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Abstract: Finger-vein biometrics has been extensively investigated for personal verification.
A challenge is that the finger-vein acquisition is affected by many factors, which results in many
ambiguous regions in the finger-vein image. Generally, the separability between vein and background
is poor in such regions. Despite recent advances in finger-vein pattern segmentation, current solutions
still lack the robustness to extract finger-vein features from raw images because they do not take
into account the complex spatial dependencies of vein pattern. This paper proposes a deep learning
model to extract vein features by combining the Convolutional Neural Networks (CNN) model
and Long Short-Term Memory (LSTM) model. Firstly, we automatically assign the label based on
a combination of known state of the art handcrafted finger-vein image segmentation techniques,
and generate various sequences for each labeled pixel along different directions. Secondly, several
Stacked Convolutional Neural Networks and Long Short-Term Memory (SCNN-LSTM) models are
independently trained on the resulting sequences. The outputs of various SCNN-LSTMs form a
complementary and over-complete representation and are conjointly put into Probabilistic Support
Vector Machine (P-SVM) to predict the probability of each pixel of being foreground (i.e., vein pixel)
given several sequences centered on it. Thirdly, we propose a supervised encoding scheme to extract
the binary vein texture. A threshold is automatically computed by taking into account the maximal
separation between the inter-class distance and the intra-class distance. In our approach, the CNN
learns robust features for vein texture pattern representation and LSTM stores the complex spatial
dependencies of vein patterns. So, the pixels in any region of a test image can then be classified
effectively. In addition, the supervised information is employed to encode the vein patterns, so the
resulting encoding images contain more discriminating features. The experimental results on one
public finger-vein database show that the proposed approach significantly improves the finger-vein
verification accuracy.

Keywords: biometrics; finger-vein verification; deep learning; convolutional neural network;
representation learning

1. Introduction

With the wide application of internal and increasing risk of terrorist attacks, information security
became a hot topic and received more and more attention. A key point is how to recognize a person
to protect personal poverty and privacy. Biometrics as an authentication method of recognizing a
person has been widely investigated in past years. Currently, various biometric characteristics such
as fingerprints [1], palm-print [2], finger-vein [3,4], hand-vein [5], palm-vein [6], face [7], iris [8],
voice [9], signature [10] have been employed for verification and can be broadly classified into two
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categories. (1) Extrinsic characteristics (e.g., fingerprints, palm-print, face, voice, signature); (2) Intrinsic
characteristics (e.g., finger-vein, palm-vein, hand-vein). The extrinsic characteristics are prone to be
attacked because faked face and fingerprint can successfully cheat the verification system [11]. As the
intrinsic characteristics such as finger-vein conceal the skin and not easily copied and forged, they
show high security and privacy in practical application.

However, vein verification faces serious challenges. In practical applications, various factors
such as environmental illumination [12-14], ambient temperature [3,14,15], light scattering [16,17],
and user behavior [12,13] affect the finger-vein image quality. Generally, these factors are not controlled,
so many capturing images not only contain vein patterns but also noise and irregular shadowing.
Generally, the separability between the vein and non-vein patterns is poor in the regions associated
with noise and irregular shadowing. Performing matching from such regions degrades the verification
accuracy. To solve this problem, many segmentation-based methods are proposed to segment robust
vein network for finger-vein recognition. Broadly, they can be categorized into two groups.

(1) Handcraft-based segmentation approaches. In this category, researchers employed the existing
mathematical models to detect vein features based on attribute assumptions such as valleys and
straight-lines. For example, they assume that the vein patterns can be approximated to line-like
texture in a predefined neighborhood region and the descriptors such as Gabor filters are proposed
to extract the vein pattern. The representative works include wide line detector (WLD) [13], Gabor
filters [3,18-21], and matched filters [22]. Some researchers observe that the cross-sectional profile
of a vein pattern shows the attribute of valley shape. Therefore, many models are built to detect
the valley for vein pattern extraction. For instance, the curvature is sensitive to valley, so various
approaches are proposed to enhance the vein patterns by computing mean curvature [14], difference
curvature [23], and maxim curvature [15] of pixels in an image. In [24-27], the vein patterns are detected
by computing the depth of the valley. In the region growth approach [27], both depth and symmetry
of valley are combined to extract vein pattern. Recently, according to the anatomical knowledge, some
characteristics of finger-vein structure, e.g., directionality, continuity, width variability, smoothness,
and solidness are taken into account for finger-vein texture extraction in [28].

(2) Deep learning-based segmentation approaches. Unlike handcrafted approaches, the deep
learning-based approaches are capable of extracting the vein patters from a raw image without the
manual attribute distribution assumption and have shown promising performance in medical image
segmentation such as neuronal membrane segmentation [29], prostate segmentation [30], retinal
blood vessels [31], and brain image segmentation [32]. In work [33], the Convolutional Neural
Network (CNN) model is firstly employed for finger-vein segmentation, and outperforms handcrafted
feature-based approaches in terms of verification errors improvement. In their work, the pixels are
automatically labeled and a patch-based dataset is built for CNN training. For testing, an image is
split into various patches and each patch is put into the CNN to predict the probability of its center
point being a vein pattern.

