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Abstract: Reconstructing fine-grained spatial densities from coarse-grained measurements, namely
the aggregate observations recorded for each subregion in the spatial field of interest, is a critical
problem in many real world applications. In this paper, we propose a novel Constrained Spatial
Smoothing (CSS) approach for the problem of spatial data reconstruction. We observe that local
continuity exists in many types of spatial data. Based on this observation, our approach performs
sparse recovery via a finite element method, while in the meantime enforcing the aggregated
observation constraints through an innovative use of the Alternating Direction Method of Multipliers
(ADMM) algorithm framework. Furthermore, our approach is able to incorporate external information
as a regression add-on to further enhance recovery performance. To evaluate our approach, we study
the problem of reconstructing the spatial distribution of cellphone traffic volumes based on aggregate
volumes recorded at sparsely scattered base stations. We perform extensive experiments based
on a large dataset of Call Detail Records and a geographical and demographical attribute dataset
from the city of Milan, and compare our approach with other methods such as Spatial Spline
Regression. The evaluation results show that our approach significantly outperforms various baseline
approaches. This proves that jointly modeling the underlying spatial continuity and the local
features that characterize the heterogeneity of different locations can help improve the performance
of spatial recovery.

Keywords: spatial sparse recovery; constrained spatial smoothing; spatial spline regression;
alternating direction method of multipliers

1. Introduction

The problem of reconstructing fine-grained spatial data from its coarse-grained aggregate
observations of each subregions lies in the core of many real world applications. For example,
the reconstruction of fine-grained spatial distribution of cell phone activities is of particular interest
to telecommunication and information technology companies, where the recovered data can be
used for device installation, capacity planning, the study of urban ecology [1–3], population density
estimation [4–6], and human mobility prediction [7–11]. However, the companies may only have access
to the aggregate mobile traffic volumes on each base station, as either privacy issues or additional
technical overhead is involved to get fine-grained spatial data of users. Similarly, it is also highly
valuable if we can infer the spatial distribution of population (e.g., the population vote for a certain
party) densities based on the total population recorded at polling stations that sparsely scattered
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at different subregions. Internet media providers or retailers, such as Google, Tencent, Amazon,
Facebook, etc., may want to recover a fine-grained geographical distribution of their users based on
the aggregated user counts observed at different points of presence (PoPs) or data centers. Note that,
in all the above-mentioned cases, it is impossible or not allowed to track the position of each individual
due to either privacy concerns or technical overhead. Therefore, reconstructing the spatial data from
coarse aggregation will be highly useful in such cases.

In this paper, we study such spatial sparse recovery problem, that is, to infer the fine-grained
distribution of certain spatial data in a region given the aggregate observations recorded for each
of its subregions. However, it is an extremely challenging problem and has seldom been studied.
A straightforward idea is assuming the density is uniformly distributed within each subregion.
Based on the based on the obtained aggregate observation, we can calculate a patched piece-wise
constant estimation for each subregion. However, the densities estimated by this method will jump
between neighboring subregions and disregard the local continuity or similarity of the studied spatial
distribution across subregion boundaries. In addition, the piece-wise constant spatial field given by this
approach provides little value for applications such as hot spot discovery. Many spatial data presents
local continuity, e.g., Internet activity or cell phone activity. This is because the data often highly
depend on underlying factors which are usually smoothly changing, like area functionality, urban
geographical features, population density and so on. To exploit the smoothness, we may utilize spatial
smoothing techniques such as Thin Plate Splines [12], Soap film smoothing [13], Spline smoothing [14],
Bivariate Spline Regression [15], or Spatial Spline Regression [16] developed in statistics to smoothen
the patched estimation. However, nearly all existing spatial smoothing techniques [12–16] are designed
to recover a spatial field of densities according to sampled observations, e.g., reconstruct a spatial field
of temperatures based on the temperature records at some sample points. In contrast, our problem
needs to recovery a spatial field based on coarse-grained aggregate observations. Therefore, existing
spatial smoothing techniques are not directly applicable to our new problem. Without modification,
these smoothing techniques will violate the necessary constraint that the estimated spatial data in
each subregion must sum up to its corresponding aggregate observation in the first place, leading to
systematic errors.

To overcome the difficulties mentioned above, in this paper, we propose a new technique named
Constrained Spatial Smoothing (CSS) for the problem of spatial data reconstruction. Specifically,
given a region, we aim to reconstruct a spatial field of densities over that region based on observed
aggregate values in patched subregions. Our approach penalizes the “roughness” of the reconstructed
spatial field subject to the constraint that the aggregation of discretized values of the spatial field in
each patched subregion equals the aggregate observation made in that subregion. It is distinct from
previous spatial smoothing techniques due to the additional constraint in our problem. We propose
an Alternating Direction Method of Multipliers (ADMM) [17,18] algorithm to decouple the problem
into the alternated minimizations of a quadratic program (QP) [19] subproblem and a spatial smoothing
subproblem, where we use the QP to iteratively enforce the observation constraints, while solving the
spatial smoothing subproblem with a recently proposed finite element technique called Spatial Spline
Regression (SSR) [16]. In addition, our approach not only leverages the intrinsic smoothness from local
continuity to reconstruct a spatial field, but is also able to incorporate additional external information,
such as the number of schools, number of bus stops, population, etc., in the underlying geographical
region as a regression add-on component to further enhance recovery performance. Last but not least,
our algorithm can be applied to a variety of sparse recovery problem where intrinsic smoothness exists.

Another important contribution of the paper is that we conduct extensive evaluation to compare
our proposed algorithms with a variety of baseline methods. In our evaluation, we are trying to
reconstruct the mobile phone activity distributions in Milan, Italy from base station observations.
The Telecom Italia Big Data Challenge dataset is a multi-source dataset that contains a variety of
informations, including aggregation of telecommunication activities, news, social networks, weather,
and electricity data from the city of Milan. With the important information about human activities
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contained in the dataset, especially the cellphone activity records, researchers utilized the data to
study different problems, such as modeling human mobility patterns [20–22], population density
estimation [4,5], models the spread of diseases [23,24], modeling city structure [3] and city ecology [2],
etc. Specifically, our evaluation is based on the Milan Call Detail Records (CDR) dataset, a part of the
Telecom Italia Big Data Challenge dataset [25] which contains the phone call and Short Message Service
(SMS) activity records of two months in each grid square of 235 m × 235 m in the city of Milan, Italy.

