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Abstract: Knowledge of the mechanical and primarily fracture parameters of composites with a brittle
matrix is essential for the quantification of their resistance to crack initiation and growth, and also
for the specification of material model parameters employed for the simulation of the quasi-brittle
behavior of structures made from this type of composite. Therefore, the main target of this paper is to
quantify the mechanical fracture parameters of alkali-activated slag composites with steel microfibers
and the contribution of the matrix to their fracture response. The first alkali-activated slag composite
was a reference version without fibers; the others incorporated steel microfibers amounting to 5, 10,
15 and 20% by weight of the slag. Prism specimens with an initial central edge notch were used
to perform the three-point bending fracture tests. Load vs. displacement (deflection at midspan)
and load vs. crack mouth opening displacement diagrams were recorded during the fracture tests.
The obtained diagrams were employed as inputs for parameter identification, the aim of which
was to transfer the fracture test response data to the desired material parameters. Values were also
determined for fracture parameters using the effective crack model, work-of-fracture method and
double-K fracture model. All investigated mechanical fracture parameters were improved by the
addition of steel microfibers to the alkali-activated matrix. Based on the obtained results, the addition
of 10 to 15% of microfibers by weight is optimal from the point of view of the enhancement of the
fracture parameters of alkali-activated slag composite.

Keywords: alkali-activated slag; steel microfibers; fracture test; identification; work-of-fracture
method; double-K model; crack propagation

1. Introduction

The global production of cement in 2018 was about 4.1 billion tons [1]. That immense volume
of cement production is related to a very substantial impact on the environment: the carbon dioxide
emissions produced by the cement industry contribute up to 8% of worldwide CO2 emissions [2].

The majority of Portland cement (PC) is employed to produce concrete, mortars and plasters
in the building industry. To decrease cement consumption, supplementary cementitious materials
with good hydraulic cementitious properties (especially fly ash and ground granulated blast furnace
slag) are often used as partial substitutes for PC in specific applications. They are also employed as
constituent parts of blended cements [1]. The other possibility is to use alternative types of binder.
Alkali-activated materials (AAM) are one example of the relatively new binders now being produced
via the alkaline activation of different materials of geological origin or by-product materials that are
rich in silicon and aluminum. The utilization of secondary raw materials (fly ashes, slags, etc.) or
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other aluminosilicate materials during alkali activation leads to a decrease in cement consumption,
resulting in the more efficient reduction of CO2 emissions and energy consumption. Although the
production of alkaline activators is connected with CO2 emissions it is assumed that the global warming
potential of alkali-activated composites is approximately 40–70% lower than that of ordinary PC-based
composites [3,4]. AAMs also show good durability compared to Portland cement [5,6].

Just like materials based on Portland cement, AAMs are quasi-brittle materials that show what
is known as tensile softening. The different types of steel, synthetic or natural fibers which are used
in Portland cement-based materials [7–10] are added to improve the material’s resistance to crack
propagation. Knowledge of the mechanical and primarily fracture parameters of composites with
a brittle matrix is essential for the quantification of their resistance to crack initiation and growth,
as well as for the specification of material model parameters employed for the simulation of the
quasi-brittle behavior of structures or their parts made from this type of composite. Studying the
mechanical response of specimens made of such composites under static and dynamic/fatigue loading
is complicated due to their highly nonlinear nature. Numerical tools for modeling both elastic
(elastic-plastic) behavior, and also the fracture process, are commonly used to predict or assess this
response. Such tools—often based on the finite element method [11] or physical discretization of the
continuum [12]—usually exploit a type of nonlinear fracture model that simulates the cohesive nature
of the cracking of quasi-brittle material [13–15]. The parameters of this fracture model are determined
from records of fracture tests; this is carried out either using evaluation methods built on the principle of
the used non-linear fracture model, e.g., the work-of-fracture method [16] or the size effect method [17],
or using inverse analysis with the possible application of advanced identification methods [18–20].
The fracture models for quasi-brittle composites are most often based on the standardized geometry of
specimens with stress concentrators; the three-point bending test [14] or wedge splitting test [21,22]
are typically used.