The approaches described above achieve good performance on some finger-vein recognition tasks,
but they suffer from the following problems. For example, existing handcrafted approaches segment
vein pattern based on assumptions. However, these assumptions are not always effective to detect
the finger-vein patterns because some vein pixels may be created by more complicated distributions
than valleys or straight lines. Also, they explicitly extract some vein features by an image processing
method, which might discard relevant information about the finger-vein pattern. In addition, they do
not get any prior knowledge from the different images as they segment each image independently
from the others. For the deep learning-based approach [33], these problems are alleviated to an extent
because it directly uncovers hierarchical features from raw images to minimize its decision errors
on vein patterns without the attribute distribution assumptions. Meanwhile, rich prior knowledge
is harnessed by training it on a huge patch-based training data from different images. However,
these approaches, including CNN in [33], segment each pixel independently based on a predefined
neighborhood region (e.g., patch) instead of considering spatial dependencies among the closed pixels.
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Factually, finger-vein vein patterns extend from finger root to fingertip, and show clear direction and
good connectivity [34]. Therefore, there exists spatial dependencies among the closed vein pixels. So,
the performances of these existing approaches are still limited for finger-vein texture pattern extraction.

Recurrent neural networks have shown powerful capacity for the representation of long-term
dependency information and have been successfully applied to human activity [35,36], speech
recognition [37], and handwriting recognition [38]. In recent years, LSTM networks [39] as the
most successful extensions of recurrent neural networks have received more and more attention. The
Long Short-Term Memory (LSTM) model adopts a gating mechanism controlling the contents of
an internal memory cell so that it is capable of learning a better and more complex representation
of long-term dependencies in the input sequential data. Consequently, LSTM networks work well
for feature learning over time series data. Some researches employ it to learn the complex spatial
dependencies for scene labeling and action recognition [40—-42].

Inspired by this idea, in this paper we proposed a stacked Convolutional Neural Networks and
Long Short-Term Memory (SCNN-LSTM) for finger-vein texture segmentation by combining the CNN
model and LSTM model. Compared to existing segmentation-based methods, our approach not only
predicts the probability of a pixel based only on its pixels and their correlations in a local region, but it
does so by relying also on the spatial dependencies in its neighboring contexts, through a feature
representation learned by LSTM from a large sequence training set. The main paper contributions are
summarized as follows:

(1) We proposed a stacked Convolutional Neural Network and Long Short-Term Memory model to
automatically learn features from raw pixels for finger-vein verification. First, the vein and background
pixels are automatically labeled based on several baselines. For each labeled pixel, we generated
four sequences along different directions. As a result, there are various sequence-based training
sets, on which several SCNN-LSTMs are independently trained to form a complementary and an
over-complete representation. Secondly, for a testing image, the probability of each sequence being to
vein pattern is predicted and the scores from patch-based sequences are conjointly input to P-SVM
to segment the vein patterns. As the CNN model has the capacity for representation of vein texture
features in a local region (i.e., patch) and the LSTM model captures the spatial dependencies among the
closed regions, the proposed SCNN-LSTM model is capable of predicting the probability of belonging
to a vein pattern. The rigorous experimental results on a public finger-vein database imply that the
proposed approach is able to extract vein pattern, which results in a significant improvement for
finger-vein verification accuracy.

(2) This paper investigates a new approach to encode the finger-vein for verification. Generally,
the existing finger-vein segmentation approaches encode an image to extract binary vein patterns
based on one or more thresholds, which are not related to verification error reduction. Different from
them, an effective supervised scheme is employed to automatically select the threshold for vein pattern
encoding. We search for a robust threshold to encode image by maximizing the inter-class distance and
minimizing intra-class distance, which is not based on human domain knowledge. So the proposed
scheme directly targets biometrics verification performance instead of human perception. We analyze
the experimental results and estimate the verification performance.

2. The Proposed Approach

To learn compositional representations of the texture feature and spatial dependencies information,
a SCNN-LSTM model is proposed for finger-vein feature extraction. First, we employed seven baselines
to label the pixel from a training set and validation set. Secondly, for each labeled pixel, different
sequences are created along different orientations. Thirdly, each sequence is forwarded to SCNN-LSTM
to predict its probability of belonging to a vein patten. As a result, there are several labeled scores for
different orientations, which are taken out of the input of SVM to extract a vein feature. Applying
the proposed SCNN-LSTM model to the whole image in this way, the vein images are enhanced.
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To achieve verification, the resulting enhancement image is encoded by a supervised encoding scheme.
The framework of the proposed approach is illustrated in Figure 1.
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Figure 1. The framework of the proposed approach.

2.1. Label Vein Sequences

2.1.1. Label Vein Patterns

Similar to work [33], for each input finger-vein image, seven baselines, i.e., Repeated line
tracking [24], Maximum Curvature points [15], Mean curvature [14], Different Curvature [43], Region
growth [27], Wide line detector [13], and Gabor filters [3] are employed to segment vein pattern,
resulting in seven binary images (as shown from Figure 2a—i). The values in each binary image (0 and 1
denote background and vein pixels, respectively) are treated as labels of corresponding pixels in the
input image. We compute the average of seven binary images and obtain an average image F (Fin.3(i)).
For a pixel (x,y), it is labeled as vein pattern if F(x,y) = 1 white region in Figure 2f), and it is labeled
as vein for F(x,y) = 0 (black region in Figure 2j). We do not label the pixels in the remaining region
(the color region in Figure 2j).
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Flgure 2. Segmented results. (a) Original fmger-vem image; (b) Gabor filter; (c) Difference curvature;
(d) Maximun curvature point; (e) Mean curvature; (f) Region growth; (g) Repeated line tracking;
(h) Wide line detector; (i) Probability map; (j) Labeled pixels (wight region and black region denote
vein and background, respectively).