Given the Milan Call Detail Records (CDR) dataset, we consider a region that consists of 2726 grid
squares in an irregularly bounded region in the city of Milan. To stress-test the algorithm performance,
we assume we only know the aggregate phone activities observed on 100 or 200 base stations and
aim to recover the entire spatial field of phone activities. We also use another geographical attribute
dataset available from the Municipality of Milan’s Open Data website [1] as the additional external
attribute data to improve performance. Extensive evaluation shows that our proposed approach
achieves significant improvement, compared to various state-of-the-art baseline methods, including
the spatial spline regression (SSR) [16] approach. Our technique can recover the fine-grained cell
phone activity distribution of 2726 data points only from 200 data points of base stations, with a mean
absolute percentage error of 0.309, representing a 26.3% improvement from the SSR baseline scheme.

The remainder of this paper is organized as follows. In Section 2, we formulate the problem of
spatial field reconstruction from coarse aggregate observations. In Section 3, we describe existing
solutions, including a state-of-the-art Spatial Spline Regression (SSR) technique for spatial smoothing.
In Section 4, we propose our Constrained Spatial Smoothing method which respects both the local
continuity in the spatial field and the aggregation constraints at the same time. In Section 5, we conduct
extensive evaluation in comparison with various other methods through a solid and extensive case
study of cell phone activity density estimation in the city of Milan. We discuss related literature in
Section 6 and conclude the paper in Section 7.

2. Problem Formulation

In this section, we formally introduce the problem of spatial field reconstruction from coarse
aggregations observed at sparse scattered points in that field. Our problem can be formulated as a new
type of sparse recovery problems. To ease the presentation, we may use cell phone activity recovery as
an example.

Let Ω ⊂ R2 denote an irregularly bounded domain, which is the entire region of interest in our
problem. Usually, it excludes the uninhabited areas such as hills, ocean coasts, rivers, and so on.
Suppose f (p) is a real-valued function that represents certain spatial densities field (e.g., cell phone
activities), where p = (x, y) ∈ Ω denotes different geographical positions in Ω. Let B = {B1, . . . , Bm}
denote m observation points (e.g., base stations) that scattered in Ω. Each point Bi is located in
a position pBi ∈ Ω and in charge of a subregion ΩBi . In our problem, we are given the aggregated
volume zi in ΩBi that Bi is in charge of. Our goal is to reconstruct the spatial field f (p) based on the
observed aggregated volumes zi.

To give an instance, consider the problem of recover cell phone activity distribution. In this case,
each user will connect to a base station (cell tower) that is closest to his/her cell phone. Therefore,
we can observe the aggregated volume for each base station

zi =
∫

ΩBi

f (p)dp, i = 1, . . . , m,

where ΩBi denotes the subregion that Bi is in charge of, and is given by

ΩBi = {p ∈ Ω : ‖p− pBi‖ < ‖p− pBi′
‖, ∀Bi′ ∈ B, i′ 6= i}.

Given the aggregated activity volumes z1, . . . , zm recorded on m base stations, our goal is to
reconstruct the entire cell phone activity densities distribution f , which is a spatial field in the domain
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Ω. We may call z1, . . . , zm base station volumes in this case. However, reconstructing a continuous
spatial field is almost computationally infeasible as a personal computer can not handle the continuous
nature of ΩBi .

In reality, we only need to recover f to a certain granularity required by the operator
(e.g., 235 m × 235 m squares in the dataset provided by Telecom Italia Mobile). To fix notations,
suppose Ω is discretized into n small grid squares p1, . . . , pn, where pj = (xj, yj) ∈ Ω, j = 1, . . . , n are
the center positions of each square j in Ω. We can assume the area of each square is ∆ = 1 without loss
of generality. In addition, the number of aggregate observations is much smaller than the total number
of squares to be reconstructed, therefore we have m� n.

After domain discretization, we can get the aggregate volume on each base station Bi by

zi = ∑
pj∈ΩBi

f (pj) · ∆, i = 1, . . . , m, (1)

where the subregion that Bi represents is given by

ΩBi = {pj : 1 ≤ j ≤ n, ‖pj − pBi‖ < ‖pj − pBi′
‖, ∀i′ 6= i}. (2)

Therefore, our goal is to reconstruct the underlying spatial field f , and especially the
activity densities

f := ( f (p1), . . . , f (pn))
T

in all n grid squares if the desired granularity is on a per-square level, with only access to the aggregated
observations zi in Label (1).

The problem defined above is broadly applicable to characterize a variety of applications other
than the recovery of cell phone activity density distribution, e.g., inferring a fine-grained geographical
user distribution for a certain app or website based on aggregated user counts collected at sparsely
distributed Presence of Points (PoPs) or data centers, and recovering the voter distribution for a certain
party based on aggregate voting statistics at different polling stations. The nonessential difference
is that the definition of subregion ΩBi , from which volume zi is aggregated, is different for each
specific application.

Constrained Spatial Smoothing Problem

Denote z = (z1, . . . , zm)T. Since all ΩBi are predetermined, e.g., from Label (2) for the problem of
cell phone activity distribution recovery, and zi are known, reconstructing spatial field f from (1) is
essentially solving a linear system of equations for f, i.e.,

z = Af,

where the matrix A ∈ Rm×n is given by

Aij =

{
1, if pj ∈ ΩBi ,
0, otherwise.

(3)

Since m � n, i.e., the number of equations is far smaller than the number of the unknowns,
reconstructing f (p1), . . . , f (pn) from z1, . . . , zm is essentially a sparse recovery problem.

Directly solving the linear system of Equation (1) is infeasible, as it is an underdetermined system
which has an infinite number of solutions. However, the spatial property of f can be utilized as
constraints to make the sparse recovery problem feasible and has a unique solution. We observe
that spatial data usually exhibit local continuity or correlation within domain Ω. For example, in the
problem of cell phone activity density recovery, the activity density of a certain location highly depends
on the population and activity at that place, e.g., the downtown has more population and cell phone
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activity than suburban residential areas. In addition, the underlying area functionality and the spatial
distributions of human activity density are often slowly changing over the domain Ω rather than
suddenly jumping between different subregions.

