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Abstract: Vibration analysis is one of the main effective ways for rolling bearing fault diagnosis,
and a challenge is how to accurately separate the inner and outer race fault features from noisy
compound faults signals. Therefore, a novel compound fault separation algorithm based on parallel
dual-Q-factors and improved maximum correlation kurtosis deconvolution (IMCKD) is proposed.
First, the compound fault signal is sparse-decomposed by the parallel dual-Q-factor, and the
low-resonance components of the signal (compound fault impact component and small amount of
noise) are obtained, but it can only highlight the impact of compound faults, and failed to separate the
inner and outer race compound fault signal. Then, the MCKD is improved (IMCKD) by optimizing
the selection of parameters (the shift order M and the filter length L) based on the iterative calculation
method with the Teager envelope spectral kurtosis (TEK) index. Finally, after the composite fault
signal is filtered and de-noised by the proposed method, the inner and outer race fault signals are
obtained respectively. The fault characteristic frequency is consistent with the theoretical calculation
value. The results show that the proposed method can efficiently separate the mixed fault information
and avoid the mutual interference between the components of the compound fault.
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1. Introduction

Rolling bearing is one of the most widely used parts in rotating machinery. The operational
status of the rolling element bearing often directly affects the performance of the whole machine.
Consequently, the fault identification and diagnosis of rolling bearings are of great significance to ensure
the safe and reliable operation of mechanical equipment [1–3]. Vibration signals caused by rolling
bearing faults have been extensively studied and powerful diagnostic methods have been proposed.
In recent years, the emerging artificial intelligence diagnosis technologies have been widely concerned
by many scholars. A large number of artificial intelligent methods such as support vector machine [4],
fuzzy diagnosis method [5], convolutional neutral network [6], and recurrent neutral network [7] were
proposed to diagnose the mechanical faults. Furthermore, the sparse representation methods have
also been widely used because of the signals sparsity. Adaptive impulse dictionary [8], combined
time-frequency dictionary [9], matching pursuit [10], and dictionary learning method [11] were
presented to diagnose faults of rotating machinery. In addition to the above mentioned two popular
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methods, many other research methods such as fault quantitative diagnosis [12], fault mechanism
research [13,14], fault diagnosis of low speed machinery [15] and fault location diagnosis [16] also
gained attention. Some traditional methods such as Fourier transform, envelope analysis method,
empirical mode decomposition, wavelet transform, spectral kurtosis, and morphological filtering have
shown their advantages on single fault detection [17–19]. However, these diagnosis methods all take
the rolling bearing with single point of failure as the research object. In the actual conditions, the
failure of rolling bearing usually manifests itself as a compound fault including the outer race defect,
the inner race defect or the rollers defect. In general, due to the influence of operating environment,
the interaction between multiple noise source and compound fault, the compound fault features are
mutually coupled and interfere with each other, which causes major difficulty in compound faults
detection [20]. Therefore, the separation of the compound fault components from strong background
noise is a difficult problem in the field of mechanical fault diagnosis [21,22].

