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Abstract: In recent years, distributed energy storage (DES) has experienced rapid growth and has
been widely applied in active distribution networks (ADNs). Owing to the close correlation between
the characteristics and the application scenarios, DES modeling needs to be parameterized separately
for various application demands. In this paper, a parameterized model for optimal DES planning in
ADNs is proposed. The typical scenarios for DES planning are generated by the clustering technique,
containing the patterns of load demand, wind turbine output and photovoltaic output. Secondly,
an optimal planning model of DES considering parameterized characteristics is established, which is
essentially a mixed integer non-linear optimization problem. Then, the model is converted to a
mixed-integer second-order cone programming model, which can be solved efficiently by available
commercial software. Finally, case studies on the modified IEEE 33-node system and IEEE 123-node
system verify the efficiency of the proposed method, and the effects of DES planning are validated by
two evaluation indexes.

Keywords: distributed energy storage (DES); active distribution networks (ADNs); optimal planning;
mixed-integer second-order cone programming (MISOCP)

1. Introduction

With the integration of distributed generators (DGs) and flexible loads, traditional distribution
systems are evolving into active distribution networks (ADNs) [1]. The integration of renewable DGs
contributes to power loss reduction, power supply reliability enhancement, reduction of pollution
gases emission, etc. [2,3], while bringing new challenges to the planning and operation of distribution
system like voltage violation [4], bi-direction power flow [5], power flow fluctuations [6]. In recent
years, distributed energy storage (DES) as an important measure to alleviate the above problems has
developed rapidly in both economic and technical aspects [7,8]. Compared with large-scale centralized
energy storage plants, DES has fewer restrictions on the geographical conditions of installation location
and performs an increasingly important part in various application scenarios of ADNs [9].

By the criterion of discharge duration, the DES technologies can be divided into two categories,
energy-type storage and power-type storage. The energy-type storage technologies, including
pumped hydraulic storage (PHS), compressed air energy storage (CAES), and large-scale battery
storage, are applied to provide long-term electricity support such as arbitrage [10], loss reduction [11],
congestion alleviation [12], and long time-scale voltage control [13]. The latter type of energy storage,
known as power-type storage, is suitable for distributed energy resources smoothing [14], power quality
management [15], frequency regulation [16] and short time-scale voltage control [17]. Supercapacitor
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or ultracapacitor energy storage (SCES), flywheel energy storage (FES), superconducting magnetic
energy storage (SMES) and small-scale battery storage belong to this category.

However, the high costs of DES, especially high investment costs, are the major obstacles limiting
further development. Although some new technologies such as lead-carbon battery and LiFePO4

(LFP) battery have largely mitigated the economic problem [18], DES is not as widely used as other
traditional electricity equipment. As a result, it is of great significance to optimize the sizing and
allocation of DES to maximize the economic benefits in different scenarios.

Many works in the literature have studied on the sizing and allocation of DES in ADNs. A combined
genetic algorithm and sequential quadratic programming method is proposed in [19], and further
testify the potential economic benefits of energy storage systems. Considering the voltage deviation,
congestion, network losses and load shifting, a multi-objective planning model is proposed in [20].
A bi-level programming method is proposed in [21], and optimal planning and operation of energy
storage system are solved by upper and lower programming respectively. Considering the influence
of soft open point (SOP) and network configuration, a second-order cone programming (SOCP)
method to determine the optimal siting and sizing DES is established in [22]. In [23], a relaxed
convex optimal power flow (OPF) model is proposed, and solved by benders decomposition method.
The optimal methods of resources allocation in the fields of information communication and industrial
manufactory also provide ideas for DES planning. For instance, a resource service sharing model
of cloud manufactory (CMfg) based on the Gale–Shapley algorithm is proposed in [24], indicating
great advantages in promoting the resource-sharing utilization rate. In [25], to support the capacity
sharing issue among independent firms, an advanced framework based on game theory and fuzzy
logic is proposed.

The type selection of energy storage is a critical issue in DES planning [26]. The characteristics of
different DES types vary in economics and technology. Owing to the close correlation between the
characteristics and the application scenarios, the DES modeling needs to be parameterized separately
for various application demands. For instance, low cycle efficiency will increase the cost of effective
output power; and a low cycle life adds to the total cost owing to high-frequency equipment updates.
A single type of energy storage device has its unique advantages, but it is difficult to incorporate high
efficiency, long life, and many other requirements in one device. Therefore, coordinated planning of
multiple types of energy storage systems can adequately cover the potential technical advantages of
various DES, and meet the demand for energy storage performance in distribution networks. On the
other hand, with the development of DES, the cost of energy storage systems will be significantly
reduced, and the economic benefits in distribution networks will become more promising. For the
reason that the cost of different DES types varies enormously, it is necessary to compare the costs
of different types of energy storage in different scenarios and choose the optimal DES selection to
maximize economic benefits. However, the quantization parameters of DES are complicated and
challenging to parameterize, and it will increase the difficulty of the calculation due to the parameter
multiplication of various DES types. In summary, there is a need to propose a parameterized model,
which can transform the efficiency, life cycle, and other characteristics of multiple DES types into
parameterized representation. The parameterized model will provide a quantitative description for
different typed of DES, making it possible to scientifically and comprehensively consider the specific
characteristics of different DES types in optimal planning.