As mentioned above, in order to perform the realistic numerical modeling of the response of
quasi-brittle composite structures it is essential to determine the parameters of the used material
models from experimental measurements. Unfortunately, the literature on the fracture properties
of alkali-activated mortars which can be used as suitable inputs for material models is still fairly
limited. Most of the published articles are only concerned with the determination of basic mechanical
parameters, i.e., compressive and flexural strengths, or in some cases modulus of elasticity [23–30].
Only a few researchers’ findings connected with the fracture behavior of this kind of material have been
published. Goncalves et al. [31] presented a study about the crack growth resistance of fiber-reinforced
alkali-activated fly ash concrete exposed to extreme conditions. Alomayri [32] investigated the effects
of glass microfiber content on the mechanical properties of fly ash-based geopolymer. It was found
that the optimal amount of glass microfibers is 2 mass% from the point of view of the enhancement
of fracture toughness, compressive strength, Young’s modulus and hardness. Ding et al. [33,34]
examined the fracture properties of alkali-activated slag (AAS) and ordinary Portland cement (OPC)
concrete and mortar. It was observed that the fracture energy value was lower in the case of AAS
mortar, as compared to OPC mortar with the same compressive strength. Sarker et al. [35] investigated
the effect of geopolymer binder on the fracture characteristics of concrete. The fracture energy of
geopolymer determined by the work-of-fracture method was similar to that of the investigated OPC
concrete. The critical stress intensity factor was higher in the case of geopolymer compared to OPC
concrete with the same compressive strength. Ngyuen et al. [36] ascertained that the addition of
polypropylene fibers to AAS mortar leads to an increase in fracture energy and fracture toughness
compared to mortar without fibers.

Because of the lack of information about the fracture properties of composites with alkali-activated
matrix which could be used as relevant inputs for the material model, the main aim of the present
work is to determine the fracture parameters of alkali-activated slag composites with steel microfibers
and quantify the contribution of the matrix of AAS composites to their fracture response. Five AAS
composites were investigated. The first was a reference version without fibers; the others contain
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steel microfibers amounting to 5, 10, 15 and 20% by weight of the slag. The AAS mixtures were
cast into molds with dimensions of 40 × 40 × 160 mm so as to prepare prismatic specimens for use
in fracture testing. The fracture characteristics were determined based on the results of three-point
bending tests conducted on specimens which were provided with an initial central edge notch before
testing. Load vs. displacement (deflection at midspan) and load vs. crack mouth opening displacement
diagrams were recording during the fracture tests. Each diagram was processed in order to obtain the
component that corresponds to the structural response of the matrix of the composite, which consists of
AAS matrix and the steel microfibers reinforcing that matrix. The obtained diagrams were employed
as inputs for parameter identification, the aim of which was to transfer the fracture test response data
to the required material parameters. Values were also determined for the fracture parameters using
the effective crack model [14], work-of-fracture method [16] and double-K fracture model [37].

2. Materials and Methods

2.1. Mixtures

The first alkali-activated slag composite was a reference version without fibers. Granulated blast
furnace slag provided by Kotouč, s.r.o. (CZ) was chosen as a binder. The specific surface and mean
grain size of the slag were 383 m2/kg and 15.5 µm, respectively. Solid sodium silicate (Susil MP 2.0)
fabricated by Vodní sklo, a.s. (CZ) was used to achieve the alkali activation of the slag. The alkaline
activator has a molar SiO2/Na2O ratio equal to 2.0, and a SiO2 content of 52.4%. The fine-grained AAS
composites were produced using quartz sand with a maximum grain size of 2.5 mm. Brass coated steel
microfibers with an average length of 6 mm and a diameter of 0.175 mm supplied by KrampeHarex
CZ s.r.o. were used as reinforcement (see Figure 1). The added steel microfibers amounted to 5, 10,
15 and 20% of the weight of the slag.
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Figure 1. The used steel microfibers with an average length of 6 mm and a diameter of 0.175 mm.