2.1.2. Labeling Vein Sequences

In this section, the training sequences are produced based on labeled pixel (as shown in
Figure 2j) for SCNN-LSTM training. Firstly, we select a labeled pixel as a current point ¢y and
determine its K — 1 adjacent pixels along a given orientation 6. This results in a set of K pixels
{c_(k=1)/2,6/ €0, -C(k—1)/2,0} for Orientation 6, where 0 < 6 < 7 and K is the odd number to enforce
symmetry. Then, we create K patches of s x s centered on cg and its K — 1 adjacent pixels from image
in training, and the resulting patches construct a sequence Sg = {P_(x_1/2,9, - Po, --P(k-1)/2,0}-
Similarly, the labels of K pixels create a labeled sequence Ly = {I_(x_1)/2,6, -/ lo, ----L(x—1)/2,6} for Sp.
Here, we quantize all the possible vein orientations 6 into a set of C values by

0= = )
where i = 1,2,...,C and C is heuristically set as 4. Namely, 6 € {0°,45°,90°,135°}, as shown in

Figure 3a. Therefore, there are four sequences for each labeled pixel cy. Figure 3 shows a sequence
Soo = {P_(k—1)/2,00/ -+ Pos -P(x—1) /2,00 } Of current pixel cg along the 0° orientation.
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Figure 3. Illustration of the SCNN-LSTM model. (a) The four orientations for a pixel cp; (b) SCNN-LSTM

for prediction. A sequence sampled along 0° orientation is taken as an input of SCNN-LSTM to predict
the probability of the centered point ¢y being to vein pattern. The LSTMs share same weights.

2.2. Stacked Convolutional Neural Networks and Long Short-Term Memory

The proposed stacked Convolutional Neural Networks and Long Short-Term Memory
(SCNN-LSTM) consist of a CNN model and LSTM model (as shown in Figure 3) and are trained
to learn the joint texture and spatial dependency representations for finger-vein texture segmentation.
Our SCNN-LSTM takes a sequence associated with K patches as its input. In SCNN-LSTM, a deep
CNN model is built by removing the output layer of an existing CNN model [33] for the vein texture
representation. Then we take any patch as an input of the CNN model and it outputs a fixed-length
vector representation which is further forwarded to a recurrent sequence learning module (LSTM) to
learn the compositional representations in space, as shown Figure 3b.

Figure 4 shows the architecture of the proposed SCNN-LSTM. As shown in Figure 4, our approach
consists of a CNN model and LSTM model. This CNN model (as shown in the red box in Figure 4)
consists of three convolutional layers and one fully connected layer. There are 24 kernels of 5 x 5 in
the first convolutional layer, 48 kernels of 5 x 5 in the second convolutional layer, and 100 kernels
in the fully connected layer. The LSTM model (the blue region in Figure 4) includes 128 kernels.
For SCNN-LSTM training, its input is a sequence of 7 patches with size of 11 x 11. Each patch in
the sequence is forwarded to CNN model to obtain a 100 dimensional vector. As a result, there are 7
vectors for an input sequence with length of 7. The resulting vectors are taken as an input of LSTM
model to obtain a 100 dimensional representative vector. Finally, the output of LSTM model is put
into the last layer for classification. The output of last layer is a 2 dimensional vector because there are
two classes (vein and background) for vein segmentation. When the input size changes, the width
and height of the map in each convolutional layer changes accordingly. Along the forward direction,
a patch-based sequence is represented effectively.

CNN

e =, - - - - - - - - - - - -—-—-——= 128maps

| 24maps S 100may sl
Input layer| x11x11 24maps A48maps  48maps PSIx1x1 Output layer

| x5x5 x5%5 x2x2  xlxl | 2classes
Tx11x11 | |

| x1x1

| |

| |
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Figure 4. Architecture of SCNN-LSTM.
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2.2.1. CNN Module

As the existing CNN model with three layers described in [33] has achieved promising performance
for vein feature segmentation, we create a CNN module for feature representation of vein or background
patch by removing the output layer of CNN in work [33]. During the training stage, our CNN is
initialized using weights of an existing CNN [33]. Our CNN model consists of one input layer, three
convolutional layers, two max-pooling layers, and one full-connection layer, respectively. The number of
kernels in the three layers are 24, 48, and 100 respectively, and the sizes of kernels in both convolutional
layers are 5. Each layer is detailed as follows.

Convolutional layer: The concept of Rectified Linear Units (y = max(0, x)) is used to active the
hidden neurons.

Pooling alyer: The max-pooling is employed to extract location information by ensuring
robustness to translation.

Ri'{,j = Ogln‘?riis(r;{.s-&-m,j.s-&-n) 2)
where r; denotes as k-th output map obtained by the k-th filter; The value Ri»{, j pools over
non-overlapping r X r local regions in I} to extract the compact feature.

Dropout: The drop-out technique [44] is applied in three fully connected layers. The overfitting
can be greatly prevented by randomly omitting half of the hidden units.