Therefore, we can formulate our constrained spatial sparse recovery problem as the following:

minimize
f

∫
Ω
(∇2 f )2 dp,

subject to z = Af,

f ≥ 0,

(4)

by taking into account the non-negative property and the local spatial continuity (smoothness) of

f . ∇2 f = ∂2 f
∂x2 + ∂2 f

∂y2 is the Laplacian of f , and is utilized to encourage local similarity and penalize
the roughness of the spatial field f . It is worth noting that once f is reconstructed, we have not only
recovered the densities f at the square centers p1, . . . , pn, but can also recover the density f (p) of any
point p ∈ Ω, e.g., between the centers of two neighboring grid squares, although such a fine-grained
recovery may not be needed in every application.

To further improve the recovery performance, we can utilize additional external demographic or
social features at each location. In the problem of cell phone activity density reconstruction, cell phone
activities are often correlated with the underlying population density and social functionalities
(e.g., the percentage of green area, the number of schools, the number of businesses/restaurants,
the number of sport facilities, and the number of bus stops, etc.) of the considered regions.

Specifically, suppose wj = (wj1, . . . , wjq)
T represents the feature vector consisting of q external

feature values of square j. When wj is available as additional input, we can estimate the spatial density
data in square j by

f (pj) = f ′(pj) + wT
j β, (5)

where f ′(p) is an underlying spatial field functional that preserves local spatial continuity, while wT
j β

is a linear regression part based on the attributes of square pj that allows position-specific variation
or jumps.

In the presence of attributes, we can formulate the constrained spatial sparse recovery problem as

minimize
f ′ ,β

∫
Ω
(∇2 f ′)2 dp,

subject to f (pj) = f ′(pj) + wT
j β, j = 1, . . . , n,

z = Af,

f ≥ 0.

(6)

Once we get the spatial field f ′ and β, we can reconstruct f (pj) for all the squares using
(5). For example, we can calculate the cell phone activity at a specific place by the summation
of an underlying smooth spatial field f ′(pj) and a linear regression of location attributes, where the
add-on regression helps to model the jump between two subregions if the two regions are quite
different and have distinct functionalities or attributes.

3. Patched Estimation and Spatial Spline Regression

In this section, we present some tentative solutions and then show their limitations in solving our
constrained spatial sparse recovery problem.

3.1. Patched Piece-Wise Constant Estimation

In our problem, we only have access to the aggregated volumes zi at locations pBi . To infer the
fine-grained spatial distribution of zi over subregion ΩBi that covers the point Bi, a first intuitive
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heuristic is estimating f (pj) as the volume zi divided by its area by assuming the density is
distributed uniformly:

f̄ (pj) =
zi
|ΩBi |

, for each pj ∈ ΩBi , (7)

where |ΩBi | is the area of ΩBi . This method gives us a patched piece-wise constant estimation. Note
that we use patch to refer to ΩBi in this paper, which is the subregion covered Bi.

However, the patched estimation gives an oversimplified solution. The reconstructed spatial field
f̄ (pj) may have jumps on the borders of neighboring patches, which is far from smooth. In reality,
the spatial field f (pj) should change smoothly over the domain, as the underlying characteristics also
change smoothly across different regions. Hence, f (pj) should not be constant within each patch ΩBi .

3.2. Spatial Spline Regression

Given the above observation, we can naturally come up with a second idea, which is learning
a smooth estimation of f̄ (pj) by spatial smoothing techniques. In the following, we introduce the
powerful smoothing technique named Spatial Spline Regression (SSR) proposed in Sangalli et al. [16].
We will show how it can be applied to our particular spatial data reconstruction problem, as well as
point out its limitations in solving the problem.

Given l data points in Ω, which contains the following information: (1) their positions {pj}l
j=1;

(2) the values of these l points: {hj}l
j=1; and (3) their feature vectors {wj}l

j=1, SSR is able to fit a smooth
spatial field f by minimizing the following equation [14,16], i.e.,

minimize
β, f

l

∑
j=1

(
hj −wT

j β− f (pj)
)2

+ λ
∫

Ω
(∇2 f )2 dp, (8)

where f is assumed to be twice-differentiable over Ω, and ∇2 f = ∂2 f
∂x2 +

∂2 f
∂y2 denotes the Laplacian of

f to penalize the roughness of f . The hyper parameter λ is used to trade the smoothness of f off for
a better approximation to data value hj.

However, the challenge to solving problem (8) is that it involves searching for a functional f
over a possibly non-convex domain Ω that may have strong concavities, complicated boundaries,
and even interior holes. Although kernel-based methods [26] are also a commonly used smoothing
technique, their major drawback is that, by using uniformly damping weights in distance-based
kernels, they tend to link data points across unrelated or weakly related subregions in an irregularly
shaped non-convex domain.

We now briefly describe how spatial spline regression [16] can solve problem (8) via finite
element analysis for any irregularly shaped domain Ω. SSR splits a domain Ω by transforming it into
a triangular mesh with triangulation methods (e.g., Delaunay triangulation [27]). After triangulation,
it defines a polynomial function on each triangle, such that the summation of these polynomial
functions defined on different pieces closely approximates the desired spatial field f .