This paper proposes a parameterized model for optimal DES planning in ADNs. The main
contributions are summarized as follows:

(1) The economic and technical characteristics of DES are comprehensively categorized and analyzed.
Then, the influences of DES characteristics on the operation and planning are also considered to
provide a parameterized modeling for DES planning in ADNs.

(2) An optimal planning model of DES considering parameterized characteristics of DES is proposed
in this paper. The proposed model considers multiple types of DES, which can solve the problem
with coordinated planning. By applying the convex relaxation technique and introducing
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the relevant auxiliary variables, the proposed model is transformed into an effectively solved
mixed-integer second-order cone programming (MISOCP) model.

The remainder of this paper is organized as follows. In Section 2, a set of parameterized data is
defined to apply in DES planning in ADNs. In Section 3, considering two different application scenarios
for DES, the parameterized modeling of DES planning in ADNs is proposed. Section 4 proposes the
method that transforms the original model into an effectively solved mixed-integer second-order cone
programming (MISOCP) model. In Section 5, numerical results on the modified IEEE 33-node system
and modified IEEE 123-node system demonstrate the effectiveness of the proposed method, and the
effects of DES are evaluated by two evaluation indexes. Finally, conclusions are drawn in Section 6.

2. Parameterized Representation of Distributed Energy Storage (DES) Characteristics

In general, DES normally exhibits different economic and technical characteristics [27].
The common characteristics of energy storage are the capital cost of DES, lifetime in cycles and
years, power/energy density, and maximum depth of discharge (DoD). The investment cost of DES
includes the cost of energy storage and power inverters, which is the most important factor affecting
the economic benefits of DES. The cycle efficiency indicates the round-trip efficiency in one cycle
operation. Low cycle efficiency will increase the cost of effective output power, further increasing
the total energy purchase cost from the external grid. Maximum depth of discharge is the ability to
discharge the total energy of DES in a discharge duration. High DoD means a higher total energy
output at the same energy capacity. Meanwhile, DES with high DoD is more economical on the same
capacity of total energy output. The lifetime demonstrates the durability of DES. Low cycle life will
result in quickly life decreasing during the frequent switching of discharge-charge state and add to the
total cost owing to high-frequency equipment updates. Overall, the characteristics of DES largely affect
the results of DES planning. Therefore, all these characteristics of DES need to be taken into account
and parameterized while modeling.

In this paper, three representative types of DES are considered, and the parameters are shown in
Table 1 [7,10]. The three types of DES have their own features: a lead-acid battery is the most widely
used rechargeable battery owing to its low investment cost; a Li-ion battery has the highest efficiency;
and a vanadium redox flow battery (VRB) has an exceptionally long lifetime. As a consequence,
parametrized modeling is needed to search their applicability in different demand scenarios.

Table 1. Typical parameters of distributed energy storage (DES) [7,10].

Parameter Lead-Acid Battery Li-Ion Battery VRB

Capital cost of power converter ($/kW) 50 50 50
Capital cost of energy storage ($/kWh) 125 200 250

Cycle efficiency (%) 90 95 75
Cycle life (cycles) 3000 5000 10,000
Lifetime (years) 10 12 15

Maximum depth of discharge (%) 70 90 70

3. Parameterized Modeling of Optimal DES Planning in Active Distribution Networks (ADNs)

3.1. Typical Scenario Generation

By clustering techniques, the method is developed to capture the daily patterns of load demand,
wind turbine output and photovoltaic output. With the clustering method, typical scenarios and their
occurrence probabilities can be obtained [28]. The purpose of clustering is to group the data objects
into multiple clusters in regards to the similarity. The objects within a cluster are similar, whereas the
objects of different clusters are dissimilar.
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The k-means algorithm is one of the most popular clustering techniques in the fields of
mathematical statistics, pattern recognition, machine learning and data mining. It can well reflect the
geometric and statistical significance of clustering [29].

