1,1
64,2,2

] [ 64,1,1
96,2,2

] [ 96,1,1
128,2,2

]
[128,1,1]

Res-CNN is the residual network model we defined. Table 1 briefly describes the convolution
parameters of several networks based on Res-CNN. Res-CNN consists of six convolutional blocks,
a global average pooling layer, and a dense layer. There are three convolution operations in one
residual block, in each square bracket. The three parameters of the convolution kernel are the number
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of feature channels after convolution, the sizes of the convolution kernels, and the strides. Conv1 first
convolves the input images through three different sizes of convolution kernels to provide feature
maps of different fields of view. The upper-half convolution kernels have strides of 3 or 2, to reduce
the size of the feature maps. The residual blocks, enclosed in blue square brackets in Table 1, need to
be repeated 3 times. TA-CNN is a TA-block module added after each convolution block. GA-CNN is
a group attention residual network, which adds a GA-block after Conv5 and replaces Conv6 with a
GC-block. TGA-CNN is a residual network that introduces both TA-model and GA-model, where the
GA-model consists of GA-block and GC-block. MFF refers to a multi-level feature fusion method.

4.2. Two-Level Attention Model

The Res-CNN structure is shown in Table 1, where bs in the blue box of Conv6 takes 192 in the first
two residual blocks and 320 in the last residual block. OARes-CNN embeds an object-level attention
module in the Res-CNN structure. PARes-CNN adds a pixel-level attention module to the Res-CNN
structure. Their detailed structures are shown in the upper and lower halves of Figure 1. TA-CNN
introduces a two-level attention module simultaneously in the Res-CNN structure. For example,
in Table 1, convolutional blocks, such as Conv1 and Conv2, are followed by a TA-block. At the
same time, we conducted feature fusion for two levels of attention. TA-CNN_ADD indicates that a
summation operation is performed on two-level attention features, and TA-CNN_SORT shows that
the SORT method is performed on two-level attention features.

The experimental data shown below was obtained without using pre-training networks and
fine-tuning techniques. As shown in Table 2, Res-CNN was better, in terms of classification accuracy
and time complexity, than B-CNN; due to the use of residual structure, and as Res-CNN does not adopt
the local pairwise feature interaction methods, so its number of parameters is also greatly reduced.
Compared to Res-CNN, OARes-CNN increased the classification accuracy by 0.58%, as we introduced
an object-level attention mechanism. PARes-CNN introduced a pixel-level attention mechanism,
and achieved similar results. However, single-level attention is not obvious enough to improve network
performance. TA-CNN focuses on the classified images by using a two-level attention. TA-CNN_SORT
achieved better results than TA-CNN_ADD, as the former learned higher-level feature representations.
Here, we define TA-CNN_SORT as TA-CNN. Compared with Res-CNN, the classification accuracies of
TA-CNN on the datasets Stanford Cars and FGVC-Aircraft increased by 0.93% and 0.86%, respectively.
Correspondingly, the network parameters have increased by about 1.69M, and the time complexity has
increased slightly. It is worth mentioning that, without using pre-training conditions, compared with
B-CNN, the classification accuracy of TA-CNN increased by 4.61% for the FGVC-Aircraft dataset.

Table 2. The parameters and frames per second (FPS) of the residual networks carrying different
attention models, and the classification accuracies of these networks on the two datasets.

Model Accuracy(%) Parameters FPS
Cars Aircrafts

B-CNN 83.90 78.40 – 8
Res-CNN 84.29 82.15 14.09M 40

OARes-CNN 84.87 82.65 15.78M 38
PARes-CNN 84.80 82.62 14.10M 38

TA-CNN_ADD 85.10 82.94 15.78M 36
TA-CNN_SORT 85.22 83.01 15.78M 36

4.3. Grouping Attention Model

The focus of this section is on several grouping attention residual networks. The several
convolutional networks in Table 3 introduce a group attention model (GA-model) into the Res-CNN
architecture. This model consists of a group attention block (GA-block) and a group convolution block



Appl. Sci. 2019, 9, 1939 9 of 15

(GC-block). Their main structures are shown in GA-CNN in Table 1, and the GA-block operation is
executed after Conv5; that is, these feature channels with high semantics are divided into multiple
groups. As shown in Table 3, we divided them into 1 group, 4 groups, 8 groups, 12 groups, and X
groups (X indicates the number of feature channels, and the value in this experiment was 192). Then,
we performed a GC-block operation on each group, and the number of feature channels after the
group convolution in the experiment was still 192. It should be noted here that replacing Conv6 with
a GC-block will greatly reduce the network parameters. In order to compare network performance
fairly, we performed a traditional convolution operation on the feature maps before group convolution
to obtain 128 feature channels. These two types of feature maps were then merged for the final image
classification tasks.

Table 3. The parameters and FPS of the group attention residual networks, and the classification
accuracies of these networks on the two datasets.