2.2.2. LSTM Module

The LSTM module is a subnet of our SCNN-LSTM which allows to easily memorize the context
information for long periods of time in sequence data. In general, LSTM is proposed to model the
temporal dependencies. In images, this temporal dependency learning is converted to the spatial
domain [41]. Therefore, we employ a LSTM unit as described in [39] to model spatial dependencies by
mapping the deep feature sequences produced from CNN to hidden states. To predict a distribution
over spatial step, the softmax is employed in output layer. Finally, we average the outputs of the LSTM
network’s softmax layer to compute the predicted distribution, as shown in Figure 3b. Given inputs x;,
hi_1, and c;_1, the LSTM updates at the position t are

it = 0(Wyixt + Whixi—1 + b;) 3)
ft = c(Wyrx + Wipxi 1 + by) 4
0 = 0(Wxoxt + WioX¢—1 + bo) ®)
gt = tanh(Wyexy + Wychi—1 + be) (6)
Ct = fr*Ci1it * &t ()
hy = o x tanh(cy) (8)
where ¢ and tanh are logistic sigmoid (sigm) and hyperbolic tangent (tanh), which are defined as
o(x) = (1+e )7, ©)
eX —e %

— B 1

tanh(x) ey (10)

and * is the element-wise product. In addition, 4, i, f, 0t, ¢, and c; denote hidden unit, input gate,
forget gate, output gate, input modulation gate, and memory cell, respectively, at the position .
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Output layer: The outputs from the last hidden layer are normalized with the softmax function:

Yo — _op(zm) 1)

N
;1 exp(zn)

where z, is a linear combination of outputs in LSTM hidden states.

2.3. Multi-SCNN-LSTM Feature Representation

For a pixel with a label I € {0,1} from a given finger-vein image F, we produce a sequence
Sg- € S**K along an orientation 6* and label it as Lg- € RX*! using the scheme described in
Section 2.1, where 0 and 1 denote respectively background and vein. The training set used for
vein segmentation is represented as {(Sg+1,Lg+1)}, {(Se*2,Lo+2)}, ..., {(Se+ N, Lox,N) }, where N is
the number of sequences from finger-vein images in the training database. As we quantize all
the possible vein orientations into four orientations, we in this way obtain 4 training datasets.
Let {(Sq,1,Le,1)},{(S6,2,L6,2)},---,1(So, N, Le,N)} be the i-th training dataset (i = 1,2,...,4).
A different SCNN-LSTM for each dataset is then trained independently, and each SCNN-LSTM
produces a score from a particular sequence. We combine the outputs of the 4 SCNN-LSTMs to
generate a 4-dimensional vector v = [v1, U, v3, V4], which is taken as an input of P-SVM to predict the
probability of the pixel (Figure 5).

135°

Sequencel] Sequence2, Sequence3| Sequenced

F L]

3 £ £

Figure 5. The framework of the Muilti-SCNN-LSTM. The prediction scores of a pixel are computed from
four sequences along four orientations (0°,45°,90°,135°) and combined to generate a complementary score

vector, taken as input of P-SVM to jointly predict the probability of centered pixel ¢y being to vein pattern.

2.4. Generating Score

A SVM model is employed to compute the probability of a pixel belonging to vein pattern based
on its predicted distribution along four orientations. In this work, we employ the P-SVM model [45],
which requires a set of vectors for training, to combine all features from all orientations (shows in
Figure 5). Let v be a vector extracted from four sequences of a pixel with a label I € {0,1}. The P-SVM
is trained to provide a probabilistic value p (0 to 1: from background to vein)

1

1+exp (w-e(v)+7) (12)

p(g =1le(v)) =

where ¢(v) is the output of a general two-class SVM [46] with v as the input feature vector, and w and
7 as fitting parameters trained by P-SVM. After training, we are able to compute the probability of any
pixel based on its feature vector v and Equation (12).



Appl. Sci. 2019, 9, 1687 8 0f 18

2.5. Supervised Feature Encoding

In this section, we propose a scheme to obtain the threshold for vein feature encoding.
After applying SCNN-LSTM for all pixels, an enhancing vein image is obtained and then we encode
it for matching. In existing works [3,13-15,27,33,43], the vein patterns are encoded by one or more
thresholds. For example, the probability of 0.5 is employed to obtain vein patterns in [33]. In [3],
the vein image is enhanced by Gabor and then subject to binarzition using threshold of 0. In the
classic repeated line tracking approach [24], two global thresholds (i.e., 85 and 175) are used to divide
a image into three regions for matching. Some curvature-based approaches [14,15,23] enhanced vein
patterns by computing the curvature of all pixels and an empirical threshold is employed to encode
resulting enhancement image. For the finger-vein verification, the primary target of feature encoding
is to improve performance, mainly verification error rates. However, the approaches determine the
threshold based on human perception instead of minimizing the verification error, so the resulting
binary code (vein texture features) may not be robust for finger-vein verification. To overcome this
problem, in this section, a supervised scheme is proposed to encode vein pattern. Our approach
decides the threshold by maximizing the distance between intra-class score set and inter-class score
set computed from a training set, such that the resulting threshold is directly related to verification
performance. The robust thresholds T are computed as follows.

Assume that there are N classes in the training set and each class provides M samples. Using the
proposed SCNN-LSTM model (Figure 5), all finger-vein images are enhanced and we denote the mth
enhancement image in the nth class as x;, ,, wherem =1,2,.., Mand n = 1,2,...N. We aim to find a
function to map and quantize each enhancement image into a binary image by, € {0,1}'*/ which
encodes a more discriminative information for verification error minimization. In our work, the binary
code (vein texture pattern) by, of x,, is computed by

by = 0.5 x (sgn(xmn —T) + 1) (13)

where sgn(z) is equal to —1if z < 0 and 1 otherwiseand T € [0 1] is a parameter which is determined
as follows.

