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Abstract: Pedestrian flow statistics and analysis in public places is an important means to ensure
urban safety. However, in recent years, a video-based pedestrian flow statistics algorithm mainly
relies on binocular vision or a vertical downward camera, which has serious limitations on the
application scene and counting area, and cannot make use of the large number of monocular cameras
in the city. To solve this problem, we propose a pedestrian flow statistics algorithm based on
monocular camera. Firstly, a convolution neural network is used to detect the pedestrian targets.
Then, with a Kalman filter, the motion models for the targets are established. Based on these motion
models, data association algorithm completes target tracking. Finally, the pedestrian flow is counted
by the pedestrian counting method based on virtual blocks. The algorithm is tested on real scenes
and public data sets. The experimental results show that the algorithm has high accuracy and strong
real-time performance, which verifies the reliability of the algorithm.

Keywords: pedestrian flow statistics; neural network; Kalman filter; multi-object tracking; data
association

1. Introduction

Pedestrian flow statistics is an important application in the field of computer vision [1]. It is
a key technology in intelligent cities, intelligent retail, public place security and many other fields [2].
In recent years, with the continuous progress of intelligent city, pedestrian flow statistics has attracted
more and more researchers and companies to participate in, and developed more and more statistics
algorithms [3,4].

The earliest methods for pedestrian traffic statistics depend on manual statistics or bill statistics,
which are either costly or have an impact on pedestrians. Then pedestrian flow statistics methods based
on pressure sensor or photoelectric sensor are proposed. However, the accuracy of these methods
are not good enough for dense pedestrian flow with severe occlusion. Due to the development of
computer vision, pedestrian traffic statistics methods based on vertical downward stereo camera
have emerged [5]. This kind of method is the most popular pedestrian traffic statistics method at
present. Because the vertical downward camera can effectively avoid pedestrian occlusion, and the
binocular-vision-based three-dimensional reconstruction algorithm can well filter out complex color
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background, the method has high accuracy, but the installation location and visual field are severely
limited. It can only be applied to narrow indoor entrances, but not to commercial streets with wide
outdoor entrances. At the same time, it is impossible to use the large number of front-down monocular
cameras in the city.

Compared with vertical downward stereo camera, front-down monocular camera has wider
vision, and because it can see the positive human face, it can better take into account security, criminal
investigation and abnormal behavior early warning tasks. In front-down cameras, the image plane is
about 45 degrees from the ground. The occlusion between the targets in front-down cameras is not as
serious as that in front cameras. At the same time, the scale difference between targets is relatively
small. There is a negative correlation between the size of the pedestrian target and the placement
height of the camera.

However, due to the challenges of frequent occlusions, illumination changes, target scale
changes, different fog concentrations in different distance and so on, pedestrian flow statistics
algorithm based on front-down monocular camera puts forward higher requirements for detection and
tracking algorithm. Thanks to the rapid progress of deep learning algorithm [6–11], the accuracy of
pedestrian detection is constantly improving. More accurate detection results make the performance
of tracking-by-detection method reach a higher level [12], which makes it possible to develop
a high-precision pedestrian flow statistics algorithm based on front-down monocular camera.

In this paper, we propose a pedestrian flow tracking and statistics method based on front-down
monocular camera. Firstly, we use convolutional neural network to detect pedestrians appearing
in the camera, and modify the detection results based on intersection over union and aspect ratio.
Secondly, we use Kalman filter to build uniform linear motion models for the detected pedestrians.
Then pedestrian tracking is accomplished by data association algorithm. Finally, the virtual block
method is used to count the target. We test the proposed algorithm using the real scenic spot entrance
surveillance video, the F1 score of pedestrian flow statistics has reached 95%. At the same time, we
compare the proposed multi-target tracking algorithm with other multi-target tracking algorithms on
the 2DMOT2015 dataset. The MOTA of the proposed algorithm reaches 48.1, and the algorithm has
advantages in computing speed.

The rest of this paper is organized as follows. Section 2 reviews the related work. The proposed
algorithm is described in detail in Section 3. In Section 4, experiments and comparisons are carried out.
Conclusion and analysis are presented in Section 5.

2. Related Work

The pedestrian flow statistics algorithm mainly includes three steps: pedestrian detection,
multi-target tracking and pedestrian counting.