In order to solve the problem issued above and improve the monitoring level of rolling bearings’
running state, some methods have been proposed for compound faults diagnosis, such as demodulation
algorithm, variational mode decomposition, clustering algorithm, and blind source separation
technique [23–26]. Reference [27] proposed a method of combining wavelet analysis with blind
source separation for roller bearing compound faults separation that needs multiple signal channels
to analyze. However, composite signals analyzed by blind source separation are usually exported
from different channels by multiple sensors. Therefore, multiple sensors need to be installed in the
diagnosis process, which may bring a lot of inconvenience to engineering applications. McDonald et
al. [28] proposed a novel method named maximum correlated kurtosis deconvolution (MCKD), which
is an effective tool for separating out the periodic impulse fault components from the vibration signal
in circumstances of intense background noise. In recent years, MCKD has been widely used to extract
periodic pulses for fault diagnosis [29–31]. However, some shortcomings in practical application of
MCKD limit its performance to extract the transient process in noisy vibration signal. One problem
is that, like most of the existing technologies, the main concern of MCKD is the detection of a single
fault located in the outer race, inner race or rolling element, i.e., MCKD is not suitable for extracting
multiple fault-impact components simultaneously in compound fault diagnosis. However, the complex
vibration signal is often mixed with a lot of background noise, which makes the diagnosis very difficult.
Only by effectively extracting multiple fault shock signals from noise signals and enhancing fault
characteristics [32,33], fault characteristic signals can be further separated accurately. For example,
Reference [34] proposed an improved matching pursuit algorithm, which successfully extracted
the quantitative characteristics of bearing faults. Selesnick [35] proposed a sparsity-enabled signal
decomposition method based on resonance-based sparse signal decomposition (RSSD). According
to the oscillatory behavior of the signal components, the analyzed signal can be decomposed into
high and low resonance components by using the RSSD. Thus, high Q factor basis and low Q factor
basis are constructed, and non-stationary signals are sparse decomposed. In the References [36,37],
the RSSD method was introduced into the fault diagnosis of gearboxes. The results showed that
the sparse decomposition effect was better. Therefore, the proposed RSSD method can be applied
to extract multiple impact components in compound fault diagnosis. Another important problem
is how to set the input parameters appropriately for the best performance, which contains the filter
length L, shift order M and the deconvolution period T. Among those parameters, which will affect
the validation of MCKD, L and M should be set reasonably to highlight the superiority of MCKD on
the base of satisfying the prime requirement of T. If L and M are too large, the deconvoluted signal
will be distorted. Therefore, the rigorous requirements for the parameters limit the application of
MCKD. To solve this problem, the improved maximum correlation kurtosis deconvolution (IMCKD) is
proposed in this paper. It can optimize the input parameters: The shift order M and the filter length L.
In the case of different M values, calculating the mean of Teager envelope spectrum kurtosis (MTEK)
to select the optimal shift order M; then, the Teager envelope spectral kurtosis (TEK) is used as the
objective function to optimize the filter length L by the iterative algorithm.
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Based on the above discussion, a compound fault diagnosis method based on parallel dual-Q-factor
and the improved MCKD is proposed in this paper. The method combines the compound fault
characteristics of rolling bearings based on frequency characteristic analysis of composite signals.
The parallel dual-Q-factor sparse decomposition algorithm is proposed for the compound faults
of the inner and outer race of the bearing. The non-stationary signal is decomposed into the high
resonance components and low resonance components (compound fault impact component and
small amount of noise). Then, the multiple periodic failures of the compound fault signal can be
extracted simultaneously. In order to further isolate and extract the compound faults, the low resonance
component is processed by IMCKD, which is separated and extracted according to the different fault
characteristics periods.

The remainder of this paper is organized as follows. Section 2 briefly describes the theory of
the parallel dual-Q-factors base sparse decomposition. Section 3 introduces the improved maximum
correlation kurtosis deconvolution (IMCKD) for selecting the input parameters appropriately. Section 4
is devoted to descriptions of the proposed method. Section 5 is dedicated to description of application
of the proposed method with the simulation and experiment signals. The results show the effectiveness
and reliability on the compound faults decoupling diagnosis for rolling bearings.

2. The Parallel Dual-Q-Factors Bases Sparse Decomposition

The resonance property of a signal is defined by the quality factor Q, the high Q-factor base
represents the continuous oscillation component, and the low Q-factor base represents the transient
oscillation component. Figure 1 shows the concept of resonance properties of signals and the
time-domain waveform of the signal. In Figure 1, when Q = 1, it shows the single-period pulse signal,
and they are defined as the low resonance signals because of the small quality factor Q. When Q = 3 it
shows the multi-period pulse signals, and they are defined as the high resonance signals because of the
large quality factor Q.
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Figure 1. The time-domain diagram of low Q-factor and high Q-factor.

The RSSD method is actually a sparse representation using the high and the low tunable Q-factor
wavelet transform (TQWT) [35,38]. The TQWT is fully discrete, has the perfect reconstruction property,
is modestly overcomplete, and is based on the two-channel filter bank illustrated in Figure 2 [39].
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Figure 2. Analysis and synthesis filter banks for the dual-Q wavelet transform.
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In Figure 2, x(n) is the original signal, H0(w), H1(w) and H*0(w), H*1(w) are the frequency response
functions of the analysis and synthesis filters respectively; v0(n), v1(n) are the sub-band signals obtained
after decomposition. y0(n), y1(n) are the synthetic signals. The scaling parameters are given by:

β =
2

Q + 1
α= 1−

β

r
(1)

where, β is the high-pass factor, α is the low-pass factor, and r represents the redundancy.
Suppose that the observed signal x can be represented as:

x = x1 + x2x, x1,x2 ∈ RN (2)

where x1 and x2 are components with different oscillation behavior.
The signal sparse decomposition method based on the compound Q-factor basis uses the

morphological component analysis (MCA) method to separate the components nonlinearly in the signal
according to the oscillation characteristics [40,41] and establishes the optimal sparse representation of
the high resonance component and the low resonance component. The goal of MCA is to estimate x1

and x2 individually. Assuming that the signals x1 and x2 can be sparsely represented in base functions
(or frames) S1 and S2 respectively, (obtained by TQWT), they can be estimated by minimizing the
objective function [42]:

J(w1, w2) = ‖x− S1W1 − S2W2‖
2
2 + λ1‖W1‖1 + λ2‖W2‖1 (3)

where

W1—the transform coefficient of signal x1 under frame S1;
W2—the transform coefficient of signal x2 under frame S2;
S1—the filter banks of tunable-Q wavelet with the high quality factor;
S2—the filter banks of tunable-Q wavelet with the low quality factor;
λ1—weight parameter;
λ2—weight parameter.