The AAS mixtures used for casting the prismatic specimens were prepared according to the
following previously optimized procedure. At first, solid alkaline activator was suspended in water
in which it dissolved partially. Then, the slag and quartz sand were added to the activator and the
mixture was stirred in the planetary mixer for about 5 min to provide a fresh slurry. The aggregate to
slag ratio was equal to 3.0. Finally, steel microfibers were added to the mixture and further mixed for
another 3 min so as to disperse them properly. The AAS mixture composition is presented in Table 1.
The designation of individual mixtures is based on their steel microfiber content: SF00, SF05, SF10,
SF15, and SF20. Mixture SF00 is a reference mix without steel microfibers.

The prepared fresh mixtures were cast into prismatic moulds of 40 × 40 × 160 mm in size.
Three specimens were made from each mixture. After 24 h the hardened specimens were immersed in
a water bath at 20 ◦C for further 27 days. Before the fracture tests were performed, all specimens were
pulled out of the water and allowed to dry spontaneously under ambient conditions for 24 h.
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Table 1. Composition of alkali-activated slag mixtures.

Component Unit SF00 SF05 SF10 SF15 SF20

Slag g 450 450 450 450 450
Sodium silicate g 90 90 90 90 90

Aggregate g 1350 1350 1350 1350 1350
Steel microfibers g − 22.5 45.0 67.5 90.0

Water mL 190 190 190 195 195

2.2. Fracture Test Configuration

The determination of the mechanical fracture parameters of composites with brittle matrix is
most often based on fracture tests conducted on specimens of standardized geometry with stress
concentrators; the three-point bending test [14] or wedge splitting test [21,22] are typically used. In this
case, the three-point bending configuration was chosen because of the availability of testing equipment.
Standardized prism specimens with a nominal size of 40 × 40 × 160 mm, which are typically used for
the determination of basic mechanical properties of mortars, were used for the fracture tests. An initial
notch was cut by a diamond blade saw in the center of the prisms. The nominal depth was about
13 mm. The span length was 120 mm. The fracture tests were performed at the age of 29 days.

A very stiff mechanical testing machine (LabTest 6-1000.1.10, LaborTech s.r.o., Opava,
Czech Republic) was used to perform the fracture tests. The stiffness of the testing machine is
required to be adequate in comparison to the specimen’s stiffness so as to enable stable fracture tests
to be conducted without any interruption in the post-peak branch. The loading was conducted so
that displacement occurred in constant increments, which were equal to 0.02 mm/min. This loading
procedure is slow enough for the whole post-peak behavior of test specimens to be recorded.

The dependence between loading force and the deflection of the center of the prism specimen
(F-d diagram), as well as crack mouth opening displacement (F-CMOD diagram), constituted the outputs
of the performed fracture tests. The deflection and CMOD values were gauged using an inductive sensor
placed above the support and by extensometer placed between blades fixed close to the initial notch,
respectively (see Figures 2 and 3). The mentioned parameters together with time were continuously
recorded by an HBM Quantum X data logger (HBM, Darmstadt, Germany); the frequency was 5 Hz.
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2.3. Adjustment of Measured F−d and F−CMOD Diagrams

At the beginning of the specimen loading, small-sized deviations in the measured values of
monitored parameters are often recorded. This effect is caused by small projections on the specimen’s
surface being crushed due to the pressure at the support and loading points. These phenomena usually
occur over a short period at the beginning of the loading test, after which the measured diagram
proceeds with a linear part. It follows that it is appropriate to adjust the beginning part of the diagram
in order to obtain the correct input values for the subsequent evaluation of diagrams using the selected
fracture model. The first step is to construct a straight best-fit line for the linear part of the diagram,
after which the intersection of the line with the horizontal axis must be pinpointed. The second step
consists in the shifting of all points of the diagram equidistantly, thus making the intersection the new
origin of the coordinate system.