Specifically, let ζ1, . . . , ζK denote the vertices of all the small triangles, which are called control
points and can be adaptively selected by available data points. Define a piecewise linear or quadratic
basis function ψk(x, y) called Lagrangian finite element with (x, y) ∈ Ω, associated with each control
point ζk such that ψk evaluates to 1 at ζk and is equal to 0 at all other control points. Therefore,
according to the Lagrangian property of the basis, we can approximate f (x, y) for any (x, y) ∈ Ω
only using the values of f on the K control points, i.e., fK := ( f (ζ1), . . . , f (ζK))

T. That is, if we let
ψ(x, y) := (ψ1(x, y), . . . , ψK(x, y))T denote the K predefined basis functions, each corresponding to
a control point, then we have

f (x, y) = ∑K
k=1 f (ζk)ψk(x, y) = fTK ψ(x, y). (9)
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Since ψ1(x, y), . . . , ψK(x, y) are predefined and known a priori, the variational estimation of f in
problem (8) boils down to the estimation of only K scalar values, i.e., fK = ( f (ζ1), . . . , f (ζK))

T.
In fact, it is shown in Sangalli et al. [16] that with the piece-wise approximation given by (9),

solving (8) is simply solving a set of linear equations for f̂ (ζ1), . . . , f̂ (ζK). The estimator f̂ (x, y) for f
can then be derived from (9) as

f̂ (x, y) = f̂TK ψ(x, y).

It is worth noting that commodity triangulation software for finite element analysis is readily
available in many free and commercial finite element packages. For example, Delaunay triangulations
of a set of data location points (e.g., [27]) V are such that no point in V is inside the circumcircle of any
triangle; they maximize the minimum angle of all the triangle angles, avoiding stretched triangles.

Now, we can see that if l = n and we plug hj = f̄ (pj), j = 1, . . . , n into problem (8), we will get
a new density surface f̂ as a solution to the SSR problem (8) that is a smoothened approximation of the
patched estimates f̄ (pj).

However, SSR given by (8) can not accommodate any constraints, which is the major limitation in
solving our problem. Specially, in our case, SSR does not enforce the aggregated volume constraint (1)
(or z = Af in (4)). Therefore, SSR gives no guarantee that the estimated densities in each patch ΩBi will
sum up to the observed volume zi on the point Bi. In this way, SSR would likely cause large estimation
errors as it violates the constraint.

4. An ADMM Algorithm for Constrained Spatial Smoothing

Our spatial sparse recovery problem (4) is different from (8) from two aspects: the additional
constraints and the loss function. As a consequence, we can not directly apply the previous SSR
method to solve it. A new approach is needed to handle our new loss function with constraints.

In this section, we propose to utilize the Alternating Direction Method of Multipliers (ADMM) [28],
to decompose our constrained optimization problem into two sub-problems that can be solved
effectively by SSR and Quadratic Programming (QP), respectively. Algorithm 1 presents the proposed
ADMM algorithm to learn our model parameters.

Algorithm 1: Constrained Spatial Smoothing by ADMM

Input: The m observed volume of base stations z = (z1, ..., zm)T, smoothing parameter λ,
penalty parameter β, initialize α = α0, f = f 0.

Output: Spatial field and parameters f̂ , β̂. Estimation values on n locations
f̂ =

(
f̂ (p1), . . . , f̂ (pn)

)
.

1: for iter = 1, . . . , maxIter do
2: Update f by solving (18) using Quadratic Programming.
3: Update g by solving (19) using Spatial Spline Regression.
4: Update α according to (17).
5: end for

First, we introduce the following indicator function 1f,

1f =

{
0, if f ≥ 0 and z = Af,
∞, otherwise.

(10)

With the indicator function, the original problem (4) is equivalent to

minimize
f

λ
∫

Ω
(∇2 f )2 dp + 1f, (11)

where λ is a hyper parameter that controls the smoothness of f .
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Second, we introduce an auxiliary variable g that is defined as

g := (g(p1), . . . , g(pn))
T. (12)

This variable is utilized to split the convex optimization problem into two sub-convex problems.
With g, we can formulate the problem as the standard ADMM format,

minimize
f

λ
∫

Ω
(∇2 f )2 dp + 1g,

subject to f = g.
(13)

The augmented Lagrangian for (13) is

minimize Lρ(f, g, α) =λ
∫

Ω
(∇2 f )2 dp + 1g

+ αT(g− f) +
ρ

2
‖g− f‖2

2,
(14)

where α = (α1, ..., αn)T is the dual variable, and ρ > 0 is the penalty parameter in ADMM. Then,
the ADMM consists of the following iterations:

gk+1 := argmin
g
Lρ(fk, g, αk), (15)

fk+1 := argmin
f
Lρ(f, gk+1, αk), (16)

αk+1 := αk + ρ(f− g). (17)

For the g-update step in each iteration, Label (16) is equivalent to

minimize
g

ρ

2
‖g‖2

2 + (αT − ρfT)g,

subject to g ≥ 0,

z = Ag.

(18)

We can solve this convex problem efficiently by Quadratic Programming (QP).
For the f-update step in each iteration, Equation (15) is equivalent to

minimize
f

∥∥ (αT + ρgT
)

/2− f
∥∥2

2 + λ
∫

Ω
(∇2 f )2 dp, (19)

which is exactly the form of (8) with hj =
(
αj + ρg(pj)

)
/2 and wj = 0, thus can be solved efficiently

by SSR. It should be noted that λ is the penalty parameter which controls the smoothness of f . If it is
small, we put little emphasis on the smoothness, and the estimated surface f will be over fitted. If it is
too big, the surface will be too smooth, which can cause underfitting.

For the case with attributes, the algorithm does not require major changes. We just need
to replace f by f + Wβ in (19), where W := (w1, ..., wn)T represents the attributes and β is the
corresponding contributions.

Our proposed ADMM training algorithm is able to efficiently reconstruct the spatial field and fit
the covariates for our constrained spatial sparse recovery problem. In g-update step, it enforces the
constraints by solving a constrained QP with no need to worry about smoothing; in a f-update step,
it approximates the obtained g with a smooth f using the SSR-based smoothing technique. In this way,
we decouple the handling of smoothing and constraints which was not possible in pure SSR previously.
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5. Performance Evaluation

In this section, we perform an extensive case study of the approach we described above in order
to demonstrate its applicability. We picked the cell phone data as an example of how the model can
solve empirical problem and compare the model’s performance to other approaches.

5.1. Dataset Description

The model in (13) is general and not attached to any particular empirical problem, and it does
not contain many implicit assumptions. However, in order to measure its performance, we evaluate
the model using real-world data. Due to generality of the proposed learning algorithm, the range of
possible data sets is potentially big. For our empirical case study, we chose cell phone data, where
there exists a problem of recovering a spatial field from coarse aggregations observed at sparse cell
phone towers. We do not overestimate the problem, but rather see this particular data set suitable for
an extensive case study.