In the sparse signal decomposition method based on the compound Q-factor bases, the objective
function J is minimized through iterating and updating the coefficient W1 and W2 by using the split
augmented Lagrangian searching algorithm (SALSA).

Eventually, it effectively separates the high resonance component and low resonance component,
and extracts the transient impulse component. After W1 and W2 are obtained, the estimated high and
low resonance components (solved by matching) are shown as follows:

x̂1 = S1W∗1, x̂2 = S2W∗2. (4)

3. Proposed IMCKD

3.1. MCKD

The MCKD technique is based on selecting a Finite Impulse Response filter (FIR filter) to maximize
the correlated kurtosis (CK), which takes advantage of the periodicity of the faults and is used to
highlight the continuous pulse covered by the strong noise in the signal. Consider a discrete signal x(n)
that is the response of the bearing excited by the fault impulses signal y(n). MCKD searches for a FIR
filter f (l) (l is a filter length) to maximize the correlation kurtosis of the signal y(n) and the general
expression for the inverse is given by [43]:

y(n) =
L∑

l=1

f (l)x(n− l + 1). (5)



Appl. Sci. 2019, 9, 1681 5 of 19

Correlation kurtosis is defined as an indicator in the MCKD algorithm to evaluate the impact
characteristics of the resulting signal y(n) (the fault impulses signal), which can reflect the proportion
of periodic influence in the signal. The correlation kurtosis is defined as [28]:

CKM(T∗) =

N∑
n=1

(
M∏

m=0
yn−mT∗)

2

(
N∑

n=1
yn2)

M+1
(6)

where M is the order of shift, L and N denote the length of filter and the sampling number of the
signal respectively, f is the filter vector f = [ f1, f2 · · · , fL]

T, T∗ is the deconvolution period and can be
calculate by the following equation:

T∗ = fs/ f
∗

(7)

where fs and f
∗

denote sampling frequency and fault characteristic frequency respectively.
The optimization function is equivalent to solving the equation:

d
d fk

CKM(T) = 0(k = 1, 2, · · · , L). (8)

The final iterative expression of the filter coefficients is represented:

f =
‖y‖2

2‖β‖2
(X0XT

0)
−1

M∑
m=0

XmTαm (9)

where X0XT
0 is the Toeplitz autocorrelation matrix of the original signal x and the inverse (X0XT

0)
−1

is
assumed to exist.

Xr =



x1−r x2−r x3−r · · · xN−r

0 x2−r x3−r · · · xN−1−r
0 0 x3−r · · · xN−2−r
...

...
...

...
0 0 0 · · · xN−L−r+1


r = [0 T 2T · · ·mT] (10)

where

αm =


y−1

1−mT (y2
1y2

1−T · · · y2
1−MT)

y−1
2−mT (y2

2y2
2−T · · · y2

2−MT)
...

y−1
N−mT(y2

N y2
N−T · · · y2

N−MT)

β =


y1y1−T · · · y1−MT
y2y2−T · · · y2−MT

...
yN yN−T · · · yN−MT

. (11)

The performance of MCKD must be guaranteed by the accurate and appropriate parameters, the
input parameters, including the length of filter L, the order of shift M, the maximum count of iteration
N and the deconvolution period T∗.

(1) Generally, the maximum count of iteration N is empirically set. The larger count of iteration
may bring a better result when the algorithm is executed to convergence but needs more calculation
time. Therefore, to ensure the algorithms converge in this paper, N = 30 is set as the maximum count
of iteration in MCKD [37].

(2) The deconvolution period T∗ is obtained from the theoretical fault characteristic frequency
mentioned above.

(3) The optimal M and L are different when MCKD is applied in different signal. Obviously, the
main problem in the practical application of MCKD is how to select the optimal parameters including
the order of shift M and the filter length L.
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3.2. IMCKD

When the four parameters are determined appropriately, which contains the length of filter L,
the order of shift M, the maximum count of iteration N and the deconvolution period T∗, the MCKD
technique can select a FIR filter to maximize the correlated kurtosis (CK). Then, the fault impulse signal
y(n) is obtained by deconvolution of the original input signal x(n) with this filter. Finally, the periodic
impulse faults component is separated out from the vibration signal.