The adjustment of the recorded diagrams was performed in GTDiPS software (v3.01, developed
by Petr Frantík and Jan Mašek, Brno University of Technology, Czech Republic) [38], which is based on
advanced transformation methods used for the processing of extensive point sequences. The adjustment
of diagrams in this case incorporated the erasing of duplicate points, the moving of the origin of the
coordinate system, the smoothing of the diagram and the reduction of the number of points.

Thereafter, each diagram was processed to obtain the component that corresponds to the structural
response of the matrix of the composite and the steel microfibers reinforcing that matrix. The individual
steps of the decomposition procedure are as follows: first, the measured diagram of the steel
microfiber-reinforced AAS composite specimen is plotted; then, the last part of this diagram (after the
substantial drop in the curve) is assumed to be the result of the contribution of the steel microfibers
only and the composite matrix is not expected to have an effect here. That last part is subjected
to a straightforward linear regression analysis so that an approximation of the initial part of the
diagram can also be obtained (a polynomial function is used here with extrapolation to the origin of
the diagram space). Finally, the approximation is subtracted from the recorded diagram, which results
in a simulated diagram corresponding to the plain AAS matrix for the next evaluation. A detailed
illustration of the used procedure can be found in [39].
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The above-described procedure was applied to all measured F–d and F–CMOD diagrams. For the
purpose of illustration, Figure 4 shows corrected F–CMOD diagrams of AAS composites with various
amounts of microfibers. The use of the F–d diagrams after the decomposition procedure is described in
the following section.
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2.4. Identification of Material Parameters

After the previously mentioned adjustment, the F–d diagrams were utilized as input data for
parameter identification with the aim of transferring the fracture test response data to the desired
material parameters. The FiCubS application [40] developed by co-author Petr Frantík was used for
this purpose. The FiCubS application is used to simulate the performance of a fracture test in the
three-point bending configuration on a fiber-reinforced composite prism with a notch.

Using symmetry, half of the specimen is modeled as an elastic body connected to the plane of
symmetry by boundary conditions, which can be released and replaced by cohesive forces. The release
of a particular condition occurs after the tensile strength of the material is overstepped. Cohesive
forces are dependent on displacements of the released ligament area and on the identified cohesive
function. The used cohesive function consists of two components: cohesion provided by the matrix
and by fiber resistance. The matrix cohesive function is modeled by the Hordijk function [41]:

σ = ft

[(
1 +

(
c1

w
wc

)3
)
e(−c2

w
wc ) −

w
wc

(
1 + c1

3
)
e−c2

]
(1)

where σ is cohesive stress, ft is tensile strength, w is crack opening displacement, wc is critical crack
opening displacement, and c1 and c2 are material constants.

The fiber resistance is modeled by the proposed function:

σ = σmax

(
1−

1
wc f

(
wep(w−wc f ) +

(
wc f −w

)
e−kw

))
(2)

where σ is the cohesive stress applied for displacement w, σmax is the approximate maximum cohesive
stress, wcf is the displacement limit where cohesion disappears and k, p are parameters determining the
initial and finite slope. Initial and finite slopes are given by:

∂
∂w
σ

∣∣∣∣∣w=0
=
σmax

wc f

(
1 + kwc f − e−pwc f

)
(3)
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∂
∂w
σ

∣∣∣∣∣w=wc f

=
σmax

wc f

(
1−

(
pwc f + 1

)
ekwc f

)
e−kwc f (4)

The total fracture energy G represented by this function is given by the relation:

G = σmax

(
1

wc f

(
1
k2

(
1− e−wc f k

)
+

1
p2

(
1− e−wc f p

))
−

1
k
−

1
p
+ wc f

)
(5)

From the identified parameters of the model (seven independent values) it was necessary to
determine the effective modulus of elasticity of the composite, the tensile strength of the composite,
the fracture energy and the coefficient of transverse contraction.