Model Accuracy(%) Parameters FPS
Cars Aircrafts

Res-CNN 84.29 82.15 14.09M 40
Res-CNN_G4 88.30 86.11 13.40M 30
Res-CNN_G8 89.51 87.06 12.89M 24

Res-CNN_G12 88.15 86.22 12.71M 21
Res-CNN_GX 85.94 83.64 12.53M 38

Res-CNN treats the feature maps after Conv5 as one group, which is Res-CNN_G1. As can be
seen from Table 3, as the groups increase, the amount of parameters slowly decreases, while the time
complexity increases gradually. This is because when the group convolution operation is performed,
the group increases, and the number of channels per group decreases, resulting in a decrease of
parameters. The extra time is mainly consumed in the process of grouping. Res-CNN_GX is an
exception, and its time complexity is similar to that of Res-CNN, mainly because we adopt depth-wise
convolution operations to improve network efficiency. For the Cars and Air datasets, the classification
accuracies were the highest in the 8 groups, reaching 89.51% and 87.06%, respectively. These show that
the two datasets can achieve more accurate classification when obtaining about 8 discriminative local
features. In addition, Res-CNN_GX achieved better results than Res-CNN after introducing additional
traditional convolution operations. This illustrates that the use of grouping attention at the advanced
semantics layer helps us to improve network classification performance. We define Res-CNN_G8 as
GA-CNN. Compared with Res-CNN, the classification accuracies of GA-CNN on the datasets Stanford
Cars and FGVC-Aircraft increased by 5.22% and 4.91%, respectively.

In the previous experiment, we improved the Res-CNN with a two-level attention model or a
grouping attention model, respectively. Naturally, we will embed both two-level attention model and
grouping attention model into the Res-CNN architecture; that is, introduce grouping attention on the
TA-CNN. As shown in TGA-CNN in Table 1, we replaced Conv6 with a GA-model (GA-block and
GC-block), and the rest of the operation was the same as mentioned earlier.

TA-CNN is TA-CNN_SORT in Table 2, and the feature maps after Conv5 can be interpreted
as only one group. TA-CNN_GX indicates that each feature channel of the corresponding feature
maps is divided into one group. As TA-CNN_GX employs depth-wise convolution operations,
its parameters and time complexity are smaller. As the number of groups increases, the parameters of
other group networks are reduced and time complexity is increased. Compared with TA-CNN, the FPS
of TA-CNN_G12 is reduced from 40 to 20. As shown in Table 4, when the number of groups was
about 8, the classification accuracies of the Stanford Cars and FGVC-Aircraft datasets were the highest:
90.32% and 87.47%, respectively. We define TA-CNN_G8 as TGA-CNN. Compared with TA-CNN,
the classification accuracies of TGA-CNN increased by 5.10% and 4.46% for the Stanford Cars and
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FGVC-Aircraft datasets, respectively. It can be seen, from Tables 2 and 3, that the grouping attention
model has great significance for improving network performance.

Table 4. The parameters and FPS of the two-level attentions and group attention residual networks,
and the classification accuracies of these networks on the two datasets.

Model Accuracy(%) Parameters FPS
Cars Aircrafts

TA-CNN 85.22 83.01 15.78M 36
TA-CNN_G4 89.13 86.55 15.07M 27
TA-CNN_G8 90.32 87.47 14.55M 23

TA-CNN_G12 89.04 86.82 14.38M 20
TA-CNN_GX 86.81 84.69 14.20M 36

4.4. Multi-Level Feature Fusion

In this section, we add the Multi-Level Feature Fusion (MFF) method to the Res-CNN, TA-CNN
(TA-CNN_SORT), GA-CNN (Res-CNN_G8), and TGA-CNN (TA-CNN_G8) models, respectively.
The parameters of the MFF are as shown in Table 1. The 2 × 2 convolution kernels are used to reduce
the feature dimension, and the 1 × 1 convolution kernels are applied to adjust the number of feature
channels. This can reduce the network parameters while preserving the features of each layer as
much as possible. The MFF method can combine low-level visual features with high-level semantic
information. The experimental results are shown in Table 5.

Table 5. The parameters and FPS of the residual networks with multi-level feature fusion (MFF), and
the classification accuracies of these networks on the two datasets.

