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Abstract: Constellation shaping has been widely used in optical communication systems. We review
recent advances in two-dimensional constellation shaping technologies for fiber-optic communications.
The system architectures that are discussed include probabilistic shaping, geometric shaping,
and hybrid probabilistic-geometric shaping solutions. The performances of the three shaping schemes
are also evaluated for Gaussian-noise-limited channels.
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1. Introduction

The advances in photonics integrated circuit [1,2], software-defined networking [3,4],
application-oriented fibers [5,6], and optical amplifiers [7,8], have been greatly pushing forward
development and commercialization of optical communications. In the modern optical transport
systems, especially in terrestrial and transoceanic fiber-optic communications, advanced modulation
formats have been overwhelmingly implemented in optical transceivers [9–14], thanks to the
ever-cheaper optical frontend and powerful digital signal processing (DSP) chips with smaller
size and lower power consumption. Traditional quadrature amplitude modulation (QAM) formats
have been applied extensively to realize high-capacity and long-reach optical communications, and we
have witnessed numerous two-dimensional QAM (2D-QAM)-based hero experiments in recent years
to explore the highest possible system capacity and longest transmission distance [15–17].

Due to the loss profile of the standard single mode fiber (SSMF) and gain profile of commercial
Erbium-doped fiber amplifiers (EDFAs), C-band window (1530–1565 nm) is mostly used for data
loading [18]. However, the capacity bottleneck becomes more visible for the traditional QAM-based
C-band optical transmissions [19]. In order to meet the increasing bandwidth requirements, in particular
the upcoming 5G infrastructure, more advanced solutions are expected to be introduced to
optical infrastructures. We can roughly divide the promising solutions into two categories: coded
modulation [20–27] and extended multiplexing [17,28–31]. The idea of coded modulation is increasing
information bits per channel use, including higher-order 2D modulation formats, like 1024QAM [22],
multidimensional QAM formats, like 4D optimized constellations [23], and constellation shaping
techniques [24–26], like probabilistic shaping (PS)-64QAM [25]. Alternatively, extended multiplexing is
a more straightforward solution, which mainly contains C+L band wavelength multiplexing [17,28] and
space-division multiplexing [29–31]. All the solutions come with the trade-off choice between optical
complexity and electrical complexity. In order to implement C+L band wavelength multiplexing,
C-band EDFAs and L-band EDFAs should be used together to simultaneously amplify the channel
loss per span [17]. Raman amplifier may be another option [32], but the telecom industry is not in
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favor of it because of its high cost. Space-division multiplexing based on few-mode fiber or multi-core
fiber is an efficient way to directly boost the aggregate capacity. However, it seems to have been
put at the bottom of the to-do list, because (i) it will be quite challenging to replace and rebuild the
current fiber links, (ii) space-division-multiplexing-based optical amplifiers are too expensive for
commercial applications, and (iii) complex multi-input multi-output (MIMO) channel equalization
may be required to compensate channel crosstalk [33]. The telecom industry always chooses the most
cost-efficient way to upgrade their communication systems. Therefore, extended multiplexing solution
is barely found in the roadmap of optical communications, especially in the field of long-reach optical
communications. On the contrary, coded modulation seems to be a more attracting solution. Higher
modulation formats are more common now, but they have more stringent requirements on optical
signal-to-noise ratio (OSNR), digital-to-analog converter/analog-to-digital converter (DAC/ADC),
and DSP recovery. Multidimensional QAM solution can further enlarge the minimum Euclidean
distance between constellation points, but it requires powerful DSP technology to recover signals.
What is more, such performance optimization can come at a price of less information bits per channel
use [34].

In traditional QAM formats, the constellation points are located on a uniform grid. Such uniform QAM
formats are easy for generation and recovery but suffer a 1.53-dB asymptotic loss towards the Shannon limit.
In order to close the gap, constellation shaping was introduced to optical communications. Constellation
shaping, including PS [25,35–37], geometric shaping (GS) [26,38–41], and hybrid probabilistic-geometric
shaping (HPGS) [42–45], is used to mimic a Gaussian distribution with limited constellation points.
Although target at approaching Gaussian distribution, PS and GS have completely different generation
and detection implementations. GS-QAM is obtained by optimizing some metrics, like mutual information
(MI) [40] and generalized MI (GMI) [41], which will relocate the constellation point in geometric space.
PS-QAM is applied on a uniform grid, but the constellation points will be transmitted with different
probabilities. HPGS can optimize the performance in both geometric space and probabilistic space which
should, in principle, provide the optimal performance.