The Milan Call Description Records (CDR) dataset is a part of the Telecom Italia Big Data Challenge
dataset provided by Telecom Italia Mobile. It contains the telecommunications activity records from
1 November 2013 to 31 December 2013 in the city of Milan [25]. The dataset divides Milan into
a 100× 100 square grid, where each square is size of about 235 m × 235 m. In the dataset, each record
consists of six entries: square ID, incoming call activity, outgoing call activity, incoming SMS activity,
outgoing SMS activity, and time-stamp of 10-minute time slot. The values of the four types of activities
are normalized to the same scale.

Another dataset we utilized is the Milan geographical attribute dataset available from the
Municipality of Milan’s Open Data website [1]. This dataset consist of features of central 2726
squares among the whole 10,000 squares. The features of each square include: population, green
area percentage, number of sport centers, number of universities, number of businesses, and number
of bus stops. Figure 1 shows the area covered by these grid squares. The 2726 squares covers the
central part of the Milan city and contains the majority of telecommunication activities in the dataset.
We refer to [2] for more detailed description about this dataset. In our experiments, we compare the
performance of different approaches on these squares.

The general problem of recovering a spatial field from coarse aggregations observed at sparse
points in the field in this particular case study is reformulated into the problem of recovering the
distribution of cell phone activities over the whole 2726 square regions given that only aggregated
activity observations in base stations are known. We need to further process the Milan CDR dataset to
study this problem.

First, we sum up the four types of activities during 1 November 2013 to 28 November 2013 and 1
December 2013 to 28 December 2013, respectively, to come up with the activity volume of each squares
during November or December. These two datasets are served as the ground-truth datasets of Milan
cell phone activity distributions. Figure 1a,b show the heat maps of activity volumes in each square
during November and December.

Second, after we aggregated the two months’ activities for each square, we need to set the
locations of base stations (BSs). According to [29], there are roughly 200 base stations in Milan.
However, the exact locations are not available. Thus, we assume the 200 BSs are randomly distributed
according to the following probability distribution

Pr(Set square i as BS) = f (pi)/
N

∑
j=1

f (pj), (20)

where f (pi) is the cell phone activity volume in square i, i = {1, . . . , N}, N = 2726 is the number of
squares we are focusing on. Notice that, when we have 200 base station’s aggregated observations, they
only cover 7.34% of the whole 2726 squares region. This is extremely sparse and makes our problem
highly challenging. In addition, we also assume nBS = 100 and choose 100 squares as BSs according
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to the same probability distribution to stress-test our algorithm’s capability under even sparser
observations. Figure 2a,b show the base station distributions for nBS = 200 and nBS = 100, respectively.

After sampling the location of base stations, for each square, we assign the activity of it to its
closest base station. When multiple base stations are equidistant from a square, the activity of the
square will be evenly distributed among these base stations. We then assume we only know the
aggregated activities in base station squares, which is usually the true case in reality. Figure 2c shows
the regions split by 100 base stations, where each colour patch is a region charged by one base station.
To save space, we don’t present the figure for 200 base stations.
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(b) Activity Distribution in December

Figure 1. The cell phone activity distributions of Milan. It shows the metropolitan area of Milan,
Italy, and the area covered by the 2726 grid squares. (a,b) show the heat map of cell phone activities
(Call + SMS) during November and December respectively.
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(c) Areas Charged by Each BS, nBS = 100

Figure 2. The location distributions of sampled base stations and the areas in charged by them.
(a,b) shows the sampled base station distributions for nBS = 200 and nBS = 100; (c) shows the areas in
charged by different base stations for nBS = 100.

5.2. Experimental Setup

Algorithms Evaluated

We test our proposed approach and compare it with three baseline methods. In particular,
we evaluate and compare the following models using the aggregated November and December
datasets, with number of base stations nBS = 200 or nBS = 100 for stress testing.

• Patched Estimation: estimate the cell phone activity distribution by patched piece-wise constant
estimation, that is, assume cell phone activity density is distributed uniformly within each
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sub-region ΩBi , i.e., the area covered by base station Bi, and estimate each square’s activity
volume by (7).

• Patched Estimation + SSR 1: first estimate only base station activity volumes by (7). Use these
sparse points to fit a smooth surface by running Spatial Spline Regression to obtain the estimated
cell phone activity in all squares.

• Patched Estimation + SSR 2: as opposed to the previous model, get the initial estimation of the
activity volume of all squares by Patched Estimation. Then, use all these points to fit a smooth
surface by running Spatial Spline Regression to obtain the final estimated cell phone activity in
all squares.

• Constrained Spatial Smoothing: first get the initial estimation of the activity volume of all
squares by Patched Estimation, then run Constrained Spatial Smoothing algorithm to get the final
activity volumes estimation of all squares.

• Constrained Spatial Smoothing + Features: in this case, we incorporate the geographical features
into Constrained Spatial Smoothing algorithm.

We set the penalty parameter λ = 1 when nBS = 200 and λ = 10 when nBS = 100, for all methods
that utilizes SSR. The geographical features of Milan are only incorporated in the last algorithm
described above. In addition, for the implementation of Spatial Spline Regression, we use the fdaPDE
R Package [30].

To compare different approaches, we evaluate the performance by the Mean Relative Error (MRE)
of the produced activity estimates for the true activity values. The relative error of an estimation f̂ (pj)

compared to the true value f (pj) is defined as | f̂ (pj)− f (pj)|/ f (pj).