The calculation steps of the k-means clustering algorithm are as follows:
Step 1: Given the number of clusters x, randomly select x objects from the cluster data as

cluster centers;
Step 2: According to the principle that the distance from the cluster center is the smallest,

the remaining objects are assigned to the corresponding categories;
Step 3: After all the objects are divided by category, the cluster center is recalculated; the object

with the smallest sum of distances to other objects in the same category is determined as the center of
the current class;

Step 4: Repeat Steps (2) and (3) until the cluster center no longer changes, the cluster ends. Then,
the clustering result is obtained.

By the above steps, the typical scenarios for DES planning are generated by the clustering
technique, containing the patterns of load demand, wind turbine output and photovoltaic output.

3.2. Objective Function

In order to clearly show the feasibility and applicability of the proposed method in different
application scenarios, two objective functions are considered and calculated respectively. Moreover,
to meet the comprehensive planning requirements in real scenarios, the individual objects can be easily
combined and solved by the multi-objective approaches.

In reality, the DGs and DES may have different ownerships, such as belonging to the distribution
company, the third-party, and the consumers. The differences in ownerships may affect their
observability, controllability, and dispatch cost. For simplicity, all the DGs and DES in this paper are
assumed to be owned by the distribution company or the distribution system operator (DSO),
which means that they all can be dispatched without extra costs besides the operational cost.
The dispatch cost of DGs that belong to the third-party can be easily considered in the proposed
method with an additional cost item.

3.2.1. Economic Benefits of ADN

The minimum annual comprehensive cost of ADN is set as the objective function, which is
expressed as follows:

minC1 = COPE + CINV (1)

where COPE is the annual operation cost of ADN and CINV is the investment cost of DES, which are
formulated as follows:

COPE =
∑

s∈ΩS

(∑
t∈NT
λtPSUB

s,t ∆t
)
ps (2)

CINV =
d(1 + d)ym

(1 + d)ym
− 1

∑
m∈Ωtype

∑
i∈NN

(
CPOW

m yi,mSunit
m + CENE

m zi,mEunit
m

)
(3)

where ΩS is the set of scenarios and Ωtype is the set of DES types. NT is the total periods of the time
horizon. NN is the total number of the nodes. CPOW

m and CENE
m are the capital cost for 1 kW power

capacity and 1 kWh energy capacity of the mth DES. Sunit
m and Eunit

m are the unit power capacity and
energy capacity of the mth DES. yi,m and zi,m are the total number of power units and energy units of
the mth DES at node i. PSUB

s,t is the active power at the substation in the sth scenario. ∆t is the time
interval, λt is the time-of-use electricity price, ps is the probability of the sth scenario, d is the discount
rate of DES, and ym is the lifetime of the mth DES.

The annual operation cost of an ADN is represented by the cost of total energy purchasing from
the external grid under the electricity time-of-use tariff. The benefits brought by DES in power loss
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reduction can be reflected in the cost of energy purchasing from the external grid. The investment cost
includes the cost of energy storage and power inverter.

As the power source of the distribution network, the substation node can be conveniently equipped
with DES to optimize the power flow between the distribution network and the external bulk power
grid. However, in this paper we mainly focus on the optimization within the distribution network by
the optimal planning of different DESs. For this application, the effectivity of DES that installed at the
source node is limited. Therefore, all the nodes except the substation node are considered as candidate
locations for DES planning in this paper.

3.2.2. Power Fluctuation Smoothing

Utilizing the fast charge/discharge characteristics, DES can effectively smooth the rapid power
fluctuation brought by renewable DGs comprising wind turbines (WTs) and photovoltaic generators
(PVs). Considering the investment cost of DES and the ability to smooth power fluctuation of DGs,
the objective function is expressed as follows:

minC2 = λ f CFLU + CINV (4)

where λ f is the cost of DG power fluctuation. To demonstrate the performance of DES in the application
scenario of power fluctuation smoothing, λ f is the transformed parameter indicating the mathematical
relationship between the power fluctuation and the investment cost of DES. The purpose of the
transformation process is to make the objective function more clear. λ f is designed according to [30].
CFLU is the power fluctuation of DG, which is expressed as:

CFLU =
∑

s∈ΩS

{∑
m∈Ωtype

∑
i∈NN

∑
t∈NT

[(
PDG

s,t,i + PDES
s,t,i,m

)
−

(
PDG

s,t−1,i + PDES
s,t−1,i,m

)]2
}
ps (5)

where PDG
s,t,i is the active power injection by DG at node i in the sth scenario, and PDES

s,t,i,m is the active
power injection by the mth DES at node i in the sth scenario.