Based on the Equation (13), all training samples are mapped into Hamming space, so a
Hamming distance in [47] is employed to match two images for verification. We match the binary
codes from same class to generate intra-class scores while the inter-class scores are produced by
matching the binary codes from different class. So there are ¢y = N x CM genuine matching
scores () = {dy(T),d>(T),...,ds,(T)} and a = N x (N —1) x M x M/2 impostor scores )y =
{d1(T),d5(T), ..., dy,(T)}. To make by, discriminative, we enforce an important criterion to encode
the enhancement images that the resulting binary codes should maximize the distance between two
sets ()1 and (). Therefore, we formulate the following optimization objective function:

max](T) _ |ul(T) — le(T)‘

2 = Dy(T) + Dy(T) (14)

where | - | represents the absolute value. u1(T) and u,(T) are the means of the scores in ()1 and (),
and D1(T) and D,(T) are the variances of the scores in the sets (); and (),

To facilitate to search the threshold T, all enhancement images are converted to gray-scale images
with integer values between 0 and 255. The parameter T is assigned from 0 to 255 to transform the
enhancement image into a binary code map according to Equation (13). So, 256 different values
J(T) (T =1,2,...,256) are computed using Equation (14). The parameter T, which can maximize
Equation (14), are selected to encode the vein pattern. The binary code of x;, , is computed by

bun = 0.5 % (sg7 (Xmn — Tu/255) +1) (15)
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2.6. Feature Matching

After all training images are mapped into Hamming space, the Hamming distance is employed
to match two images. In general, the capturing images are subject to translation and rotation
normalization, but there are still some variations due to inaccurate localization and normalization.
However, Hamming distance is not robust enough to reduce these variations. So, an enhanced
Hamming distance is employed to compute the non-overlapping region between two images with
possible spatial shifts for finger-vein matching. Assuming Q and B are enrolment and test binarized
feature codes with size of I x |, respectively (as shown in Figure 6), the height and width of Q are
extended to 2E + I and 2H + ], and then its expanded image Q is obtained and expressed as:

Qi—Ej—H) if 1+E<i<I+E,
Q(i,j) = 1+H<j<J+H (16)

—1 otherwise

Figure 6b illustrates the extended image Q of a template Q and the extend region with values of —1 is
marked in color. The matching distance between Q and B is obtained by

d(Q,B) = ] ]
min Hamdistance(Q%", B) — ®(Q%") (17)
0<e<2E0<h<2H Hamdistance(Qeh, U)

In Equation (17), ®(V) is the amount of —1 values in matrix V. U is a matrix with size of [ x |
and the values of its elements are —1. Hamdistance represents the hamming distance between two
encoding images, i.e., summation of the number of positions that are different. Q_(e'h) is a matrix
(the red rectangle box in Figure 6b) when the translation distances are e and & over horizontal and
vertical directions. d(Q, B) basically computes the minimal amount of non-overlap between Q and B
at different spatial shifts, excluding the pixels located in the expanded region (e.g., the green region
in Figure 6b). The parameters E and H control the translation distance in horizontal and vertical
directions and are heuristically set to 20 and 60.

k 2H +J 4
7~
e
[}
k J i 2E T - =3 o)
+
. gty il " 4 ——
i = 7 -
| i l Q" o i

(@) (b) (©)

Figure 6. Matching sample. (a) A finger-vein template; (b) The extended image from (a); (c) A testing
image. The values in green region are —1 in (b). The red rectangle box translates in the extended
images from top left corner to lower right corner, and Q%M is a map in the red rectangle box when the
translation distances are e and & over horizontal and vertical directions.

3. Experiments and Results

To estimate the performance of our approach, we compare various approaches with respect to
verification performance improvement. In our experiments, we repeat the experimental results of classic
approaches, i.e., Repeated line tracking [24], Maximum Curvature points [15], and recent approaches,
i.e., Mean curvature [14], Different Curvature [43], Region growth [27], Wide line detector [13], and Gabor
filter [3] for comparison. Also, we show the performance of the deep-based segmentation approach [33]
to estimate the verification performance of our approach. In addition, based on the supervised encoding
scheme in Equation (15), we can extract the finger-vein patterns from the probability map which is
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computed by the proposed SCNN-LSTM approach. To simplify the description, we denote them
as the SCNN-LSTM + Supervised encoding. To test our encoding approach, we also encode the
resulting probability map using a probability threshold of 0.5. This scheme is presented as SCNN-LSTM
+ Unsupervised encoding. The corresponding performance is shown in the following experiments.
We compare all finger-vein extraction approaches mentioned above with the proposed one to get more
insights into the problem of finger-vein verification. All experiments are carried out on one public
database, namely the PolyU [3] finger-vein database, which is described below.

3.1. HKPU Database

The Hong Kong Polytechnic University (HKPU) finger-vein image database [3] includes 3132
images with a resolution of 513 x 256 pixels. All images are collected from 156 subjects using an open
and contactless imaging device. The first 105 subjects provided 2520 finger images (105 subjects x 2
fingers x 6 images x 2 sessions) in two separate sessions with a minimum interval of one month and
a maximum of over six months, with an average of 66.8 days. In each session, each subject provided
2 fingers (index finger and middle finger) and each finger provided 6 image samples. The remaining
51 subjects only provided image data in one session. To verify our approach, the 2520 finger images
captured in two sessions are employed in our experiment because it is closer to a practical captured
environment. A pre-processing method [3] is employed to extract the region of interest (ROI) image and
carry out translation and orientation alignment. In addition, the image background is cropped because it
contributes matching errors and computation cost. As a result, all images are normalized to 39 x 146.