5.3. Performance Evaluation

5.3.1. Comparison of Different Algorithms

We show the cumulative distribution function (CDF) of Relative Errors given by different
approaches in Figures 3 and 4. In addition, we compare the estimation’s Mean Relative Error of
different approaches in Figure 5. It is quite clear that our proposed algorithms outperform other three
baseline approaches significantly in all cases (nBS = 200 and nBS = 100, data aggregated in November
and in December).
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Figure 3. Comparison of the CDFs of estimation relative errors given by different methods when
nBS = 200. The legends follow the same order as the curves at relative error = 0.5. (a) compares the
CDFs based on the data aggregated in November; (b) compares the CDFs based on the data aggregated
in December.
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Figure 4. Comparison of the CDFs of estimation relative errors given by different methods when
nBS = 100 for stress-testing. The legends follow the same order as the curves at relative error = 0.5.
(a) compares the CDFs based on the data aggregated in November; (b) compares the CDFs based on
the data aggregated in December.
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Figure 5. Comparison of the estimation’s Mean Relative Error of different methods when nBS = 200
or nBS = 100 for stress-testing. In each figure, the bars from left to right stands for Patched
Estimation, Patched Estimation + SSR 1, Patched Estimation + SSR 2, Constrained Spatial Smoothing,
and Constrained Spatial Smoothing + Features respectively. (a) we use the data aggregated in
November, and set number of base stations to be 200, similarly for (b–d).

By comparing Patched Estimation + SSR 1 with Patched Estimation approach, we can see that
using spatial smoothing based on only base station squares’ observations leads to worse performance
than patched estimation. This can be explained by the smoothing property of SSR and how we set the
values of base station squares. As we described, we set the activity value of base stations by averaging
the total activity amount of each base station on all squares it covers. Thus, given the activity zi

|ΩBi
| ,

(|ΩBi | denotes the number of squares within region ΩBi ) of a base station Bi, the true activities of itself
and its surrounding squares within region Bi are distributed with a mean of zi

|ΩBi
| . Given two base

stations B1 and B2 that are close to each other, with aggregated activities of z1 and z2 respectively,
the Spatial Smoothing approach will fit a smooth surface between the two base stations. Suppose
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z1 > z2, in this case, overall, the activities of B1’s neighbour squares will be underestimated, and that
of B2 will be overestimated. Therefore, Patched Estimation + SSR 1’s performance is not as good as
Patched Estimation.

By comparing Patched Estimation + SSR 2 with Patched Estimation and Patched Estimation +
SSR 1, we can observe that applying spatial smoothing on the results of patched estimation improves
the performance. This proves the rationality and effectiveness of introducing smoothness into the
estimated cell phone activity distribution surface.

Our proposed approach achieves much better performance compared with the three baseline
methods. By using Constrained Spatial Smoothing instead of applying Spatial Spline Regression
directly, we are able to fit a smooth activity distribution while forcing it to match the observations of
base station squares (the aggregated activity volumes) at the same time. By comparing Constrained
Spatial Smoothing that incorporates additional features of each square with the version without
features, we can see that the performance is further improved. The reason is that the heterogeneity
of different locations will influence the telecommunication activity distribution, therefore making
the distribution not smooth everywhere. Incorporating additional features into our model can help
to explain the residuals between estimated smooth distribution and the true activity distribution,
therefore further increasing estimation accuracy. By comparing Figure 3 and Figure 4, we also can see
that incorporating additional features into Constrained Spatial Smoothing becomes more important
when the base stations are more sparse.

The performance of different methods on the December dataset is worse than on the November
dataset. This is because there are multiple holidays in December. The cell phone activities will become
more irregular than usual during holidays, as discussed in Cici et al. [2] and Ratti et al. [29].

Figure 6a–c show the distribution surfaces of true cell phone activity volumes, estimated volumes
by Patched Estimation, and estimated volumes by Constrained Spatial Smoothing with features when
nBS = 200 using the November dataset. We can see that the Patched Estimation approach fits a stepped
surface, while our approach gives a much smoother surface.

(a) Real cell phone activity distribution.

Figure 6. Cont.
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(b) Estimated cell phone activity distribution by Patched Estimation.

(c) Estimated cell phone activity distribution by Constrained Spatial Smoothing +
Features.

Figure 6. Comparison of the activity distributions. (a) real cell phone activity distribution; (b) estimated
distribution by Patched Estimation method; (c) estimated distribution by our method.

For time efficiency, experiments based on the Milan Call Description Records (CDR) dataset show
that the average time for our approach to converge is less than five minutes on a MacBook Pro with
a 2 GHz Intel Core i7 processor, and 8 GB memory. This proves that our system is highly efficient
and practical.

5.3.2. Impact of Smooth Penalty Parameter λ

Figure 7 shows how the the estimation’s Mean Relative Error varies when λ increases from 10−4

to 103. We make two interesting observations. First, λ around 1∼10 usually gives the best performance.
Too big or too small λ will decrease the estimation accuracy. This is reasonable, as when λ is too
small, we put little emphasis on the smoothness of estimated surface, thus the performance will suffer.
If λ is too big, it enforces a smooth surface, which also doesn’t match the reality. Second, when we
have less base stations, λ that gives the best performance will increase (from 1 to 10). In addition,
we can see that the performance of the model with λ between 1∼100 does not significantly change
when nBS = 100. That indicates the following: when the base station distribution is more sparse,
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the estimation performance is less sensitive to λ when it is around the best value (1 for nBS = 200 and
10 for nBS = 100).

10-4 10-3 10-2 10-1 100 101 102 103

λ

0.30

0.35

0.40

0.45

0.50

0.55

M
A

P
E

200 samples

100 samples

Figure 7. Influence of λ to estimation’s Mean Relative Error when nBS = 200 and nBS = 100 for
stress-testing. The figure is based on the November dataset. Results on the December dataset are similar.

6. Related Work

The Telecom Italia Big Data Challenge dataset is widely used to study different
problems [2–5,20–24]. However, little research work has been done to estimate the spatial distribution
of cellphone activity itself, despite the great value of this problem.

There are various tasks where the key problem is estimating a spatial field over a region based on
observations of sampled points, such as house price estimation and population density estimation.
Chopra et al. [26] model the underlying surface of land desirability using kernel-based interpolation.
However, it is hard to choose the form of kernel functions and tune a large number of hyper-parameters.
Spatial Spline Regression technique is applied to the problem of population density estimation in
Sangalli et al. [16]. However, in our problem, we only get the accumulated activity density in base
stations, rather than real densities in each base station location. In addition, BS locations distribution is
highly sparse in our case.