In order to select the best shift order M and the filter length L for MCKD in all cases, and ensure
the effectiveness of MCKD for extracting the fault features from the vibration signal, the improved
maximum correlation kurtosis deconvolution (IMCKD) is proposed. When the signal is deconvoluted
and filtered with the optimal parameters by MCKD, the signal noise reduction effect is very good. The
Teager envelope spectral kurtosis (TEK) value can measure the noise reduction effect, and reflect the
degree of signal to noise ratio, so the TEK value of the impulse signal y(n) is used as the evaluation
criterions to benefit for selecting the MCKD parameters.

3.2.1. The Index Teager Envelope Spectral Kurtosis (TEK)

The Teager energy operator (TEO) is a nonlinear operator proposed by Kaiser that can effectively
extract the energy of the signal, which can effectively highlight the transient characteristics of the
impact component [44]. The Teager energy operator is used to track the instantaneous energy of signal
y(t), which is defined as follows [45]:

yn(t) = ψ[yn(t)] =
.
yn

2(t) − yn(t)
..
yn(t) (12)

where,
.
y(t) and

..
y(t) are the first and second derivatives of the signal y(t).

We simulated the bearing single point fault signal and added random noise with Signal to Noise
Ratio (SNR) of −16, −12, −8, −4, 0, 4, 8, 12 (dB) respectively. Then we calculated the Teager energy
operator signal using Equation (11), and the results are shown in Figure 3.
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Figure 3. The diagram of Teager energy operator under different SNRs, (a) −16 dB, (b) −12 dB, (c) −8 dB,
(d) −4 dB, (e) 0 dB, (f) 4 dB, (g) 8 dB, (h) 12 dB. A—the partial enlargements of (e); B—the partial
enlargements of (f).

The blue line represents the original signal and the red line represents the Teager energy operator
signal, and A, B represent the partial enlargements of SNR = 0 and SNR = 8 dB, respectively. It can be
seen from Figure 3 that TEO can track the instantaneous energy of the signal and better reflect the
impact characteristics from the time-domain partial map.

Then, we calculated their envelope spectrum by Hilbert transform by the following equation:

E(t) =

√√√√√√
yn

2(t) +

 1
π

∞∫
−∞

yn(τ)

t− τ
dτ


2

(13)

and calculated their envelope spectral kurtosis (TEK):

TEK =

1/N
N∑

i=1
(Ei(t) − uE)

4

1/N
N∑

i=1
(Ei(t) − uE)

22
(14)

where uE is the mean of the signal and N is the signal length. The corresponding TEK values for
different SNRs are shown in the Figure 4.
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Figure 4. The Teager envelope spectral kurtosis (TEK) values for different SNRs.

It can be seen from the trend graph that as the SNR of the signal increases, the TEK value tends to
increase. Therefore, the index TEK can be used to measure the noise reduction effect of the signal.
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3.2.2. The Optimal Selection of M and L

The general procedure of the optimization selection for M and L is as follows:
Step 1: Mj = j, set the scope [1,7] for j, when M > 7. This iterative method will reduce the accuracy

of the calculation because it exceeds the range of the floating-point index. Li = i, set the scope [5,350]
for i;

Step 2: Calculate T∗ = TO = fs/ fo from Equation (7), when f
∗

is fo;
Step 3: When j = 1, M1 = 1, Li = i = [5, 6, . . . , 350] substitute into the MCKD algorithm

respectively; then, the corresponding 346 fault impulse signals yi(n)−outer(i = [5, . . . , 350]) are obtained;
next, calculate the TEK of each fault impulse signal; finally, calculate the mean of TEK values (MTEK),
i.e., MTEK1−outer. Similarly, for each of M j( j = [1, 2, . . . , 7]), calculate MTEK2−outer, MTEK3−outer, . . . ,
MTEK7−outer;

Step 4: Select Mj for the best shift order Mbest-o when MTEKj-outer is the largest;
Step 5: When T∗ = TO, M = Mbest−o, Li = i = [5, 6, . . . , 350] substitute into the MCKD algorithm

respectively, corresponding 346 fault impulse signals y′
i(n)−outer

(i = [5, . . . , 350]) are obtained, then
calculate the TEK of each fault impulse signal, i.e., TEKi−outer(i = [5, 6, . . . , 350]);

Step 6: Select Li for the best shift order Lbest-o when TEKi-outer is the largest;
Step 7: Calculate T∗ = Ti = fs/ fi from Equation (7), when f

∗
is fi;

Step 8: Obtain Mbest−i and Lbest-I by repeating step 3–6.