In this paper, we review recent advances on 2D constellation shaping in fiber-optic communications.
Section 2 gives an overview of PS, GS, and HPGS. Section 3 discusses the performance of PS, GS,
and HPGS in Gaussian-noise-limited channels. Finally, the concluding remarks are given in Section 4.

2. Typical Constellation Shaping Schemes

2.1. Probabilistic Shaping

In a Gaussian-noise-limited channel, PS-QAM yielding a Maxwell–Boltzmann (M–B) distribution
is recognized as the optimal format to maximize the channel capacity [46]. In general, the low-amplitude
constellation points are sent with a higher probability than the high-amplitude ones. Besides,
the constellation points under the same amplitude layer are sent equally likely. Therefore, the average
symbol power will be decreased, but at a cost of lower source entropy.

The first PS scheme was proposed by Gallager, which is based on many-to-one mapping [47].
Complex forward error correction (FEC) coding is required to be implemented to recover the original
bits from the systematic errors after many-to-one demapping. The recently proposed arithmetic
coding-based constant composition distribution matcher (CCDM) is an invertible fix-to-fix length
distribution matcher, enabling maximum information rate asymptotically in the block-length [48]. Later,
there are some methods proposed to further reduce the complexity of CCDM, like multiset-partition
distribution matching [49] and streaming distribution matching [50]. The first PS-based coded
modulation was probabilistic amplitude shaping (PAS) [51], which could seamlessly combine the
binary FEC coding and CCDM in a square M-QAM format.

The proposed PAS enables capacity approaching fiber-optic communications, but also brings
some issues. Firstly, CCDM and the modified CCDM architectures are hard to be implemented in
commercial optical transceivers. Secondly, more bit-to-symbol (B2S) mapping and symbol-to-bit (S2B)
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mapping modules are required to be implemented at the transceivers, leading to extra complexity.
Thirdly, there will be an entropy loss by shaping on a given M-ary signal constellation format. Fourthly,
intrablock error propagation will loom over the dematching procedure once the FEC coding cannot
totally correct all bit errors. Fifthly, the applicable FEC code rate is limited, which will be lower-bounded
by [log2(M)− 2]/ log2(M). Sixthly, DSP circuit will be under a higher pressure to recover Gaussian-like
constellation diagrams. Thereafter, more pilot-tones are essential to be used for signal recovery.
Last but not least, although could be used for reach extension, PAS-MQAM suffers more from the
modulation-dependent noise in long-haul fiber-optic communications [52].

In a square MQAM format, the coordinate of each constellation can be represented by the Cartesian
product of two pulse-amplitude modulation (PAM) coordinates, namely,

X =
{
±1, ±3, . . . , ±

(√
M− 1

)}
(1)

The well-known M–B distribution is defined by

PXv(x) = e−v|x|2 /
∑
x′∈X

e−v|x′ |2 (2)

where v is a non-negative scaling factor. If v is 0, the PAM format follows a uniform distribution.
The capacity of PAS-MQAM format can be defined as [51]

C = H(p) −m(1−R) (3)

where H(p) is the entropy of the PAS-MQAM format, R is the FEC code rate, and m = log2(M).
Figure 1 shows the conceptual diagram of PAS-MQAM generation, where 16QAM is used as an

illustrative example. In such scheme, the 1D amplitude symbols labeled by 1-3-1-1-1-3 . . . , will be
probabilistically shaped according to the M–B distribution (the probabilities of Symbol-1 and Symbol-3
are indicated by the blue and black colors, respectively), and the sign bits labeled by 1-0-0-1-0-1
. . . , will be used to carry the uniformly distributed parity-check bits. The S2B mapping is used to
map the Symbol-1 and Symbol-3 to amplitude bits, i.e., Bit-1 and Bit-0, respectively. In the FEC
encoder, the party-check bits will be appended to the sign bits, and combine with the amplitude bits.
Such encoded bits are remapped to PAM-4 symbols (00→−3, 01→−1, 11→+1, 10→+3). Therefore,
after FEC coding, the M–B distribution will not be changed, and Gray-mapping rule is still applicable.
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Figure 1. The conceptual diagram of probabilistic amplitude shaping (PAS)-M-ary quadrature amplitude
modulation (MQAM) generation.