The power fluctuation of DG is determined by the accumulation of power difference between
adjacent moments. Considering that the DES integrated with DGs can be best utilized to smooth the
power fluctuation, only the nodes with DG installed are considered as candidate locations for DES
planning in this application scenario.

3.3. System Power Flow Constraint

∑
ik∈Ωb

Ps,t,ik =
∑

ji∈Ωb

(
Ps,t, ji − r jiI2

s,t, ji

)
+ Ps,t,i (6)∑

ik∈Ωb
Qs,t,ik =

∑
ji∈Ωb

(
Qs,t, ji − x jiI2

s,t, ji

)
+ Qs,t,i (7)

Ps,t,i = PDG
s,t,i +

∑
m∈Ωtype

PDES
s,t,i,m − PLOAD

s,t,i (8)

Qs,t,i = QDG
s,t,i +

∑
m∈Ωtype QDES

s,t,i,m −QLOAD
s,t,i (9)

PSUB
s,t =

∑
i j∈Ωb

Ps,t,i j, i ∈ Ωsub (10)

U2
s,t,i −U2

s,t, j − 2
(
ri jPs,t,i j + xi jQs,t,i j

)
+

(
r2

i j + x2
i j

)
I2
s,t,i j = 0 (11)

I2
s,t,i j =

P2
s,t,i j + Q2

s,t,i j

U2
s,t,i

(12)
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where Ωb is the set of all branches and Ωsub is the set of substation nodes. Ps,t,i j and Qs,t,i j are the active
and reactive power flow of branch i j in the sth scenario. Ps,t,i and Qs,t,i are the total active and reactive
power injection at node i in the sth scenario. It,i j is the branch current magnitude and Ut,i is the node
voltage magnitude. ri j and xi j are the resistance and reactance of branch i j. PLOAD

s,t,i and QLOAD
s,t,i is the

active and reactive power load at node i in the sth scenario.
Constraints (6) and (7) represent the power balance of node i in period t at the sth scenario.

The power injection of node i in period t in the sth scenario can be described as (8) and (9). Constraint
(10) represents the active power balance at the substation node. The voltage drop equation over each
branch is expressed as (11). The current magnitude of each branch can be determined by using (12).

3.4. Secure Operation Constraint

(
Umin

i

)2
≤ U2

s,t,i ≤
(
Umax

i

)2
(13)

0 ≤ I2
s,t,i j ≤

(
Imax
i j

)2
(14)

where Umin
i and Umax

i are the lower and upper limit of statutory voltage at node i. Imax
i j is the upper limit

of statutory current at branch i j. The limits on nodal voltage and current are described as constraints
(13) and (14).

3.5. DES Operation Constraint

√
(PDES

s,t,i,m)
2
+ (QDES

s,t,i,m)
2
≤ yi,mSunit

m (15)

PDES,L
s,t,i,m = ADES

m

√
(PDES

s,t,i,m)
2
+ (QDES

s,t,i,m)
2

(16)

EDES
s,t+∆t,i,m = EDES

s,t,i,m −
(
PDES

s,t,i,m + PDES,L
s,t,i,m

)
∆t (17)

zi,mEunit
m SOCmin

m ≤ EDES
s,t,i,m ≤ zi,mEunit

m SOCmax
m (18)∑

t∈NT

∣∣∣∣PDES
s,t,i,m

∣∣∣∣∆t

2zi,mEunit
m

≤
1

365
NM

m
ym

(19)

EDES
s,i,m,t=T = zi,mEunit

m SOCs,m,t=0 (20)

where PDES
s,t,i,m and QDES

s,t,i,m are the active and reactive power injection by the mth DES at node i in the

sth scenario. EDES
s,t,i,m is the energy stored of the mth DES at node i in the sth scenario. ADES

m is the loss

coefficient of the mth DES. SOCmin
m and SOCmax

m are the minimum and maximum state of charge limit
of the mth DES. NM

m is the cycle life of the mth DES.
Constraint (15) represents the converter capacity limit of DES. The power loss of DES is considered

in constraint (16). Constraint (17) determines that the energy stored in DES in period (t + 1) depends
on the previous energy stored in DES and the charge/discharge power of the time interval. Constraint
(18) represents the maximum and minimum state of charge (SOC) limits. Weighted energy throughput
method is adopted to describe the cycle life of DES in constraint (19) [31]. The constraint relies on
the principle that an electrochemical cell can exchange a finite amount of charge during its lifespan.
This value can be assessed through cycling tests and calculated as the charge that pass through a cell
during a complete discharge-charge cycle multiplied by the total number of cycles that a battery can
perform before depletion. Constraint (20) implies that the energy stored in DES at the end of one day
has to equal its initial value. It is noteworthy that the power of DES is determined by the minimum
power of the energy storage equipment and the power converter. To make the DES modeling more
generalized and simplified, an ideal power matching between the energy storage device and its power
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converter is assumed in this paper. Therefore, constraint (15) can be considered as the power limit of
the entire energy storage system.