4. Procedure of Compound Faults Diagnosis

This method is applied to separate and extract the compound fault of the inner and outer race
of the bearing. Firstly, the input measured signal is preprocessed by the parallel dual-Q-factor base
sparse decomposition to obtain a low resonance component, and the compound failure impacts of
the inner and outer rings are clearly extracted. Then the IMCKD is used to separate and extract the
compound fault feature according to different fault periods. The specific process of the proposed
method is illustrated in the flow chart shown in Figure 5, and the method is described as follows:

(1) Input the vibration signal x(t), including noise, random vibration generated by normal parts of
the rolling bearing and shock vibration generated by composite faults.

(2) Use the parallel dual-Q-factor bases sparse decomposition to obtain the high resonance components
(random vibration generated by the normal part and strong noise) and the low resonance
components (composite fault impact component and a small amount of noise):

a. Set the appropriate decomposition parameters: The quality factor Q1, Q2, the redundancy
r1, r2, and the number of layers J1, J2;

b. Decompose the input signal x(t) using the parallel dual-Q-factor;
c. Extract the low resonance component xL;

(3) The low resonance components of the signal are deconvoluted and filtered with the optimal
parameters by IMCKD:

a. Calculate the T∗ (* is i, o; i represents inner, o represents outer), and pre-select the scope of
MCKD parameters (M, L);

b. Calculate Mbest−i, Lbest-i and Mbest−o, Lbest-o based on Section 3.2.2;
c. The low resonance component xL is deconvoluted and filtered with the optimized parameters

[To, Mbest−o, Lbest-o] and [Ti, Mbest−i, Lbest-i] respectively to obtain the time domain signals y1

and y2;

(4) Extract the fault feature frequency from the envelope spectrum calculated by Hilbert
Transform (HT).
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5. Application of the Proposed Method

To verify the effectiveness of the proposed method for extracting the fault characteristic components
in the noise, this method has been applied to simulation analysis and experimental cases.

5.1. Simulation Analysis

5.1.1. The Construction of Compound Fault Simulation Signal

The compound fault signal was simulated by the simulation signal of the inner race and outer
race. The outer race fault signal simulation model was defined as in the following equation [46]:

x0(t) = y0e(−2ζπ fnt0) · sin(2π fn
√

1− ζ2 · t0) (15)

where y0 is the possible amplitude modulator; fn is the natural frequency; t0 is a single cycle sampling
time; ζ is the damping factor. The parameters of the outer race simulation signal are shown in Table 1.
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Table 1. The parameters of outer fault simulation signal.

Rotating
Frequency f r/Hz

Natural Frequency
f n/Hz

Sampling
Frequency f s/Hz

Sampling
Point N

Fault Frequency
fo/Hz

24 2000 15360 8192 62

The inner race fault simulation signal is defined as:

xi(t) = s(t) + n(t) =
∑

iAih(t− iT − τi) + n(t) (16)

where
Ai = A0 cos 2(2π frt + φA) + CA
h(t) = e−Bt cos(2π fnt + φω)
1/ fr

(17)

where τi represents the minor fluctuation of the i shock relative to the period T; Ai is the amplitude
modulation with 1/ fr as a cycle; h(t) is an exponential decay pulse; B is the attenuation coefficient of
the system; φA, φω are the initial phase. The parameters of the inner race simulation signal are shown
in Table 2.

Table 2. The parameters of inner fault simulation signal.

Rotating
Frequency f r/Hz

Natural Frequency
f n/Hz

Sampling
Frequency f s/Hz

Sampling
Point N

Fault Frequency
f i/Hz

24 2000 15360 8192 300

The mathematical model of the compound inner race and outer race spalling is shown in
Equation (18):

x(t) = xi(t) + x0(t). (18)

The time domain waveform of the outer race and inner race fault simulation signals are shown in
Figure 6a,b. Figure 7a is the compound signal; Figure 7b is the compound fault simulation signal with
gauss noise. It can be seen from Figure 7b that the inner and outer periodic shock characteristics are
overwhelmed by noise and it cannot accurately reflect the characteristics of fault impact. Therefore,
it is necessary to further extract fault features.
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Figure 6. The time-domain waveform of the single fault simulation signal: (a) Outer race; (b) Inner race.
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Figure 7. The time-domain waveform of the compound fault simulation signal: (a) Outer race and
inner race fault; (b) compound signal with gauss noise.

5.1.2. Compound Faults Feature Extraction for Simulation Signal

Firstly, the sparse decomposition of the parallel dual-Q-factor bases is applied to extract
and sparsely represent the compound fault components according to the proposed method.
The decomposition parameters are shown in Table 3, and the analysis results are shown in Figure 8.
Figure 8a,b are the low resonance components which is obtained by using the sparse decomposition
method and the Hilbert envelope spectra of decomposed components respectively. It can be seen from
Figure 8b that peaks are obvious at fr (24.38 Hz), fo (61.88 Hz), fi (300 Hz) and their harmonics. Hence,
the results indicate that the method can successfully identify and extract features of the simulated
signal composed of impact components of the inner race and outer race simultaneously. However, the
two fault impact signals are overlapped with each other, and the two fault characteristic frequencies
and their harmonics are interlaced with each other. Therefore, it is difficult to accurately extract the
two-fault characteristic information from the envelope spectrum.