2.2. Geometric Shaping

GS-QAM is generated by optimizing certain criterion under a given signal-to-noise ratio
(SNR). Such criteria can be maximizing MI [40], maximizing GMI [41], maximizing constellation
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figure of merit [53], or minimizing mean-square error of Gaussian distribution [54], etc. Typically,
the lower-amplitude constellation points will be more concentrated around the origin. Generalized
cross constellations and Voronoi constellations were proposed decades ago [38,39]. GMI-optimized
constellations have also been proposed recently to enhance the capacity in a binary FEC coding featured
fiber-optic communication systems.

GS could potentially simplify the process to generate Gaussian-like constellations, but it also brings
several issues. Firstly, due to the unavailability of Gray-mapping in most cases, GMI performance
hardly approach MI performance. Although nonbinary FEC coding is a solution to close such gap,
the high complexity hinders its commercial development [55]. Secondly, the common asymmetry of the
constellations may result in more complex PAM constellations in both in-phase and quadrature branches.
Therefore, the ADC/DAC is required to be implemented with higher resolutions. Thirdly, the DSP
circuits to recover GS-MQAM formats are not compatible with the ones to recover regular-MQAM.
As a result, new DSP algorithms are suggested to be developed to efficiently recover the GS-MQAM
signals. Fourthly, it is hard to reach standard agreements between optical transceiver manufacturers
due to the variety of GS-QAM formats and the matched DSP algorithms.

Figure 2 shows the conceptual diagram of a GS-QAM-based communication system. If binary
FEC coding is used, the suboptimal B2S mapping table has to be found to minimize the gap between
GMI and MI, in order to minimize the Non-Gray mapping penalty. Brutal force algorithm may be used
to find such mapping rule at a cost of high computational complexity. Alternatively, binary data can be
mapped to the GS-QAM symbols through any B2S look-up table, followed by a reasonable complexity
nonbinary FEC encoder to sustain reliable communications [56].
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Figure 2. The conceptual diagram of a geometric shaping (GS)-QAM-based communication system.

Figure 3 shows 16/32/64QAM formats generated by maximizing constellation figure of merit [53],
minimizing mean-square error of Gaussian distribution [57], and maximizing GMI [41], respectively.
The GS-16QAM constellation shown in Figure 3a is obtained by maximizing the minimum Euclidean
distance under the same average power of the 16-ary constellation.
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The GS-32QAM constellation shown in Figure 3b can be obtained by the following steps.

1. Choosing 2D Gaussian distribution as the optimal source distribution, and select the uniformly
distributed regular-32QAM as the initial constellation.

2. Generating a symbol sequence following the Gaussian distribution.
3. Distributing the symbols into 32 clusters, where the decision is made as per the minimum

Euclidean distance from the 32QAM constellation points obtained in previous iteration.
4. Finding the average central positions from the symbols labeled by each cluster. Such 32 points

located on the central positions are used as the new MQAM constellation points.
5. Iterating over Steps 2 and 4 until convergence.

The GS-64QAM constellation shown in Figure 3b is designed with the constraint of Gray mapping,
which can maximize the GMI. Due to the Gray mapping constraint, such scheme cannot fully explore
the 2D space, but it can also reduce capacity gap towards the Shannon limit.

It is an open question about the optimal GS solution, since it depends on lots of implementation
scenarios. When the amount of the constellation points is more than 64, GS may suffer more
implementation penalties than PS.

2.3. Hybrid Probabilistic-Geometric Shaping

When more flexible constellation formats are required, especially multi-dimensional QAM formats,
HPGS may be an enabling technique, since each constellation point during the optimization process
will not be limited to equal probability or uniform-grid locations. Figure 4 shows HPGS-5QAM
and HPGS-9QAM formats based on Huffman coding [58,59]. The probability of each symbol is
predetermined by the corresponding Huffman tree, and the coordinates of the symbols can be obtained
by optimizing the MI.
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Figure 4. Huffman coding (a) and the constellation format (b) for 5-QAM; Huffman coding (c) and the
constellation format (d) for 9-QAM.