Although a range of kernel-based methods [26,31,32] can be applied to fit a spatial field,
the common drawback of these approaches is that, by using uniformly damping weights in
distance-based kernels, they tend to link weakly related data points across areas in a non-convex
domain. Spatial spline regression [16] on the other hand uses finite-element analysis approach to jointly
solve for f and β from the model described by Equation (8) over any irregularly shaped domain Ω.

As it was discussed earlier, the fine-grained data for the distribution of the volume of calls and
SMS are not usually available. A common type of data is the data collected by cell phone base stations.
Sometimes, cell phone providers interpolate the data collected by the base stations as is discussed
in Manfredini et al. [33]. Some researchers interpolate the data to obtain fine grained distributions
as in Ratti et al. [29]. However, in Ratti et al. [29], authors do not evaluate the performance of the
interpolated distribution. To the best of our knowledge, there is no extensive work done in trying to
obtain optimal reconstructions of fine grained cell phone data distribution. We are the first to apply the
latest spatial functional analysis techniques to cellphone activity distribution modeling, assuming the
activity densities consist of a regression part based on social or demographical statistic features and
a spatial field that captures the underlying smoothness property of cellphone activities. In particular,
we leverage the idea of spatial spline regression to handle any irregularly shaped geographic regions.
We have developed a novel Constrained Spatial Smoothing approach and corresponding training
algorithm to recover spatial distribution of cellphone activities from highly sparse observations.
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7. Conclusions

In this paper, we study the problem of inferring the fine-grained spatial distribution of certain
density data in a region based on the aggregate observations recorded for each of its subregions, which
is extremely challenging and seldom visited before, and analyze the challenges of it. We propose the
Constrained Spatial Smoothing (CSS) approach that exploits both the intrinsic smooth property of
underlying factors and the additional features from external social or domestic statics. We further
propose a training algorithm which combines the Spatial Spline Regression (SSR) technique and
ADMM technique to learn our model parameters efficiently.

To evaluate our algorithm and compare it with various other approaches, we run extensive
evaluations based on the Milan Call Detail Records dataset provided by Telecom Italia Mobile.
The simulation results on the dataset show that our algorithm significantly outperforms other baseline
approaches by a great percentage. (Note that cross validation and statistical testing are techniques
that are usually applied in experiments. However, both techniques require sampling effectively
from the sparse spatial data while keeping the intrinsic spatial structure, which is difficult in our
problem.) This shows that jointly modeling the underlying spatial continuity and the local features
that characterize the heterogeneity of different locations can effectively improve the performance of
spatial recovery.

Although we use the data on cell phone activities to illustrate our methodology, our algorithm
is not limited to solving the problem of inferring the distribution of cell phone activities, but is also
applicable to a variety of problems where estimating an implicit or explicit smooth surface is required,
such as inferring the spatial distribution of population densities based on the aggregate population
observed at sparsely scattered polling stations, reconstructing a fine-grained geographical distribution
of users for an Internet media provider or retailer only from aggregated user counts observed at certain
datacenters or points of presence (PoPs), and so on.
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SMS Short Message Service
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PoPs Presence of Points
CDF Cumulative Distribution Function

References

1. Barlacchi, G.; De Nadai, M.; Larcher, R.; Casella, A.; Chitic, C.; Torrisi, G.; Antonelli, F.; Vespignani, A.;
Pentland, A.; Lepri, B. A multi-source dataset of urban life in the city of Milan and the Province of Trentino.
Sci. Data 2015, 2, 150055. [CrossRef] [PubMed]

2. Cici, B.; Gjoka, M.; Markopoulou, A.; Butts, C.T. On the decomposition of cell phone activity patterns and
their connection with urban ecology. In Proceedings of the 16th ACM International Symposium on Mobile
Ad Hoc Networking and Computing, ACM MobiHoc’15, Hangzhou, China, 22–25 June 2015.

http://dx.doi.org/10.1038/sdata.2015.55
http://www.ncbi.nlm.nih.gov/pubmed/26528394


Appl. Sci. 2019, 9, 1733 17 of 18

3. Louail, T.; Lenormand, M.; Ros, O.G.C.; Picornell, M.; Herranz, R.; Frias-Martinez, E.; Ramasco, J.J.;
Barthelemy, M. From mobile phone data to the spatial structure of cities. Sci. Rep. 2014, 4, 5276. [CrossRef]

4. Douglass, R.W.; Meyer, D.A.; Ram, M.; Rideout, D.; Song, D. High resolution population estimates from
telecommunications data. EPJ Data Sci. 2015, 4, 4. [CrossRef]

5. Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.R.; Gaughan, A.E.; Blondel, V.D.; Tatem, A.J.
Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893.
[CrossRef] [PubMed]

6. Liu, X.; Kyriakidis, P.C.; Goodchild, M.F. Population-density estimation using regression and area-to-point
residual kriging. Int. J. Geogr. Inf. Sci. 2008, 22, 431–447. [CrossRef]

7. Cho, E.; Myers, S.A.; Leskovec, J. Friendship and mobility: User movement in location-based social networks.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, USA, 21–24 August 2011; ACM: New York, NY, USA, 2011; pp. 1082–1090.

8. Li, X.; Pan, G.; Wu, Z.; Qi, G.; Li, S.; Zhang, D.; Zhang, W.; Wang, Z. Prediction of urban human mobility
using large-scale taxi traces and its applications. Front. Comput. Sci. 2012, 6, 111–121.

9. Lu, X.; Wetter, E.; Bharti, N.; Tatem, A.J.; Bengtsson, L. Approaching the limit of predictability in human
mobility. Sci. Rep. 2013, 3, 2923. [CrossRef] [PubMed]

10. Wang, D.; Pedreschi, D.; Song, C.; Giannotti, F.; Barabasi, A.L. Human mobility, social ties, and link
prediction. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Diego, CA, USA, 21–24 August 2011; ACM: New York, NY, USA, 2011; pp. 1100–1108.

11. De Domenico, M.; Lima, A.; Musolesi, M. Interdependence and predictability of human mobility and social
interactions. Pervasive Mob. Comput. 2013, 9, 798–807. [CrossRef]

12. Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 65, 95–114. [CrossRef]
13. Wood, S.N.; Bravington, M.V.; Hedley, S.L. Soap film smoothing. J. R. Stat. Soc. Ser. B Pervasiv Methodol.