Current fast pedestrian detection methods are mainly divided into two categories. The first is
pedestrian detection method based on background modeling, which mainly relies on the background
modeling method to extract the foreground moving object, and uses classifier to judge whether the
moving object is a pedestrian. GMM algorithm [13] and vibe algorithm [14] are the most representative.
This kind of algorithm is fast in speed, but it cannot cope with the change of illumination and the jitter
of camera very well. At the same time, it is difficult to distinguish dense objects or objects that are
occluded from each other. The second kind of pedestrian detection algorithm is based on statistical
learning. The algorithm has high accuracy and can cope with occlusion and environmental changes to
a certain extent. The HOG + SVM [15] proposed by Dalal et al. is the most classical algorithm of this
kind. Because of the popularity of deep learning methods in recent years, the accuracy of pedestrian
detection algorithm based on convolutional neural network has reached an unprecedented height [16].
Detection methods based on deep learning can be divided into two-stage method and one-stage
method. Faster R-CNN proposed by Shaoqing Ren [17] and its subsequent variants [18,19] belong to
the two-stage method, which has advantages in detection and positioning accuracy. WeiLiu et al.’s
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SSD detection algorithm [20] and its subsequent variants [21,22] belong to one-stage algorithm, which
achieves good accuracy and better real-time performance.

Multi-objective tracking methods can be divided into DBT (detection-based-tracking) methods
and DFT (detection-free-tracking) methods based on initialization method. DFT methods needs to
label the targets manually, and then track them in subsequent frames [23,24]. DBT methods completes
tracking by detecting the targets in each frame and putting the targets into the tracklets [25–27].
DBT methods are more suitable for pedestrian traffic statistics applications because of the frequent
appearance of new targets and the frequent disappearance of old ones. At the same time, according to
the processing mode, multi-target tracking methods can be divided into online and offline algorithms.
Online algorithm only uses the current frame of image sequence and several previous frames [28,29],
which is more suitable for applications that need real-time implementation. The offline algorithm
needs to use some future frames in the image sequence [30,31], which is more suitable for post-analysis
and processing of video. Appearance model is widely used in the field of multi-target tracking.
The appearance model has an important role in associating tracklets and detections. With the help
of the appearance model, the ID scitches can be effectively suppressed. Ullah, M. et al. proposed a
multi-target tracking method establishing appearance model with HoG descriptor [32]. Bae, S.H. et al.
proposed a deep appearance learning method to learn a discriminative appearance model which can
distinguish multiple objects with large appearance variations [33]. At the same time, the motion model
has the same important role as the appearance model. Since the motion of the target in the image is
usually relatively flat, the estimation of the trend of the target motion can predict the position of the
target in the next frame, thus reducing the search area and even directly obtaining the tracking results.

The pedestrian counting method was originally road marking method. In this method, a mark is
set on the road surface, and when the mark is covered, a pedestrian is judged to pass. Then Kryjak et al.
proposed a counting method based on virtual lines [34]. The main idea is that when the target center
passes through the virtual line, a pedestrian is judged to pass through. However, if there is a target
hovering near the virtual line, it will seriously affect the counting accuracy. Later Xu et al. proposed a
counting method based on double virtual lines [2]. In this method, two virtual lines are delineated,
and the sequence of pedestrians passing through the virtual lines is judged to realize the counting.

3. Methodology

The proposed algorithm can be divided into three parts: pedestrian detection, multi-pedestrian
tracking and pedestrian counting. The overall flow of the proposed method is shown in Figure 1.

Figure 1. Overall flow chart of the proposed algorithm..

3.1. Pedestrian Detection

Pedestrian detection is the first step of pedestrian flow statistics algorithm. The algorithm mainly
improves from the yolov3 detection network [35]. In order to reduce the computational complexity
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of the algorithm, the darkent-53 network in the front of the network is replaced by a pruned and
compressed VGG network [36], which reduces the computational complexity of the network from
65 Bflops to 39 Bflops. Because the target is pedestrian traffic statistics, too small anchor settings
have no effect on improving detection accuracy, so kmeans algorithm is used to re-cluster the size of
network anchor. Due to the large scale of the targets in the front-down camera, the last FPN structure
of the yolov3 network is removed to reduce the computational complexity. The final computational
complexity of the neural network is 34 Bflops. At the same time, the mAP (mean Average Precision)
of the detector only reduce 1.61, from 74.49 to 72.88. The final network structure of the algorithm is
shown in Figure 2.

Figure 2. Network structure of detection algorithms. The blue layers are convolutional layers, the red
layers are max-pooling layers, and the yellow layers are detection layers.

In pedestrian flow statistics, pedestrian targets are very dense, and there is serious occlusion
between the targets. The traditional non-maximum suppression (NMS) method can cause a part of the
correct detection to be lost while removing redundant detection bounding boxes. So soft-NMS method
is used to improve the non-maximum suppression [37]. Unlike the original non-maximum suppression
method, as shown in Formula (1), soft-mns method does not directly remove the bounding box whose
IOU exceeds the threshold and confidence is lower, but reduces the confidence of the detection box,
which makes it more difficult for the correct detection to be removed incorrectly due to the dense
targets. In Formula (1), di is a detection result with score si, dm is another detection result which
has higher score than di, Ni represent the threshold of soft-NMS. As shown in Figure 3, after using
soft-NMS, not only the redundant detection results can be correctly removed, but also the missing rate
can be reduced.

si =

{
si, IOU(dm, di) < Ni

si(1− IOU(dm, di), IOU(dm, di) ≥ Ni
(1)