As an illustrative example, the generation process of HPGS-9QAM constellation can be found below:

1. Parsing the binary source into nine blocks labeled by unique bit sets {00, 010, 110, 011, 100, 1110,
1111, 1010, 1011}. If the binary sequence is sufficiently long, the resulting blocks should be
generated with the probabilities of {P(00) = 1/4, P(010) = 1/8, P(011) = 1/8, P(100) = 1/8, P(1110) =

1/16, P(1111) = 1/16, P(1010) = 1/16, P(1011) = 1/16}. Thereafter, the entropy is 3, i.e., there is no
entropy loss.

2. Mapping the 9-block sequence to any 9-QAM symbols with the constraints: (i) The 9-ary
constellation points with the same probability are uniformly located in the same power layer,
(ii) The constellation points with higher probabilities are located at higher power layers. In other
words, such 9-ary constellation should be featured with three power layers and 1, 4, and 4 points
are equally spaced in each power layer, respectively.
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3. Maximizing the MI by iterating over all amplitude ratios and phase differences of such
9-ary constellation.

Huffman coding can be treated as a variable-length and prefix-free PS scheme, which can also be
uniquely decodable, but it cannot provide flex rate.

There are four major problems for this HPGS scheme. Firstly, it is quite challenging to implement
Huffman coding when the amount of symbols increase. Secondly, as any other variable-length coding
technology, Huffman coding will also suffer from the overflow or underflow problems. Thirdly,
the higher-complexity nonbinary FEC coding is required. Fourthly, error propagation may occur if
unexpected symbol errors remained after FEC decoding.

A more efficient and practical way to generate HPGS-QAM is based on universal probabilistic
shaping scheme and GMI-optimized GS scheme [44,60]. Figure 5 shows the constellation formats for
HPGS-32QAM, as well as the regular/PS-32QAM.
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Figure 5. Constellation formats for (a) hybrid probabilistic-geometric shaping (HPGS)-32QAM,
(b) regular-32QAM, (c) shallowly shaped 32QAM, and (d) deeply shaped 32QAM.

The constellation diagram of the HPGS-32QAM shown in Figure 5a is generated by the generalized
pairwise optimization algorithm. The objective function is maximizing GMI under the constraints of
zeros mean amplitude and normalized average power. The two constraints can be expressed as

pixi = −A− p jx j (4)

∣∣∣p jx j + b
∣∣∣2 + p j

pi2

∣∣∣x j
∣∣∣2 = 1− B (5)

where (xi, x j) is one pair of the M-ary constellation (M = 32 in this case), pi is the probability of xi,

A =
M∑

k=1,k,i,k, j
pkxk, and B =

M∑
k=1,k,i,k, j

pk|xk|
2. The objective of maximizing GMI will be searching

the (xi, x j) pair over a hypersphere with the center and radius determined by the other M − 2
constellation points. Such generalized pairwise optimization algorithm can converge to the final
steady state after iterating all M(M− 1)/2 pairs. As a rule of thumb, we suggest start the iteration
with the regular-32QAM, and the optimal HPGS-32QAM shown in Figure 5a can be obtained within
1000 iterations.

Such HPGS constellation could provide the trade-off between the number of nearest symbols and
their Hamming distance. Any constellation format shown in Figure 5 does not belong to the square
QAM category. As a result, the well-known PAS scheme cannot be used for the PS purpose.

Figure 6 shows the modified probabilistic fold shaping and universal probabilistic shaping
schemes [60]. Probabilistic fold shaping can be used for shaping any F-fold rotationally symmetric
constellation, like regular-32QAM, as shown in Figure 6a. In such kind of constellations, the bits
determining the fold index yield uniform distribution, which can be used to carry the parity-check bits.
There is a major difference between PAS and probabilistic fold shaping. PAS is a 1D shaping scheme,
which uses the single bit determining the positive or negative amplitude to carry the parity-check bit
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and shapes the 1D-PAM with a 1D M–B distribution. On the contrary, probabilistic fold shaping is a
2D shaping scheme, which uses the log2(F) bits determining the fold indexes to carry the parity-check
bits, and shapes the 2D constellation points in one fold with a 2D M–B distribution. As an illustrative
example, the 32QAM shown in Figure 6a is featured with four-fold rotational symmetry. The 8-ary
constellation points in one fold are firstly shaped with a 2D M–B distribution, where different colors
indicate different probabilities. The bit sets {11,01,00,10} determining the fold indexes will carry the
parity-check bit after FEC encoding and rotate the 8-ary constellation by 0◦, 90◦, 180◦, 270◦, respectively.
Therefore, 2D M–B distribution can be applied to the constellation points in one fold, and the selection
of the fold-index can be performed by the parity-check bits. The target distribution will not be changed
after the binary FEC coding.
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(b) universal PS.