2008, 70, 931–955. [CrossRef]
14. Ramsay, T. Spline smoothing over difficult regions. J. R. Stat. Soc. Ser. B Pervasiv Methodol. 2002, 64, 307–319.

[CrossRef]
15. Guillas, S.; Lai, M.J. Bivariate splines for spatial functional regression models. J. Nonparametr. Stat. 2010,

22, 477–497. [CrossRef]
16. Sangalli, L.M.; Ramsay, J.O.; Ramsay, T.O. Spatial spline regression models. J. R. Stat. Soc. Ser. B Stat. Methodol.

2013, 75, 681–703. [CrossRef]
17. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]
18. Parikh, N.; Boyd, S. Proximal algorithms. Found. Trends Optim. 2014, 1, 127–239. [CrossRef]
19. Bertsekas, D.P. Nonlinear Programming; Athena Scientific: Belmont, MA, USA, 1999.
20. Gonzalez, M.C.; Hidalgo, C.A.; Barabasi, A.L. Understanding individual human mobility patterns. Nature

2008, 453, 779–782. [CrossRef]
21. Csáji, B.C.; Browet, A.; Traag, V.A.; Delvenne, J.C.; Huens, E.; Van Dooren, P.; Smoreda, Z.; Blondel, V.D.

Exploring the mobility of mobile phone users. Phys. A Stat. Mech. Its Appl. 2013, 392, 1459–1473. [CrossRef]
22. Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of predictability in human mobility. Science 2010, 327,

1018–1021. [CrossRef]
23. Blondel, V.D.; Decuyper, A.; Krings, G. A survey of results on mobile phone datasets analysis. EPJ Data Sci.

2015, 4, 10.
24. Grauwin, S.; Sobolevsky, S.; Moritz, S.; Gódor, I.; Ratti, C. Towards a comparative science of cities:

Using mobile traffic records in new york, london, and hong kong. In Computational Approaches For Urban
Environments; Springer: Berlin/Heidelberg, Germany, 2015; pp. 363–387.

25. Telecom. Telecom Italia Big Data Challenge. 2014. Available online: https://dandelion.eu/datamine/open-
big-data/ (accessed on 27 July 2016).

26. Chopra, S.; Thampy, T.; Leahy, J.; Caplin, A.; LeCun, Y. Discovering the hidden structure of house prices with
a non-parametric latent manifold model. In Proceedings of the 13th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Jose, CA, USA, 12–15 August 2007; ACM: New York, NY,
USA, 2007; pp. 173–182.

27. Hjelle, Ø.; Dæhlen, M. Triangulations and Applications; Springer Science & Business Media: Berlin, Germany,
2006.

http://dx.doi.org/10.1038/srep05276
http://dx.doi.org/10.1140/epjds/s13688-015-0040-6
http://dx.doi.org/10.1073/pnas.1408439111
http://www.ncbi.nlm.nih.gov/pubmed/25349388
http://dx.doi.org/10.1080/13658810701492225
http://dx.doi.org/10.1038/srep02923
http://www.ncbi.nlm.nih.gov/pubmed/24113276
http://dx.doi.org/10.1016/j.pmcj.2013.07.008
http://dx.doi.org/10.1111/1467-9868.00374
http://dx.doi.org/10.1111/j.1467-9868.2008.00665.x
http://dx.doi.org/10.1111/1467-9868.00339
http://dx.doi.org/10.1080/10485250903323180
http://dx.doi.org/10.1111/rssb.12009
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2400000003
http://dx.doi.org/10.1038/nature06958
http://dx.doi.org/10.1016/j.physa.2012.11.040
http://dx.doi.org/10.1126/science.1177170
https://dandelion.eu/datamine/open-big-data/
https://dandelion.eu/datamine/open-big-data/


Appl. Sci. 2019, 9, 1733 18 of 18

28. Douglas, J.; Rachford, H.H. On the numerical solution of heat conduction problems in two and three space
variables. Trans. Am. Math. Soc. 1956, 82, 421–439. [CrossRef]

29. Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile landscapes: Using location data from cell phones
for urban analysis. Environ. Plan. B Plan. Des. 2006, 33, 727–748. [CrossRef]

30. Lila, E.; Sangalli, L.M.; Ramsay, J.; Formaggia, L. fdaPDE: Functional Data Analysis and Partial Differential
Equations; Statistical Analysis of Functional and Spatial Data, Based on Regression with Partial Differential
Regularizations; R Package Version 0.1-4; The Comprehensive R Archive Network. 2016. Available online:
https://cran.r-project.org/web/packages/fdaPDE/index.html (accessed on 26 April 2019).

31. Clapp, J.M. A semiparametric method for estimating local house price indices. Real Estate Econ. 2004,
32, 127–160. [CrossRef]

32. Caplin, A.; Chopra, S.; Leahy, J.V.; LeCun, Y.; Thampy, T. Machine Learning and the Spatial Structure of
House Prices and Housing Returns. 2008. Available online: https://ssrn.com/abstract=1316046 (accessed on
26 April 2019).

33. Manfredini, F.; Pucci, P.; Tagliolato, P. Toward a systemic use of manifold cell phone network data for urban
analysis and planning. J. Urban Technol. 2014, 21, 39–59. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S0002-9947-1956-0084194-4
http://dx.doi.org/10.1068/b32047
https://cran.r-project.org/web/packages/fdaPDE/index.html
http://dx.doi.org/10.1111/j.1080-8620.2004.00086.x
https://ssrn.com/abstract=1316046
http://dx.doi.org/10.1080/10630732.2014.888217
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	Patched Estimation and Spatial Spline Regression
	Patched Piece-Wise Constant Estimation
	Spatial Spline Regression

	An ADMM Algorithm for Constrained Spatial Smoothing
	Performance Evaluation
	Dataset Description
	Experimental Setup
	Performance Evaluation
	Comparison of Different Algorithms
	Impact of Smooth Penalty Parameter 


	Related Work
	Conclusions
	References