Table 3. The sparse decomposition parameters of case 1.

Attribute Q1, Q2 Redundancy (r1, r2) Number of Layers (J1, J2)

Low resonance component 1 4 27
High resonance component 6 4 12

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 19 

  

Figure 7. The time-domain waveform of the compound fault simulation signal: (a) Outer race and inner 
race fault; (b) compound signal with gauss noise. 

5.1.2. Compound Faults Feature Extraction for Simulation Signal 

Firstly, the sparse decomposition of the parallel dual-Q-factor bases is applied to extract and 
sparsely represent the compound fault components according to the proposed method. The 
decomposition parameters are shown in Table 3, and the analysis results are shown in Figure 8. Figure 
8a,b are the low resonance components which is obtained by using the sparse decomposition method 
and the Hilbert envelope spectra of decomposed components respectively. It can be seen from Figure 
8b that peaks are obvious at fr (24.38 Hz), fo (61.88 Hz), fi (300 Hz) and their harmonics. Hence, the results 
indicate that the method can successfully identify and extract features of the simulated signal composed 
of impact components of the inner race and outer race simultaneously. However, the two fault impact 
signals are overlapped with each other, and the two fault characteristic frequencies and their harmonics 
are interlaced with each other. Therefore, it is difficult to accurately extract the two-fault characteristic 
information from the envelope spectrum. 

Table 3. The sparse decomposition parameters of case 1. 

Attribute Q1, Q2 Redundancy (r1, r2) Number of layers (J1, J2) 
Low resonance component 1 4 27 
High resonance component 6 4 12 

  

Figure 8. The analysis results of case 1 with the parallel dual-Q-factor bases sparse decomposition: (a) 
Low resonance component; (b) Hilbert envelope spectrum. 

To further separate the inner and outer race fault features from the composite fault signals, 
according to the different fault periods of the inner and outer race of the rolling bearing, the adaptable 
deconvolution techniques was applied to extract the periodic features from the low resonance 
component. The deconvolution period *T (* is i, o) of the signal is shown in Table 4. 

 
  

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (t/s)

A
(m

/s
2 )

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-3

-2

-1

0

1

2

3

Time (t/s)

A(
m

/s
2 )

 

 

(a) (b) 

(a) (b) 

Figure 8. The analysis results of case 1 with the parallel dual-Q-factor bases sparse decomposition:
(a) Low resonance component; (b) Hilbert envelope spectrum.

To further separate the inner and outer race fault features from the composite fault signals,
according to the different fault periods of the inner and outer race of the rolling bearing, the adaptable
deconvolution techniques was applied to extract the periodic features from the low resonance
component. The deconvolution period T∗ (* is i, o) of the signal is shown in Table 4.



Appl. Sci. 2019, 9, 1681 12 of 19

Table 4. The parameters T* (* is i, o).

Fault Type Fault Frequency Period of Interest T* (* is i, o)

Outer race fo (62 Hz) To = 248
Inner race fi (300 Hz) Ti = 51

Then, we selected the optimal parameter (M, L) as mentioned in Section 3.2.2
(1) When To = 248, Figure 9a,b show the relationship between M and MTEK, and the relationship

between the filter length L and the TEK by iterative calculation respectively. It was found that when M
= 3, the MTEK value was the largest from Figure 9a, and when L = 20, the TEK value was the largest
from Figure 9b, so the optimal parameters To, Mo, and Lo were determined [248, 3, 20].
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Figure 9. The variation curves of MTEK and TEK for case 1: (a) To = 248, the tendency of MTEK with
M; (b) To = 248, the iterative result between L and TEK; (c) Ti = 51, the tendency of MTEK with M;
(d) Ti = 51, the iterative result between L and TEK.

(2) When Ti = 51, Figure 9c,d show the relationship between M and MTEK, and the relationship
between the filter length L and the TEK by iterative calculation respectively. It was found that when M
= 5, the MTEK value was the largest from Figure 9c, and when L = 55, the TEK value was the largest
from Figure 9d, so the optimal parameters Ti, Mi, and Li were determined [51, 5, 55].