3.6. DES Planning Constraint

∑
m∈Ωtype

∑
i∈NN

yi,mSunit
m ≤ SBGT (21)∑

m∈Ωtype

∑
i∈NN

zi,mEunit
m ≤ EBGT (22)

yi,mSunit
m

SBGT
≤ δi (23)∑

i∈NN
δi ≤ nDES (24)

where SBGT and EBGT are the maximum power capacity and energy capacity of DES in planning. δi is
a binary variable indicating the location of DES at node i. nDES is the maximum number of DES
installing nodes.

Constraints (21) and (22) represent the maximum limits on power and energy capacity of DES in
planning. The constraint that represents whether DES is installed at node i can be described as (23).
When δi = 1, DES is installed at node i; when δi = 0, no DES is installed at node i. The limit on the
maximum number of nodes that DES can be installed is expressed as constraint (24).

As a consequence, parameterized model for optimal DES planning in ADN is finally expressed as
(25), which is a mixed-integer non-linear programming (MINLP) model.

MINLP Model : minC1 or minC2

s.t. (6)–(24)
(25)

4. Mixed-Integer Second-Order Cone Programming (MISOCP) Model Conversion

In this section, to solve the MINLP model more effectively, the original model is converted into a
MISOCP model by convex relaxation. First, let us,t,i and is,t,i j denote the quadratic terms U2

s,t,i and I2
s,t, ji

Linearized functions are expressed as follows:∑
ik∈Ωb

Ps,t,ik =
∑

ji∈Ωb

(
Ps,t, ji − r jiis,t,i j

)
+ Ps,t,i (26)

∑
ik∈Ωb

Qs,t,ik =
∑

ji∈Ωb

(
Qs,t, ji − x jiis,t,i j

)
+ Qs,t,i (27)

us,t,i − us,t, j − 2
(
ri jPs,t,i j + xi jQs,t,i j

)
+

(
r2

i j + x2
i j

)
is,t,i j = 0 (28)

is,t,i j =
P2

s,t,i j + Q2
s,t,i j

us,t,i
(29)

(
Umin

i

)2
≤ us,t,i ≤

(
Umax

i

)2
(30)

0 ≤ is,t,i j ≤
(
Imax
i j

)2
(31)

The operation constraints of DES in (15) and (16) can be transformed into the rotated quadratic
cone constraints: (

PDES
s,t,i,m

)2
+

(
QDES

s,t,i,m

)2
≤ 2

yi,mSunit
m
√

2

yi,mSunit
m
√

2
(32)

(
PDES

s,t,i,m

)2
+

(
QDES

s,t,i,m

)2
≤ 2

PDES,L
s,t,i,m
√

2ADES
m

PDES,L
s,t,i,m
√

2ADES
m

(33)
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Although the absolute value term
∣∣∣∣PDES

s,t,i,m

∣∣∣∣ in constraint (19) is nonlinear, it can be replaced by a

linear program according to Chebyshev approximation problem [32]. An auxiliary variable PAUX
s,t,i,m is

introduced to replace
∣∣∣∣PDES

s,t,i,m

∣∣∣∣, and constraint (19) can be transformed to constraint (34). Constraints

(35)–(37) are added to bound the value of PAUX
s,t,i,m, making constraint (34) linearized. Then, the constraint

(19) is transformed into constraints (34)–(37), which are expressed as:∑
t∈NT

PAUX
s,t,i,m∆t

2zi,mEunit
m

≤
1

365
NM

m
ym

(34)

PAUX
s,t,i,m ≥ PDES

s,t,i,m (35)

PAUX
s,t,i,m ≥ −PDES

s,t,i,m (36)

PAUX
s,t,i,m ≥ 0 (37)

Constraint (29) is relaxed to the inequality constraint (38), then transformed into second-order
cone constraint (39) [33]:

P2
s,t,i j + Q2

s,t,i j ≤ is,t,i jus,t,i (38)

||

[
2Ps,t,i j 2Qs,t,i j is,t,i j − us,t,i

]T
||2 ≤ is,t,i j + us,t,i (39)

After the conic relaxation, the original MINLP model is converted into a MISOCP model to realize
an efficient calculation. The MISOCP model is expressed as:

MISOCP Model : minC1 or minC2

s.t. (8)–(10), (17), (18), (20)–(24), (26)–(28), (30)–(37), (39)
(40)

5. Case Study

In this section, the effectiveness of the proposed method is analyzed and verified on a modified
IEEE 33-node system [34]. The voltage level is 12.66 kV, the total active load is 3715 kW, and the total
reactive load is 2300 kvar. The test case is shown in Figure 1.
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Figure 1. Structure of the modified IEEE 33-node system.