To illustrate, Figure 5 shows F–d diagrams for selected specimens of AAS composite with various
amounts of steel microfibers. The following diagrams are plotted in the graphs: a measured diagram
of composite reinforced by microfibers (COMP); a simulated diagram corresponding to the plain AAS
matrix (MTX); an identified diagram of AAS composite reinforced by microfibers (ID).
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Figure 5. F–d diagrams for selected specimens of individual AAS composites with various
amounts of steel microfibers: COMP—a measured diagram of composite reinforced by microfibers;
MTX—a simulated diagram corresponding to the plain AAS matrix; ID—an identified diagram of
composite reinforced by microfibers.



Appl. Sci. 2019, 9, 1754 8 of 14

2.5. Evaluation of F−d Diagrams

After the previously mentioned diagram adjustment, the ascending linear parts of the F-d diagrams
were utilized to estimate the modulus of elasticity Ec values according to [14]:

Ec =
Fi

4Bdi

( S
D

)3[
1 +

5qS
8Fi

+
(D

S

)2{
2.70 + 1.35

qS
Fi

}
− 0.84

(D
S

)3]
+

9
2

Fi
Bdi

(
1 +

qS
2Fi

)( S
D

)2
F1(α0)

(6)

where Fi is load in the ascending linear part of the diagram; di is deflection at midspan corresponding
with load Fi; B and D are the breadth and depth of the specimen, respectively; q is the self-weight of the
specimen per unit length; S is length of the span and with α0 = a0/D, and Y(x) is the geometry function
for the three-point bending configuration [14] (a0 is the depth of the initial notch).

The effective fracture toughness KIce was determined based on the F–d diagrams using the effective
crack model [14]. First, the effective crack length ae corresponding with the maximum load Fmax and
matching deflection at midspan dFmax was calculated. From the effective crack concept, it follows
that the ae can be calculated from rearranged Equation (6) using Fmax and dFmax instead of Fi and di.
Subsequently, the effective fracture toughness values were calculated using a linear elastic fracture
mechanics formula according to [14,42]:

KIce =
3FmaxS
2BD2 Y(αe)

√
ae (7)

where Y(αe) is the geometry function with αe = ae/D [14].
The complete F-d diagrams, including their post-peak parts, were employed to determine the

work of fracture WF
*, which is given by the area under the F-d diagram. After that, the specific fracture

energy values were determined according to the RILEM method [16,43]:

G∗F =
W∗F

B(D− a0)
(8)

2.6. Evaluation of F−CMOD Diagrams

After the previously mentioned diagram adjustment, the double-K fracture model was employed
for subsequent evaluation of the F-CMOD diagrams. The benefit of the double-K fracture model
lies in its ability to predict the different phases that occur during crack propagation in quasi-brittle
material: crack initiation and both stable and unstable crack propagation. The different phases of the
fracture process in quasi-brittle material can be connected with two size-independent parameters:
the initiation fracture toughness KIc

ini and unstable fracture toughness KIc
un. The determination of

double-K model parameters is based on an approach involving the action of cohesive forces on the
faces of the fictitious (effective) crack increment combined with the stress intensity factor criterion
(for details refer to (for example) Kumar and Barrai [37]).

In the instance of the present research, as the first step the unstable fracture toughness KIc
un was

determined. In the second step, the cohesive fracture toughness KIc
c was determined. As the last

step, the following formula based on the formerly obtained parameters was utilized to calculate the
initiation fracture toughness KIc

ini:
Kini

Ic = Kun
Ic −Kc

Ic (9)

The exact procedure concerning the determination of cohesive and unstable fracture toughness values
can be found in many published works, e.g., [37,44].

In general, the relation between the cohesive stress and the effective crack opening displacement
is given by the cohesive stress function in the cohesive crack model. The cohesive stress at the tip of
an initial notch at the critical state can be gained from the softening function. In this study, a non-linear
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softening function (1) (as stipulated in Hordijk [41]) was used. The parameters of the softening function
were considered to be as follows: the tensile strength ft was considered based on identification described
in Section 2.4, the fracture energy was determined according to Equation (8), and the material constants
were considered according to [41] as being c1 = 3 and c2 = 6.93.