The low resonance component was deconvoluted and filtered with the obtained optimal parameters
[T*, M*, L*] (* is i, o) using MCKD. Finally, the analysis result is presented in Figure 10. It is noticeable
that the impulse components in the time-domain of the outer race fault and the inner race fault can
be found clearly in Figure 10a,c, respectively. From Figure 10b,d, the harmonic components of the
characteristic frequencies of 61.88 Hz and 300 Hz are revealed noticeably. It is consistent with the
theoretical fault characteristic frequency (fo (62 Hz), fi (300 Hz)). The results indicate that the proposed
method can successfully separate the features of the simulated signal composed of the outer race fault
and the inner race fault.
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component; (b) To = 248, Hilbert envelope spectrum; (c) Ti = 51, low resonance component; (d) Ti = 51,
Hilbert envelope spectrum.

5.2. Experimental Verification

Figures 11 and 12 shows the test rig to collect the vibration data of the bearing. The test rig
consisted of a motor driving the shaft through a flexible coupling, HG3528A data collection instrument
and laptop. The vibration acceleration of the damaged bearing in the vertical planes were measured
using an accelerometer, the bearing model was SKF6307. The output from the accelerometer was
sampled at 15360 Hz. The motor was run at 1496 rpm, and the collected data was uploaded to the
laptop for data processing and analysis.
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The bearing with compound fault (Figure 13) was machined as a pitting defect on the outer race
and inner race of the bearing with the size of 1 mm in diameter and 0.2 mm in depth. The fault
characteristic frequencies of the outer race and inner race were fo = 76.7 Hz and fi = 122.7 Hz respectively.
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The experimental data of the compound fault was selected for analysis. The time-domain signal
and the frequency spectrum are shown in Figure 14. The impact components in the graph were not
obvious, so the fault features needed to be further extracted.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 19 

The sparse decomposition of the parallel dual-Q-factor bases was applied to extract and sparsely 
represent the compound fault components. The decomposition parameters are shown in Table 5, and 
the analysis results are shown in Figure 15. Figure 15a,b are the low resonance components which were 
obtained by using the sparse decomposition method and the Hilbert envelope spectra of decomposed 
components respectively. It can be seen from Figure 15b that peaks were obvious at fo (76.88 Hz), fi (121.9 
Hz) and their harmonics. Hence, the results indicate that the proposed method can identify and extract 
features of the compound impact components of the inner race and outer race simultaneously. 
However, the two fault impact signals are overlapped with each other, and the two fault characteristic 
frequencies and their harmonics are interlaced with each other. Therefore, it is difficult to accurately 
extract the two-fault characteristic information from the envelope spectrum. 

Data Acquisition Test Rig

Sensor

 
Figure 12. The experimental bench system. 

 
Figure 13. The bearing with compound fault. 

 

Figure 14. Compound fault vibration signal and its frequency spectrum. 

Table 5. The sparse decomposition parameters of case 2. 

Attribute Q1, Q2 Redundancy (r1,r2) Number of layers (J1, J2) 
Low resonance component 1 4 25 
High resonance component 6 6 11 

Figure 14. Compound fault vibration signal and its frequency spectrum.

The sparse decomposition of the parallel dual-Q-factor bases was applied to extract and sparsely
represent the compound fault components. The decomposition parameters are shown in Table 5, and
the analysis results are shown in Figure 15. Figure 15a,b are the low resonance components which were
obtained by using the sparse decomposition method and the Hilbert envelope spectra of decomposed
components respectively. It can be seen from Figure 15b that peaks were obvious at fo (76.88 Hz), fi
(121.9 Hz) and their harmonics. Hence, the results indicate that the proposed method can identify and
extract features of the compound impact components of the inner race and outer race simultaneously.
However, the two fault impact signals are overlapped with each other, and the two fault characteristic
frequencies and their harmonics are interlaced with each other. Therefore, it is difficult to accurately
extract the two-fault characteristic information from the envelope spectrum.

Table 5. The sparse decomposition parameters of case 2.

Attribute Q1, Q2 Redundancy (r1, r2) Number of Layers (J1, J2)

Low resonance component 1 4 25
High resonance component 6 6 11
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Figure 15. The analysis results of case 2 with the parallel dual-Q-factor bases sparse decomposition: (a)
Low resonance component; (b) envelope spectrum.

To further separate the inner and outer race fault features from the composite fault signals,
the improved deconvolution techniques were applied to extract the periodic features from the low
resonance component. The deconvolution period T∗ (* is i, o) of the signal is shown in the Table 6.

Table 6. The parameters T* (* is i, o).