3.2. Experimental Setting

To test our approach, we split the database into three data sets: training set associated with 660 (55
fingers x 12) images, validation associated with 600 (50 fingers x 12) images, and testing set associated
with 1260 (105 fingers x 12) images. Based on the label scheme described in Section 2.1, we label
vein and background pixels from the training set and validation set. To train our model, we select the
sequences centered on vein pixel as positive samples and sequences centered on background pixels
as negative ones. For each image in training set, we only employ about 80 positive sequences and
negative sequences, respectively. As the length of sequences is fixed to 11 using next experiments in
Section 3.3, there are about 1760 (80 sequences x 11 (length of sequences) x 2 (positive sequences and
negative sequences)) patches for an image. This results in a total of 100,000 training sequences (50,000
positive sequences and 50,000 negative sequences) from 660 images. In the testing phase, we generate
a patch for each pixel in a test image. So, for an image with size of 39 x 146, there are 5694 (39 x 146)
patches, based on which a sequence is created for each pixel along a given orientation. In our work,
the length of the sequence is 11. Therefore, for a pixel, the patches centered on its 11 adjacent pixels
form a sequence along a given orientation (shown in Figure 3), which results 5694 sequences for a test
image with size of 39 x 146. Then, the sequence of each pixel is put into our model, the output of
which is taken as the probability of this pixel to belong to vein pattern.

3.3. Parameter Estimation

As described in Section 2.1, each sequence from images in training set consists of K patches
with size of s x s. The CNN module in our SCNN-LSTM is trained by fine-tuning the CNN with
an input of 11 x 11 patch in [33]. Such a size has also shown good performance in work [33], so the
patch size s for SCNN-LSTM is fixed to 11. The length of the sequence is important to achieve high
verification accuracy. If K is too small, more detailed vein patterns are extracted but including more
noise. Matching pixels in noisy regions can create errors which result in verification accuracy reduction.
On the contrary, sequences with large K will suppress vein feature details, leading to smooth vein
features, which also degrades the verification accuracy. Therefore, we determine the appropriate size
of sequence for SCNN-LSTM experimentally. Firstly, we train the proposed SCNN-LSTM model to
extract the vein feature of the finger-vein images in the training and validation at different lengths of
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sequence. To reduce the redundant information, we obtain patches with sampling intervals of one
pixel to create training sequences. Secondly, the first 6 images acquired at the first session are employed
as registration templates and the remaining as testing images. Therefore, there are 300 (50 x 6) genuine
scores and 14,700 (50 x 49 x 6) impostor scores. The False Rejection Rate (FRR) is computed by the
genuine scores and the False Acceptance Rate is computed by impostor scores. The Equal Error Rate
(EER) is the error rate when FAR is equal to FRR. Figure 7 illustrates the relationships between length
of sequence and EER, and the results are obtained by using only the validation data. From Figure 7,
we can see that a smaller equal error rate is achieved at a sequence of length 11 and 13. With increasing
the length K, the computation time will be increased. Therefore, we fix the length of a sequence to 11
in our experiments.

18
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EER

14
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1 . .
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13 15
Figure 7. Relationship between the length of sequence and EER.

To verify over-fitting of our model, we shows learning curves in Figure 8. Figure 8a,b show the
accuracy on the validation dataset and loss on the training dataset. From Figure 8, we can observe
that the accuracy of validation dataset increases to about 65% and the loss decreases slowly after
2000 backpropagations. When the number of iteration steps is between 5000 and 10,000, the accuracy
increases to more than 90% and the loss dramatically reduces. After 10,000 iterative steps, the loss
fluctuates but it still decreases slowly. Therefore, our SCNN-LSTM model has good convergence for
finger-vein segmentation.
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Figure 8. Training curves (a) Accuracy vs. iteration and (b) Loss vs. iteration.
3.4. Visual Assessment

In this experiment, we visually analyze the extracted finger-vein patterns from various approaches
to get more insights into the proposed approach. The seven baselines and a state of the art [33] are
employed to segment the vein texture, respectively. Also, the vein patterns encoded by a threshold of
0.5 and supervised threshold are reported in our experiment. Figure 9 shows the extracted results of
various approaches. We can see from Figure 9 that the deep learning-based approaches suppresses
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the noise, and extract more connective and smoothness vein texture compared to the seven baselines.
Observed the experiments in Figure 9i,j,{, it sees that the SCNN-LSTM-based approaches outperform

the CNN in terms of extracting the connective vein patterns.
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Figure 9. Experimental results from various approaches. (a) Original image; (b) Gabor filters; (c) Difference
curvature; (d) Maximun curvature point; (e) Mean curvature; (f) Region growth; (g) Repeated line
tracking; (h) Wide line detector; (i) CNN; (j) SCNN-LSTM + Unsupervised encoding; (k) SCNN-LSTM +
Supervised encoding.
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3.5. Verification Results Based on Image Dataset from One Session

In this section, we evaluate the performance of various approaches on the HKPU finger-vein
dataset by considering vein images collected in each of the two sessions. First, the performance
is evaluated in each session, individually. In one session, there are 630 images from 105 fingers.
Therefore, the total number of genuine scores and impostor scores is 1575 (105 x CS) and 196,560 (105
x 104 x 36/2). To compute the impostor score, the symmetric matches are not executed. Second,
the performance of combining scores from two sessions is reported. So, there are 3150 (1575 x 2
sessions) genuine scores and 393,120 (196,560 x 2 sessions) impostor scores. Table 1 lists the verification
error of various approaches for each session taken separately, and then for the two sessions, mixed.
The receiver operating characteristics (ROC) curve for the corresponding performances is illustrated
in Figure 10. The experimental results from Table 1 imply that the proposed SCNN-LSTM approach
outperforms existing approaches including CNN [33] and achieves low errors, e.g., 1.12%, 0.62%, and
1.01% for data in the first session, second session, and two mixed sessions, respectively. The ERRs are
further reduced to 1.08%, 0.58%, and 0.95% using the proposed encoding approach. We also observe
from Figure 10 that the SCNN-LSTM-based approaches significantly improve FRR when the FAR is
lower than 0.01%, which implies that our system achieve lower verification error than the methods
considered in our work at high security level system.
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Table 1. EER of various approaches on image dataset from one session.