Finally, the load Fini, which expresses the load at the outset of stable crack propagation from the
initial crack/notch, was determined according to this relation:

Fini =
4·W·Kini

Ic

S·F1(α0)·
√

a0
(10)

where W is the section modulus (calculated as W = 1/6·B·D2), S is span length, F1(α0) is the geometry
function for a three-point bending configuration [14] and α0 is the a0/D ratio.

3. Results and Discussion

The average values (determined based on 3 independent measurements) and sample standard
deviations (given by the error bars) of selected mechanical fracture parameters of AAS composites
with different amounts of steel microfibers obtained from F–d and F–CMOD diagrams are summarized
in the following figures. The values obtained for the monitored parameters using the above-described
non-linear fracture models were determined for composite reinforced by microfibers (COMP) and
for the plain AAS matrix (MTX) which results when the decomposition procedure is applied to the
measured diagrams. Selected parameters were determined via the inverse analysis of F–d diagrams of
AAS composites reinforced by microfibers (ID).

Compressive and tensile strength values gained for AAS composite with different amounts of
steel microfibers are shown in Figure 6. The compressive strength was determined according ČSN EN
196-1 [45] from two parts of the prismatic specimens obtained after the fracture tests were finished.
The reference AAS composite achieved a compressive strength equal to 65 MPa, which is comparable
with values gained for alkali-activated slag [33] and fly ash-based composite [46] that have been
published in the literature. The addition of steel microfibers did have a reinforcing effect: compressive
strength gradually increased with the addition of microfibers amounting to 5 and 10% by weight.
The highest mean value of 93 MPa was obtained for the composite with a 15% microfiber content.
However, there is no significant difference between microfiber contents of 10 to 20%.
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Figure 6. Compressive and tensile strength of AAS mortar with different amounts of steel microfibers.

The tensile strength value was obtained by identification from measured F–d diagrams. The tensile
strength of the reference AAS composite was 2.7 MPa. As in the case of compressive strength, the highest
mean value was obtained for the composite with a 15% microfiber content, the increase being about
25% in comparison with composite without fibers.
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The modulus of elasticity of the reference AAS composite was 15.1 GPa (see Figure 7), which is
comparable with values for alkali-activated slag-based composite published in the literature [33].
The modulus of elasticity increased with the addition of microfibers by about 30–40%. The highest
mean value of 21.1 GPa was reached for the composite with a 5% microfiber content. However,
the standard deviation for higher amounts of microfibers is so high that the modulus of elasticity can
be considered to be almost the same. The higher standard deviation especially for 20% microfiber
content is caused by heterogeneity of material when the uniform dispersion of fibers became more
difficult to achieve. The same trend seen for the modulus of elasticity with the addition of microfibers
was observed for the values obtained by identification. The identified values are about 5% higher.
If only the contribution of plain AAS matrix is taken into consideration, then the modulus of elasticity
is up to 5% lower in comparison with AAS composite containing steel microfibers.
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The fracture toughness values for AAS mortar with different amounts of steel microfibers
determined by two different non-linear fracture models are presented in Figure 8a. Fracture toughness
gradually increased with the addition of steel microfibers in both cases. The fracture toughness
values obtained by both models are the same in the case of microfiber contents of 5–10%. The fracture
toughness obtained by the double-K model is about 15% lower in the case of the reference composite
and composites with a microfiber content of 15% and more. The fracture toughness of the reference
AAS composite is comparable with values gained for alkali-activated slag-based composite with similar
compressive strength that have been published in the literature [36].

If only the contribution of plain AAS matrix is taken into consideration, then the fracture toughness
is about 95, 85, 80 and 70% of the fracture toughness of AAS composites containing steel microfibers
SF05, SF10, SF15 and SF20, respectively (see Figure 8b). The same trend was also observed for fracture
toughness determined by the double-K fracture model.