Three types of DES are available to be selected in the planning, and the parameters are shown
in Table 1. Five wind turbines and three photovoltaic generators are installed, as shown in Table 2.
The investment costs of DES are annualized based on a discount rate of 8%. Time-of-use electricity
price is shown in Table 3.
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Table 2. Parameters of distributed generators (DGs).

Parameter Wind Turbines Photovoltaic Generators

Location 10 16 17 30 33 7 13 27
Capacity (kVA) 500 300 200 200 300 500 300 400

Table 3. Parameters of time-of-use electricity price.

Parameter On-Peak Mid-Peak Off-Peak

Time span 16:00–22:00 8:00–15:00 1:00–7:00, 23:00–24:00
Electricity price ($/kWh) 0.173 0.104 0.050

Assuming that the annual load curve, annual WT output curve and PV output curve in the
distribution network are shown in Figures 2–4, respectively. The typical scenarios for DES planning are
generated by the clustering technique, containing the patterns of load demand, wind turbine output
and photovoltaic output, which are shown in Figure A1 in the Appendix A. It is assumed that the
maximum power and energy capacity of DES in planning are 1 MVA/4 MWh. The total number of
nodes that DES can be installed with is up to 4.
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The proposed model is implemented with the General Algebraic Modeling System (GAMS)
optimization software and is solved by the commercial solver GUROBI [35]. GUROBI is an optimization
package which has been widely applied in solving the MISOCP problem. The calculation is carried out
on a PC with Intel Core i5 3.20 GHz CPU and 4 GB RAM.

5.1. Planning Results

5.1.1. Economic Benefits Improvement of ADN

The planning results are shown in Tables 4–6. It can be seen that different types of DES have different
performances. A lead-acid battery and Li-ion battery are both helpful but with different economic
benefits in this case; a VRB is not selected to install because of the negative profit. In coordinated
planning, the lead-acid battery and Li-ion battery are selected to allocate at the nodes 31 and 32
simultaneously. From Table 6, when only the Li-ion battery is allocated, the operation cost of ADN is
lowest. However, the annual comprehensive cost is lowest in the coordinated planning, reducing by
$10,378; the annual operation cost of the ADN is reduced by $67,881, a decrease of 5.21%. The price
of lead-acid batteries is relatively low, but the cycle efficiency and the life cycle of the Li-ion battery
are high. The two DESs have complementary advantages, and the economics of system operation is
improved by coordinated planning. Although VRB has the highest cycle life compared to the other
two DESs, VRB energy storage is expensive and has not been selected to be allocated in ADNs.

Table 4. Planning results of economic benefits improvement in IEEE 33-node system.

Type Location Power Capacity (kVA) Energy Capacity (kWh)

Only lead-acid battery

14 120 610
17 100 450
30 390 1750
32 210 930

Only Li-ion battery

17 120 990
30 160 1420
31 80 690
33 100 900

Vanadium redox flow
battery (VRB) — — —
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Table 5. Coordinated planning results of economic benefits improvement in IEEE 33-node system.

Type Location Power Capacity (kVA) Energy Capacity (kWh)

Lead-acid battery

14 50 550
17 70 810
31 20 260
32 60 690

Li-ion battery 31 130 1040
32 80 650

VRB — — —

Total 14, 17, 31, 32 410 4000

Table 6. Annual costs of DES planning in IEEE 33-node system.

Parameter Operation Cost of ADN ($) Investment Cost of DES ($) C1 ($)

Without DES 1,303,663 — 1,303,663
Only lead-acid battery allocated 1,253,521 45,846 1,299,367

Only Li-ion battery allocated 1,226,924 71,172 1,298,096
Coordinated planning 1,235,782 57,503 1,293,285

5.1.2. Power Fluctuation Smoothing

The planning results are shown in Tables 7 and 8. The coordinated planning results are the same
as the planning of only VRB in Table 7. It can be seen that the power fluctuation cost is reduced by
$49,902 when a VRB is allocated, a decrease of 68.18%. Considering the investment cost of DES, C2 is
reduced by $18,702, a decrease of 25.43%.

Table 7. Planning results of power fluctuation smooth in IEEE 33-node system.