The universal probabilistic shaping scheme shown in Figure 6b can be applied to shape any
QAM format. The MQAM symbols generated from the CCDM may not yield a M–B distribution.
The binary bits generated after the bit labeling block are used to carry the uniformly distributed
parity-check bits. During the process of B2S mapping, the parity-check bits will be uniformly
mapped to partial MQAM symbols, i.e., N-ary QAM (NQAM) symbols, where N is the largest
power of 2 to contain the MQAM constellation points with the desirable probabilities of >(1−R)/M.
Assuming that the desirable probability distribution of the MQAM symbols is PM(x), the probability
distribution of the MQAM symbols after the CCDM is PD(x), and probability distribution of
the NQAM symbols is given by PN(y) = 1/N. The final relationship can be written as
PM(x) =

[
RPD(x)/ log2(M) + (1−R)PN(y)/ log2(N)

]
/[R/ log2(M) +

(
1−R)/ log2(N)

]
. In such a

way, any desirable distribution of the HPGS-MQAM symbols can be obtained.

3. Performance Comparison in Gaussian-Noise-Limited Channels

As a rule of thumb, HPGS-MQAM cannot show clear performance improvement over PS-MQAM
and GS-MQAM when M < 32. In addition, if M ≥ 64, PS-MQAM could closely approach the Shannon
limit, thus it is not necessary to apply HPGS to higher order QAM formats. In this paper, we performed
Monte Carlo simulations in MATLAB. The block-length of the CCDM was chosen more than 5000,
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so the normalized divergence of the encoder output and the desired distribution is negligible. The awgn
function provided by MATLAB was used to add white Gaussian noise to the 2D-MQAM signals.
All the results were averaged over 1000 trials.

In a numerical simulation, as shown in Figure 7, we compared the MI performances of
the minimizing mean-square error of Gaussian-distribution-based GS-8/16/32QAM, CCDM-based
PS-8/16/32QAM, and regular-8/16/32QAM. Figure 7a1,a2,b1,b2,c1,c2 show the constellation diagrams
of PS/GS-8/16/32QAM. Here we chose MI as the metric for performance comparison, because MI
can be measured without the consideration of the FEC coding performance. Given that most of
the current nonbinary FEC coding and binary FEC coding schemes may vary in performance and
implementation penalty, MI instead shows the upper limit of the capacity obtained with the “ideal”
FEC coding scheme [61]. In order to easily describe the PS-MQAM with an entropy of A b/s, we adopt
the notation of PS-MQAMA. For example, we use PS-8QAM2.3 to denote the PS-8QAM with an entropy
of 2.3 b/s. As we can see from Figure 7a,b, the best MI performances can be obtained by GS-8/16QAM.
GS-8/16QAM can always outperform regular-8/16QAM. PS-8QAM can have comparable performance
over GS-8QAM when the SNR is less than 6.2 dB; the performances of PS-16QAM and GS-16QAM
are quite similar when the SNR is less than 11.7 dB. In the region of high SNR region, PS-8/16QAM
cannot bring better MI performance. In Figure 7c, we find that the best performance can be achieved
by PS/GS-32QAM separately. In addition, GS-32QAM is always better than regular-32QAM in terms
of MI performance. When the SNR is more than 15.7 dB, GS-32QAM has the best performance,
while PS-32QAM formats can maximize the MI performance when the SNR is less than 15.7 dB.
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limited channels for (a) PS/GS/R-8QAM, (b) PS/GS/R-16QAM, (c) PS/GS/R-32QAM. Insets (a1,a2) The
constellation diagrams of PS-8QAM and GS-8QAM. Insets (b1,b2) The constellation diagrams of
PS-16QAM and GS-16QAM. Insets (c1,c2) The constellation diagrams of PS-32QAM and GS-32QAM.