Methods First Session Second Session Two Sessions
Repeated line tracking [24] 4.76 5.67 5.21
Maximum curvature point [15] 3.91 3.27 3.59
Region growth [27] 2.32 1.24 1.75
Wide line detector [13] 3.68 3.11 3.39
Gabor filters [3] 2.10 1.84 1.95
Mean curvature [14] 2.06 1.50 1.73
Difference curvature [43] 3.61 3.64 3.64
CNN [33] 1.21 0.86 1.12
SCNN-LSTM + Unsupervised encoding 1.12 0.62 1.01
SCNN-LSTM + Supervised encoding 1.01 0.58 0.95
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Figure 10. Receiver operating characteristics from image data collected at (a) first session, (b) second
session, and (c) two mixed sessions.

3.6. Verification Results Based on Image Dataset from Two Sessions

This experiment aims at estimating the effectiveness and robustness of various algorithms on
the finger-vein image data from both sessions. In the testing dataset, there are 1260 (105 fingers x
6 images x 2 sessions) images, acquired at two sessions. For each finger, we select the 6 images
captured at the first session as enrollment samples and the remaining 6 images captured at the second
session as testing samples. The genuine matching scores are produced by matching samples from
same finger, while the impostor scores are produced by matching samples from different fingers.
This results in a total of 630 (105 x 6) genuine scores and (105x 104 x 6/2) impostor scores, based
on which we the compute FRR and FAR. In addition, we computed the sensitive index(d’) [48] by
d' = Z(hit rate) — Z(false alarm rate) to estimate the performance of various approaches.

The experimental results from various approaches are summarized in Table 2. The ROC curves
for the corresponding performances are illustrated in Figure 11. The experimental results summarized
in Table 2 show consistent trends with the those from experiments in each session. The proposed
SCNN-LSTM-based approaches (e.g., SCNN-LSTM + Unsupervised encoding and SCNN-LSTM +
Supervised encoding) get the best results, especially at the lower FAR. The lowest EER of 2.38% is
achieved using the supervised encoding approach. Similarly, the proposed method achieves higher d’
(e.g., 3.89 and 3.95) compared to existing approaches, which implies that the lowest verification error
is achieved using our SCNN-LSTM model.
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Table 2. EER of various approaches on image dataset from two different sessions.

Methods EER (%) Sensitive Index (d’)
Repeated line tracking [24] 12.85 2.26
Maximum curvature point [15] 8.30 2.76
Region growth [27] 5.71 3.15
Wide line detector [13] 7.62 2.86
Gabor filters [3] 5.08 2.97
Mean curvature [14] 4.20 3.45
Difference curvature [43] 7.90 2.92
CNN [33] 3.02 3.72
SCNN-LSTM+Unsupervised encoding 2.59 3.89
SCNN-LSTM+Supervised encoding 2.38 3.95
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Figure 11. Receiver operating characteristics on image data from two separate sessions.
4. Discussion

The experiments depicted in Tables 1 and 2, Figures 10 and 11 show that the proposed
SCNN-LSTM-based models achieve best performance among the all approaches considered in our
work, including seven baselines and the CNN-based model. For example, the EER achieved by the best
one (CNN) among existing approaches is reduced to 2.53% using the proposed SCNN-LSTM model
with unsupervised encoding scheme on the data set acquired from two sessions. The verification
accuracy may be further improved by combing the features of sequences along more directions or
enlarging the training set. The good performance can be explained by the following fact. The existing
handcrafted approaches (seven baselines) explicitly extract some features by image processing method,
which might discard relevant information about finger-vein pattern. Also, they do not get any prior
knowledge from the different images as they segment each image independently from the others.
In addition, all approaches, including CNN, independently process each pixel based on a predefined
neighborhood region or cross-sectional profile during the segmentation procedure, and ignore the
spatial dependencies among different vein pixels. By contrast, the proposed approach uncovers
hierarchical features for vein texture representation by training its CNN module and harnesses rich
dependency information by training its LSTM module on a huge sequence set from different images.
Therefore, it is capable of predicting the probability of a pixel belonging to a vein pattern.

We can also observe from the experimental results (Tables 1 and 2, Figures 10 and 11),
the performance is improved after adopting a supervised encoding scheme. For instance, the EER
is reduced to 0.95% (about 6% relative error reduction) on the data from two mixed sessions. When we
employ the images in the first session as templates and the remaining images captured at the second
session as testing samples, a EER, namely 2.38% (about 8.1% relative error reduction) is achieved by the
SCNN-LSTM + Supervised encoding. The experimental results are explained by this fact. The existing
finger-vein encoding approaches do not infer any prior knowledge from the different images because they
compute the threshold from each image independently from others or employ some empirical threshold
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values such as 0.5 and 0. By contrast, the proposed encoding approach harnesses a rich prior knowledge
acquired by maximizing the distance between the genuine score set and impostor score set (as shown in
Equation (14)) and the resulting threshold is directly related to verification error reduction. Therefore,
our approach can extract the discriminative vein texture for verification. Also, the experimental results
show that the supervised encoding shows more significant improvement on the data acquired in two
sessions. The reason is that there is not large room for improvement because it is easier to distinguish the
images from one session compared to those from two sessions. Actually, the 2-sessions scenario is more
realistic so the supervised encoding scheme is effective to reduce the verification error.