Type Location Power Capacity (kVA) Energy Capacity (kWh)

Only Li-ion battery

10 260 1380
16 160 1240
17 180 540
33 400 840

Only VRB

10 290 1450
16 200 1240
17 160 490
33 350 820

Only lead-acid battery — — —

Table 8. Power smooth results of DES planning in IEEE 33-node system.

Power Fluctuation Cost ($) Investment Cost of DES ($) C2 ($)

Without DES 73,191 — 73,191
Only Li-ion battery allocated 24,692 44,125 68,817

Only VRB allocated 23,289 31,200 54,489

In this case, because of the rapid power fluctuation of renewable DGs, DES needs to charge and
discharge frequently to meet the demand for power smoothing. VRB has an exceptionally long lifetime
compared with the other two DES types, making it is quite suitable for charging/discharging with high
frequency. Although a lead-acid battery has an advantage in investment cost, it is not selected to install
owing to its low life cycle.
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With the development of DES technology, capital cost will be further reduced, and the economic
benefits of DES will become more promising. In addition, DES can also perform the auxiliary service
functions such as peak shaving, frequency support, and voltage regulation. Considering the above
economic and environmental benefits, the practical value of DES will be further improved.

5.2. Evaluation of DES Planning

5.2.1. Economic Evaluation

The rate of return is set as the economic evaluation index, considering the benefit from reducing
annual operation cost of ADN and the investment cost of DES, which is expressed as follows:

RR =
B−CINV

CINV
× 100% (41)

where B is the benefit from reducing the operation cost of ADN, which are formulated as follows:

B = COPE,BEF
−COPE,AFT (42)

where COPE,BEF is the operation cost of ADN before DES installed, and COPE,AFT is the operation cost
after DES installed.

The results of the economic evaluation are shown in Table 9. The results show that a lead-acid
battery has better economic benefits than a Li-ion battery. As VRB is not allocated owing to its
high investment cost, it has no economic improvement. Furthermore, compared to the planning
of single-type DES, the coordinated planning of DES significantly improves the economic benefits
of ADNs.

Table 9. Results of the economic evaluation in IEEE 33-node system.

Parameter Lead-Acid Battery Li-Ion Battery VRB Coordinated Planning

RR 9.37 8.70 0 18.05

5.2.2. Power Smoothing Evaluation

In the case of power fluctuation smooth, the power fluctuation coefficient is chosen as the
evaluation index, which is the ratio of the power after DES smooth to original power output. The power
fluctuation coefficient is expressed as:

f FLU =

∑
s∈ΩS

{∑
m∈Ωtype

∑
i∈NN

∑
t∈NT

[(
PDG

s,t,i + PDES
s,t,i,m

)
−

(
PDG

s,t−1,i + PDES
s,t−1,i,m

)]}
ps∑

s∈ΩS

{∑
m∈Ωtype

∑
i∈NN

∑
t∈NT

[
PDG

s,t,i + PDG
s,t−1,i

]}
ps

(43)

The evaluation results of power fluctuation smooth in Section 5.1.2 are shown in Table 10.
The results show that VRB is more capable in power smooth of DG than Li-ion battery. As lead-acid
battery is not allocated owing to its low cycle life, it has no ability for DG power smoothing.

Table 10. Power smoothing evaluation results in IEEE 33-node system.

Parameter Lead-Acid Battery Li-Ion Battery VRB

f FLU 1.00 0.13 0.11
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5.3. Scalability Verification

The modified IEEE 123-node system is tested to verify the scalability of the proposed method on
large-scale ADNs. The detailed parameters can refer to [36]. Three WTs and six PVs are integrated into
the networks, of which the basic installation parameters are shown in Table 11. The test case is shown
in Figure 5.

Table 11. Parameters of DGs.

Parameter Wind Turbines Photovoltaic Generators

Location 28 92 108 33 42 86 97 111 116
Capacity (kVA) 800 1200 1000 300 300 200 200 400 600
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The results of the economic benefits case study are shown in Tables 12 and 13. It can be seen
from the results that a lead-acid battery is selected to allocate in ADN and the economic benefits are
improved remarkably.

Table 12. Planning results of economic benefits improvement in IEEE 123-node system.

Type Location Power Capacity (kVA) Energy Capacity (kWh)

Only lead-acid battery

32 70 300
47 110 1220
58 80 760

119 150 1720

Only Li-ion battery — — —

Only VRB — — —

Table 13. Annual costs of DES planning in IEEE 123-node system.