Although PS-256QAM and PS-1024QAM have been investigated over fiber links [62], we still
believe that PS-64QAM is expected to be the most promising solution for high-order QAM-based
fiber-optic communications, at least for the upcoming 400 G/800 G Ethernet. It is mainly because
that PS-64QAM has near-capacity-approaching performance, and its implementation penalty may
also be well reduced to an acceptable level in the near future. While, unfortunately, regular-64QAM
and PS-64QAM have been suffering a large implementation penalty so far. Here we compare the
performances of PAS-64QAM and GMI-optimized HPGS-32QAM (referred to as opti-32QAM in
this paper).

In another numerical simulation, Figure 8 shows the post-FEC bit error rate (BER) versus SNR
performances of PAS-64QAM, opti-32QAM, PS-32QAM, and regular-32QAM. DVB-S2 irregular
low-density parity-check (LDPC) codes were applied for FEC coding. The performance comparisons
were executed under the same capacity levels, i.e., C = 3.33 b/s and C = 4 b/s. Table 1 lists the parameters
used in the post-FEC BER analysis under the capacity levels of 3.33 b/s and 4 b/s. In Figure 8a,
the performance of PS-32QAM is slightly better than opti-32QAM, but worse than PAS-64QAM
by 0.2 dB. Opti-32QAM shows a 0.8-dB performance improvement over regular-32QAM in case of
C = 3.33 b/s. In Figure 8b, the performance of opti-32QAM is better than PS-32QAM by 0.2 dB, better
than regular-32QAM by 0.8 dB when the capacity is 4 b/s. However, PAS-64QAM is also shown
to outperform opti-32QAM by 0.4 dB. It is reasonable to find that PAS-64QAM always has the best
post-FEC performance over shaped 32QAM. While in a realistic communication system, we believe
that the performance of HPGS-32QAM (opti-32QAM) should be similar to that of PAS-64QAM, due to
the higher implementation penalties that PAS-64QAM may suffer.

Table 1. The parameters used in the post-forward error correction (FEC) bit error rate (BER) analysis
under the same capacity.

C [b/s] H/R R-32QAM Opti-32QAM PS-32QAM PAS-64QAM

3.33
H(p) 5 5 4.33 4.53

R 2/3 2/3 4/5 4/5

4
H(p) 5 5 4.55 5.2

R 4/5 4/5 8/9 4/5
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4. Concluding Remarks

Constellation shaping will play an increasingly important role in fiber-optic communications in the
wake of the booming 5G era. In this paper, we focused on the performance of 2D constellation shaping
in Gaussian-noise-limited channels. We have discussed three key constellation shaping schemes, i.e.,
PS, GS, and HPGS, and analyzed their pros and cons in terms of performance and implementation
complexity. We also introduced two modified CCDM-based shaping schemes, i.e., probabilistic fold
shaping and universal PS, which could enable applying PS on any 2D modulation format. We found that
GS-8QAM and GS-16QAM could outperform PS/regular-8QAM and PS-regular-16QAM, respectively,
in terms of MI performance. In addition, the best MI performance of 32-ary QAM format could be
reached by PS-32QAM and GS-32QAM separately. We compared the post-FEC BER performances of
HPGS/PS/regular-32QAM and PAS-64QAM under the same capacity.

The performances of HPGS/PS-32QAM were shown to be similar, and better than regular-32QAM.
What is more, PAS-64QAM could still have 0.2–0.4 dB performance gains over HPGS/PS-32QAM.

For a commercial CCDM-based PS implementation, the power consumption is mainly determined
by the block length and the entropy of the CCDM, as well as FEC coding selection. GS-QAM formats
will cost more power consumption than regular-QAM formats, because of that a higher complexity DSP
circuit is required to be used for GS-QAM-based transceivers to recover the signal from the received
data with Gaussian-like distribution. Although the best performance can be theoretically achieved by
HPGS-QAM, the extra power consumption arising from PS and GS schemes is nontrivial. Considering
that both PS and GS can closely approach the Shannon limit and only limited margin can be reached
by HPGS, HPGS may not be in favor by the industry due to the low benefit–cost ratio.
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