The fracture energy values gained for AAS mortar with various amounts of steel microfibers
determined by the work-of-fracture method are presented in Figure 9. The specific fracture energy of
the reference composite is 113 J/m2, and this gradually increases as the amount of steel microfibers rises.
The fracture energy of the reference AAS composite is comparable with that of an AAS composite with
similar compressive strength published in the literature [33]. The highest mean value was obtained for
the composite with a 20% microfiber content. This is more than 2.5 times higher than the reference
composite value. However, the standard deviation is so high that the value can be considered to be
almost the same as for the composite with a 15% microfiber content. The same trend in fracture energy
values with the addition of microfibers was observed for values gained via identification. The values
obtained in this way are about 15–25% lower in comparison to those obtained via the work-of-fracture
method. The sample standard deviation is significantly higher in the case of values determined by
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identification. If only the contribution of plain AAS matrix is taken into consideration, the fracture
energy ranges between 40–50% of that of AAS composite containing steel microfibers.
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The KIc
ini/KIc

un ratio (fracture toughness ratio, see Figure 10a), which expresses resistance to stable
crack propagation, decreased by about 15% in the case of composite with a steel microfiber content
of up to 10%. For composite with a higher steel microfiber content, the fracture toughness ratio is
comparable with that of the reference composite.

The ratio between the load at the outset of stable crack propagation and the maximum load
obtained during the test (load ratio, see Figure 10b) shows a trend analogous to that of the fracture
toughness ratio. The addition of steel microfibers (5% by weight) caused a slight decrease in the load
ratio. The load ratio for higher amounts of steel microfibers is comparable with that of the reference
composite when standard deviation is taken into consideration.

From the obtained results it is obvious that the addition of steel microfibers has a positive effect on
resistance to unstable crack propagation and the post-peak behavior of composite. However, resistance
to stable crack propagation is rather negatively affected by the addition of steel microfibers, which can
be attributed to the heterogeneity of the specimens which occurs when fibers are added. If only the
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contribution of plain AAS matrix is taken into consideration, the resistance to stable crack propagation
is about 10–15% higher than in the case of AAS composite with a steel microfiber content of more
than 10%.Appl. Sci. 2019, 9, 1754 12 of 15 
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4. Conclusions

Because of the lack of information concerning the fracture properties of composites with
alkali-activated matrix which could be used as inputs for material models, the main aim of the
present research was to assess the fracture parameters of alkali-activated slag composites with steel
microfibers and quantify the contribution of the matrix of AAS composites to their fracture response.
The following conclusions can be drawn based on the obtained experimental research results:

• The compressive strength value increased by up to 40% in the case of composite with a steel
microfiber content of more than 10%;

• The modulus of elasticity increased with the addition of steel microfibers by about 30–40%.
The highest mean value was obtained for the composite with a 5% content of steel microfibers by
weight. If a comparison is made between AAS matrix alone and the composite including steel
microfibers, it can be seen that the values are almost the same.

Generally, the addition of steel microfibers to AAS matrix should contribute to a lowering in
the tendency to crack, and to an enhancement in the tensile properties of AAS based materials.
The presented research results are in line with these suppositions:

• The addition of steel microfibers to the AAS matrix caused the resistance to unstable crack
propagation expressed here by the fracture toughness to gradually increase by up to 50% for the
composite with a 20% content of steel microfibers;

• The steel microfiber-reinforced AAS composites proved to have a much better load carrying
capacity after the maximum load is reached in comparison with the reference composite;

• The addition of steel microfibers to the AAS matrix caused the fracture energy value to gradually
increase by up to 2.5 times the reference composite value for the composite with a 20% content of
steel microfibers; the energy absorption mechanism is related to the de-bonding and pull-out of
microfibers that bridge cracks.

Based on the performed study, the addition of 10 to 15% by weight of microfibers to AAS composite
is optimal from the point of view of the enhancement of the fracture properties of this composite.
The obtained results can be used when designing alternative binders for Portland cement, as well
as relevant input data for material models for the realistic numerical modeling of the response of
structures or their parts which are made from this type of composite.
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