Operation Cost of ADN ($) Investment Cost of DES ($) C1 ($)

Without DES 2,087,863 — 2,087,863
Only lead-acid battery allocated 2,032,369 45,846 2,078,215
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The results of the power fluctuation smooth by each DES type are shown in Tables 14 and 15.
The coordinated planning results are the same as the planning of VRB in Table 14. It can be seen from
the results that the power fluctuation cost is reduced $58,495 by the integration of VRB, a decrease of
49.73%. The Li-ion battery is also applied to power smoothing, but the effect is inferior to VRB.

Table 14. Planning results of power fluctuation smoothing in IEEE 123-node system.

Type Location Power Capacity (kVA) Energy Capacity (kWh)

Only Li-ion battery

92 350 1350
108 310 1280
111 150 630
116 190 740

Only VRB

92 380 1390
108 330 1320
111 120 610
116 170 680

Only lead-acid battery — — —

Table 15. Power smoothing results of DES planning in IEEE 33-node system.

Power Fluctuation Cost ($) Investment Cost of DES ($) C2 ($)

Without DES 117,620 — 117,620
Only Li-ion battery allocated 69,443 44,125 113,568

Only VRB allocated 59,125 31,200 90,325

6. Conclusions

In this paper, a parameterized model for optimal DES planning in ADNs is presented. The typical
scenarios for DES planning are generated by a clustering technique, containing the patterns of load
demand, wind turbine output and photovoltaic output. To effectively solve the problem, the original
MINLP model is transformed into a MISOCP model by convex conversion. The calculation and
evaluation results show that through the presented method, the economic benefits of the distribution
network have been significantly improved and the power fluctuation of DG has been smoothed through
the optimal planning of DES.

With the rapid development of energy storage technology, it is foreseeable that the energy storage
cost will be greatly reduced, and the applications of DES will become more and more extensive.
The proposed method considers the economic and technical characteristics of DES and can achieve
optimal planning with multiple types of DES in ADNs. It can provide reasonable schemes based on
the parameterized model and support the distribution network planners to make decisions on the
optimal sizing, allocation, and type selection of DES. It also shows great potential in real applications
with different temporal and spatial scales, providing more effective support for renewable resource
accommodation, voltage and frequency regulation, and self-healing control by detailed type selection
and reasonable planning of DES.
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Nomenclature

Sets
Ωb set of all branches
Ωsub set of substation nodes
Ωs set of scenarios
Ωtype set of DES types
Indices
i, j indices of nodes
t indices of time periods
s indices of scenarios
m indices of DES types
Variables
Ps,t,i j active power flow of branch i j in the sth scenario
Qs,t,i j reactive power flow of branch i j in the sth scenario
Ps,t,i total active power injection at node i in the sth scenario
Qs,t,i total reactive power injection at node i in the sth scenario
It,i j, it,i j branch current magnitude and its square
Ut,i, ut,i node voltage magnitude and its square
PDG

s,t,i active power injection by DG at node i in the sth scenario
QDG

s,t,i reactive power injection by DG at node i in the sth scenario
PSUB

s,t active power at the substation in the sth scenario
PDES

s,t,i,m active power injection by the mth DES at node i in the sth scenario
QDES

s,t,i,m reactive power injection by the mth DES at node i in the sth scenario

PDES,L
s,t,i,m active power losses of the mth DES at node i in the sth scenario

EDES
s,t,i,m energy stored of the mth DES at node i in the sth scenario

yi,m total number of power unit of the mth DES at node i
zi,m total number of energy unit of the mth DES at node i
Parameters
NT total periods of the time horizon
NN total number of the nodes
PLOAD

s,t,i active power load at node i in the sth scenario
QLOAD

s,t,i reactive power load at node i in the sth scenario
ri j resistance of branch i j
xi j reactance of branch i j
Umax

i upper limit of statutory voltage at node i
Umin

i lower limit of statutory voltage at node i
Imax
i j upper limit of statutory current at branch i j

Sunit
m unit power capacity of the mth DES

Eunit
m unit energy capacity of the mth DES

CPOW
m capital cost for 1 kW power capacity of the mth DES

CENE
m capital cost for 1 kWh energy capacity of the mth DES

ADES
m loss coefficient of the mth DES

SOCmax
m maximum state of charge limit of the mth DES

SOCmin
m minimum state of charge limit of the mth DES

λt time-of-use electricity price
λ f cost of DG power fluctuation
NM

m life cycle (cycles) of the mth DES
ym lifetime (years) of the mth DES
d discount rate of DES
DoDmax

m maximum depth of discharge of the mth DES
∆t time interval
ps probability of the sth scenario
SBGT maximum power capacity of DES in planning
EBGT maximum energy capacity of DES in planning
δi binary variable of DES installing at node i
nDES maximum number of DES installing nodes
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