Compared to the experimental results in Section 3.5 (Table 1 and Figure 10) and in Section 3.6
(Table 2 and Figure 11), we see that all approaches achieve significant improvement in terms of
verification accuracy on image datasets acquired in one session. Such a good performance can be
attributed to the fact that there exist smaller within-class variations in the images captured at the same
session because the imaging environment is similar and the subjects increase familiarity in the finger
presentations during finger-vein image acquisition within a short duration. On the contrary, there are
the larger within-class variations for the data acquired in two different sessions, which causes more
mismatching errors.

In addition, we also compare our approach with existing approaches with respect to the
computational cost. All experiments are carried out in Matlab 2014a and conducted on a high
performance computer with 8 Core E3-1270v3 3.5 GHz processor, 16 GB of RAM, and a NVIDIA
Quadro GTX1070 graphics cards. For our approach and CNN [33], they are trained with Caffe
package [49] on the graphics cards, and tested with Matlab on the central processing unit (CPU).
To improve the time cost, we optimize SCNN-LSTM to extract the vein feature of a test image. First,
as described in Section 3.2, a test image with size of 39 x 146 is divided into 39 x 146 overlapping
patches, based on which 39 x 146 sequences are generated for all pixels along a given orientation
using the scheme in Section 2.1.2. Therefore, there are same patches in the sequences of adjacent
pixels. If we input the sequence for each pixel into SCNN-LSTM for feature extraction, it results in a
lot of repeated feature extraction operations in the CNN model. To further reduce the computation
time, 39 x 146 patches from an image are separately input into CNN model of SCNN-LSTM and we
take its output (a 100 dimensional vector) as the feature vector of the input. Then, for each pixel, we
arrange resulting vectors along a given orientation to form a sequence, which is forwarded to the
LSTM model to extract its spatial dependence feature. Therefore, as each patch is only subject to one
feature extraction operation using CNN model, the computational time for our model is significantly
reduced in this way. Second, the four SCNN-LSTMs (shown in Figure 5) for four orientations are
implemented in parallel to further reduce time cost. For the remaining approaches mentioned in
our work, all experiments are implemented in Matlab on CPU. The average verification time of an
image using various methods is listed in Table 3. We can see from Table 1 that the proposed method,
CNN, and Repeated line tracking approach require more than two seconds to verify a finger-vein
image, e.g., 3.25s,2.13 s, and 2.53 s, respectively, which are more than those achieved by the remaining
approaches. This can be explained by the following fact. The proposed approach and CNN process
the patch centered on each pixel and predict its probability of belonging to a vein pattern. When
the size of test image is large, it is computationally expensive. The Repeated line tracking approach
starts at a seed point and then tracks all vein patterns pixel by pixel by detecting the local dark line.
When a dark line is not detectable, a new tracking operation starts at another position. The local
line tracking operation is repeatedly performed and the tracking number for each pixel is recorded
in a tracking matrix for segmentation. The larger tracking number will enhance the vein pattern
and result in high verification accuracy, but the computational cost increases. Overall, our approach
shows high time cost, but it can achieve best performance for finger-vein verification (as shown in
experimental results in Tables 1 and 2 and Figures 10 and 11). Moreover, these time costs are expected
to be significantly reduced after code optimization. For example, implementing these algorithms in
C++ can also improve the computation speed. With development of parallel computing technologies
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such as CUDA, the computing performance can be dramatically improved by harnessing the power of
the graphics processing unit (GPU). Therefore, our approach can achieve computational requirement
for practical application after accelerating using GPU.

Table 3. Average computational time of various approaches.

Methods Time (s)
Repeated line tracking [24] 2.53
Maximum curvature point [15] 1.01
Region growth [27] 0.54
Wide line detector [13] 0.04
Gabor filters [3] 1.96
Mean curvature [14] 0.14
Difference curvature [43] 1.16
CNN [33] 2.13
The proposed approach 3.25

5. Conclusions

In this paper, we proposed an approach to extract the finger-vein pattern for verification. First,
a SCNN-LSTM is proposed to predict the probability of a vein pixel belonging to a vein patten.
As SCNN-LSTM combines recurrent models such as LSTMs with deep convolutional networks,
it can be jointly trained to learn the complex spatial dependencies and convolutional perceptual
representations. Second, to improve the performance, we proposed a supervised scheme to encode
the vein patterns. As the threshold for encoding is related to verification performance, it can extract
robust vein texture features for verification. Experimental results show that the proposed approach
extracts robust vein features and significantly improves the verification error rate with respect to
state of the art.

As our model can learn the complex spatial dependencies, it extract continuous vein network for
verification. Also, our approach is employed to extract the hand-vein and palm-vein for recognition.
In medical image analysis, some images such as retinal image, brain segmentation, and neuronal
membranes contain continuous texture patterns, so the proposed approach can be applied to segment
such texture patterns for disease diagnosis. In addition, if the patterns in vision image show the similar
connectivity to vein pattern (as shown in Figure 1), our approach can be used to process vision image.
In future work, we will extend the application of our approach to further verify its generalization.
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