Model Accuracy(%) Parameters FPS
Cars Aircrafts

Res-CNN 84.29 82.15 14.09M 40
Res-CNN_MFF 84.95 82.63 14.77M 36

TA-CNN 85.22 83.01 15.78M 36
TA-CNN_MFF 85.64 83.26 16.44M 34

GA-CNN 89.51 87.06 12.89M 24
GA-CNN_MFF 90.41 87.49 13.01M 24

TGA-CNN 90.32 87.47 14.55M 23
TGA-CNN_MFF 91.05 87.93 14.67M 23

As shown in Table 5, after the introduction of the MFF method, the four network structures
improved in classification accuracies, which indicates that low-level visual features and high-level
semantic information did have an impact on the classification results. Comparing the first four and the
last four groups of the experiments (i.e., introduced the network before and after the grouping
attention), the parameters of the last four groups decreased, but the time complexity increased
accordingly. Meanwhile, the classification accuracies of the latter four groups increased significantly.
The parameters of TA-CNN_MFF were up to 16.44M. Comparing TGA-CNN and GA-CNN_MFF, it can
be found that the latter achieved higher classification accuracies under the condition of less parameters
and lower time complexity. This illustrates that it is necessary to perform group attention operation
in the advanced semantic layers of the network. The classification accuracies of TGA-CNN_MFF on
Cars and Air datasets reached 91.05% and 87.93%, respectively. This is because we took into account
the overall and part attentions, as well as the high-level and low-level features. Its time complexity
was also the highest, and the value of FPS was 23. Compared with Res-CNN, with the support of the
TA-model, GA-model, and MFF method, the classification accuracy of TGA-CNN_MFF increased by
6.76% and 5.78% on the datasets Stanford Cars and FGVC-Aircraft, respectively.
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4.5. Comparisons With Prior Methods

In the previous sections, we evaluate the proposed methods on two datasets: Stanford Cars
and FGVC-Aircraft. Now, we compare our results with several other fine-grained classification
models, including FV-CNN [51], DVAN [10], Random Maclaurin [32], Tensor Sketch [32], LRBP [33],
and MA-CNN [40]. None of these models use bounding box information or part annotation.
The classification accuracies of the mentioned methods are shown in Table 6.

Here, TGA-CNN represents the complete model of this paper (i.e., TGA-CNN with the MFF
method). Compared to FV-CNN, TGA-CNN’s classification accuracies on Cars and Aircrafts increased
by 3.26% and 6.47%, respectively. Similarly, for Cars, the classification accuracy of TGA-CNN was 3.95%
higher than DVAN. The Random Maclaurin, Tensor Sketch, and LRBP approaches are all improved
versions of B-CNN, and our model was slightly better than these three methods. The classification
accuracies of MA-CNN on the two data sets were 1.75% and 1.97% higher than our model, respectively.
MA-CNN captures smaller parts by unsupervised part learning approaches. Then, it makes part
generation and feature learning mutually reinforcing. This is the method we can learn from.

Table 6. The classification accuracies of these models on the two datasets.

Model Accuracy (%)

Cars Aircrafts

FV-CNN 87.79 81.46
DVAN 87.10 –

Random Maclaurin 89.54 87.10
Tensor Sketch 90.19 87.18

LRBP 90.92 87.31
MA-CNN 92.80 89.90

TGA-CNN(Ours) 91.05 87.93

5. Conclusions

In this paper, we build a new network structure with a multi-level attention model by combining a
two-level attention model (TA-model) and a grouping attention model (GA-model). At the same time,
we adopt the multi-level feature fusion method for the unified learning of low-level visual features and
high-level semantic information of the network. The entire network subtly completes the fine-grained
image classification task under small-data conditions by adding attention modules and feature fusion.
The proposed structure does not need a bounding box or partial annotation for training, and can
be easily embedded into all convolutional networks. The experimental results demonstrate good
performance on fine-grained classification. In the future, we will conduct the research in two directions.
First, we will use more efficient similarity measurement methods and multi-stage grouping attention
to obtain more distinguishing features. Second, we will try to borrow object detection mechanisms to
locate and capture more precise fine-grained features.
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Appendix A

As shown in Algorithm A1, in order to reduce the complexity of the algorithm in the experiment,
we do not do all the feature vectors in pairs to do the dot product. We randomly select a vector and
then calculate its similarity to other vectors. The vectors of the top N similarities are grouped into one
class. Then iteratively calculates the least similar vector and the remaining un-clustered vectors. First,
we define a GA-block function, and the parameter x represents the input value. The “permute_d(∗)”
function executes feature dimension conversion on input values, and the “flatten(∗)” function
stretches feature maps into feature vectors. We aggregate these feature channels into Num categories,
x_topk represents each feature group after clustering, x_last shows the feature channel that is the least
similar to the current feature channel. The “sub(∗)” function indicates the feature maps remaining
after x_topk is removed, “x.shape[1]” indicates the number of feature channels that are currently not
categorized. The “dot(∗)” function is the dot product operation of two vectors, the dict stores the result
of the dot product of every two vectors. The “sort(∗)” function sorts the feature map from large to small
according to “dict”. The “top_k(∗)” function takes the first N values of the sort result. When N = −1,
the last value is taken. The “push(∗)” function records and stores each result of the GA-block.

Algorithm A1: Grouping attention method (GA-block)
define GA_block( x ):

x = permute_d( x, [0, 3, 1, 2] )
x_flat = flatten( x[:, 0, :, :] )
x_sub = x
for i in range( Num ):

if i != 1:
x_flat = x_last
x_sub = Sub( x_sub, x_topk )

for j in range( x.shape[1] ):
x_arr = flatten( x_sub[:, j, :, :] )
x_dot = dot( x_flat, x_arr )
dict = push( x_dot )
x_sort = sort( x_sub, dict )

x_topk = top_k( x_sort, N )
x_last = top_k( x_sort, -1 )
x_conv = push( x_topk )
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