Fault Type Fault Frequency Period of Interest T* (* is i, o)

Outer race fo (76.7 Hz) To = 200
Inner race fi (122.7 Hz) Ti = 125

Then, we selected the optimal parameter (M, L) as mentioned in Section 3.2.2
(1) When To=200, Figure 16a,b show the relationship between M and MTEK, and the relationship

between the filter length L and the TEK by iterative calculation respectively. It was found that when
M = 1, the MTEK value was the largest from Figure 16a, and when L = 260, the TEK value was the
largest from Figure 16b, so the optimal parameters To, Mo, and Lo were determined [200, 1, 260].
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Figure 16. The variation curves of MTEK and TEK for case 2: (a) To = 200, the tendency of MTEK with
M; (b) To = 200, the TEK result for outer race; (c) Ti = 125, the tendency of MTEK with M; (d) Ti = 125,
the TEK result for outer race.
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(2) When Ti = 125, Figure 16c,d show the relationship between M and MTEK, and the relationship
between the filter length L and the TEK by iterative calculation respectively. It was found that when
M = 6, the MTEK value was the largest from Figure 16c, and when L = 250, the TEK value was the
largest from Figure 16d, so the optimal parameters Ti, Mi, and Li were determined [125, 6, 250].

The low resonance component was deconvoluted and filtered with the obtained optimal parameters
[T*, M*, L*] (* is i, o) using MCKD. Finally, the analysis result is presented in Figure 17. It was noticeable
that the impulse components in the time-domain of outer race fault and inner race faults were found
clearly in Figure 17a,c respectively. From Figure 17b,d, the harmonic components of the characteristic
frequencies 76.88 Hz and 121.9 Hz were revealed noticeably. It is consistent with the theoretical
fault characteristic frequency (fo (76.7 Hz), fi (122.7 Hz)). The results show that the proposed method
successfully separated the fault information of the outer race and inner race of the bearing from the
composite fault signal.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 19 

  
Figure 16. The variation curves of MTEK and TEK for case 2: (a) To = 200, the tendency of MTEK with M; 
(b) To = 200, the TEK result for outer race; (c) Ti = 125, the tendency of MTEK with M; (d) Ti = 125, the TEK 
result for outer race. 

The low resonance component was deconvoluted and filtered with the obtained optimal 
parameters [T*, M*, L*] (* is i, o) using MCKD. Finally, the analysis result is presented in Figure 17. It 
was noticeable that the impulse components in the time-domain of outer race fault and inner race faults 
were found clearly in Figure 17a,c respectively. From Figure 17b,d, the harmonic components of the 
characteristic frequencies 76.88 Hz and 121.9 Hz were revealed noticeably. It is consistent with the 
theoretical fault characteristic frequency (fo (76.7 Hz), fi (122.7 Hz)). The results show that the proposed 
method successfully separated the fault information of the outer race and inner race of the bearing from 
the composite fault signal. 

 

 
Figure 17. The analyzed results of case 2 with the proposed method: (a) To = 200, low resonance 
component; (b) To = 200, Hilbert envelope spectrum of (a); (c) Ti = 125, low resonance component; (d) Ti = 
125, Hilbert envelope spectrum of (c). 

  

1 2 3 4 5 6 782

84

86

88

90

92

94

The order of shift  M

M
TE

K

 

 

M=6

0 50 100 150 200 250 300 35020

40

60

80

100

120

140

The filter length L

TE
K

L=250

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-6

-4

-2

0

2

4

6

Time (t/s)

A
m

pl
itu

de

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-10

-5

0

5

10

Time (t/s)

A
m

pl
itu

de

(c) (d) 

(a) (b) 

(c) (d) 

Figure 17. The analyzed results of case 2 with the proposed method: (a) To = 200, low resonance
component; (b) To = 200, Hilbert envelope spectrum of (a); (c) Ti = 125, low resonance component;
(d) Ti = 125, Hilbert envelope spectrum of (c).

6. Conclusions

The failure of a rolling bearing usually manifests itself as compound failure, which are coupled
with each other. The fault characteristic frequencies in the envelope spectrum are staggered with each
other, so it is difficult to accurately separate them. This study presents a compound fault diagnosis
method for rolling bearings based on a parallel dual-Q-factor and the improved maximum correlated
kurtosis deconvolution (IMCKD). The parallel dual-Q-factor bases sparse decomposition is used as
noise reduction processing. Improving the MCKD according to the index TEK can reflect the noise
reduction effect, which can select the appropriate parameters of MCKD, and accurately realize the
separation and extraction of composite fault features. After the composite fault signal is filtered and
de-noised by this method, the spectrum peak of the fault feature frequency and its harmonics are
clearly presented in the spectrum diagram, which is basically consistent with the theoretical calculation
value. Therefore, it is possible to recognize the inner and outer race faults. The effectiveness of the
proposed method is verified by analyzing the compound fault mathematical simulation signal and the
measured signal. The characters of compound faults are the multiplicity of faults, which brings great
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difficulties for fault diagnosis, so more study should be conducted on compound fault detection in
the future.
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