In the front-down cameras, the objects close to the cameras can easily occlude the lower half of
the objects farther from the cameras. On this basis, because of the lateral movement of the target,
the bounding box of the farther target will change dramatically in height, which is not conducive
to the following tracking operation. However, the top position and width of the bounding box will
not be affected in such case. Based on this observation, we adjust the shape of bounding boxes by
their width and the top position. For the bounding boxes whose aspect ratio are greater than 1:2.5,
the heights of them are increased on the basis of fixing the top position and width, so that the aspect
ratios are adjusted to 1:2.5. As shown in Figure 4, this scheme effectively reduces the deformation of
the bounding box due to occlusion. At the same time, this method improves the positioning accuracy
of the real center position of the occluded target, and is more conducive to the final counting task.



Appl. Sci. 2019, 9, 1624 5 of 13

Figure 3. Detection result with soft-NMS (left) and NMS (right). The bounding box for the person in
yellow is not miss deleted as redundant detection with soft-NMS.

Figure 4. The deformation of the bounding box of a single target without (left) and with (right)
shape adjusting.

3.2. Multi- Pedestrian Tracking

The tracking algorithm is a multi-target tracking method based on detection results. The tracking
method can be divided into two parts. Firstly, a motion model is built for the detected target, and new
tracklets are built for new targets. The second part is the data association algorithm, which matches
the target detected in each frame with the existing tracklets by the cost function to achieve the purpose
of detection. The overall flow of the tracking algorithm is shown in Figure 5.

Figure 5. Overall flow of the tracking algorithm.

In the tracking algorithm, the linear motion model is chosen as the motion model of the
tracklet. The model is based on Kalman filtering algorithm, and the target state is expressed as
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[u, v, s, r, u′, v′, s′]T . Where (u, v) is the coordinate of the center position of the bounding box, and (s, r)
are the scale and aspect ratio of the bounding box respectively. (u′, v′) is the speed of the target in
horizontal and vertical directions, s′ represents the changing rate of the scale of the target. Since the
aspect ratio of the bounding box is adjusted before, it is assumed that the aspect ratio of the target does
not change here.

Data association algorithm uses Hungarian algorithm to match existing tracklets and detection
results in current frame. The cost function is divided into three parts: IOU limit, scale changing limit
and standardized distance. It is required that the IOU of the tracklet’s state and the detection result
is larger than a certain threshold, and the scale change is lower than a certain threshold, otherwise
the tracklet and the detection result will not match each other. Scale changes are described by the
following formula:

Dscale = min(
max(w1, w2)

min(w1, w2)
,

max(h1, h2)

min(h1, h2)
)− 1 (2)

where w1 and h1 are the width and height of the detection result respectively, w2 and h2 are the width
and height of the tracklet state respectively.

On the basis of these two limitations, the matching degree between a detection result and a
tracklet is mainly described by standardized distance. The standardized distance standardizes the
pixel distance between the detector and the tracklet by the minimum width and height of them, which
can effectively reduce the difference caused by the depth of field between the pixel distance and the
actual distance. The standardized distance is shown as follows:

Dsp =

√
(

x1 − x2

min(w1, w2)
)

2
+ (

y1 − y2

min(h1, h2)
)

2
) (3)

where (x1, y1) is the coordinate of the detection result, (x2, y2) is the coordinate of the tracklet state.
For the successfully matched tracklets and detections, the status of the tracklets are updated

by the positions of the detections. In this case, the state of the tracklet, including position, scale,
velocity and scale change rate, is the optimal estimate obtained by Kalman filter. Unmatched detectors
are candidates for new targets and candidate tracklets for them are established. If these candidate
tracklets match detection results in consecutive multiple frames, they will be used as new tracklets
for targets newly appear in these frames. Motion models established by detection results in the
first frame of the image sequence are used as new tracklets immediately for the initialization of the
sequence. The unmatched tracklet outputs the predicted results directly. In this case, the tracking state
is completely determined by the prediction matrix, and the predicted tracklet moves in a straight line
with a uniform speed decided by the state variables. This method can reduce the influence caused
by occlusion or detector failure in a short time. When a tracklet fails to match any detection result in
continuous multiple frames, it is considered that the target tracked by the tracklet has disappeared
and the tracklet is deleted.

3.3. Pedestrian Counting

A pedestrian counting algorithm based on virtual blocks is proposed. Similar to the counting
method based on double virtual lines, the pedestrian counting algorithm based on virtual blocks counts
the number of pedestrians according to the sequence of blocks passed by the pedestrian detection
center. This method shortens the time requirement of continuous target tracking and makes the holistic
algorithm more robust to occlusion.

Block-based counting algorithms need to delimit the beginning area, count area and end area,
as shown in Figure 6. If the center of the target is initialized in the beginning area and reaches the
end area after passing through the counting area, the count is made once. Two-way counting can be
realized by delimiting regions in different order.
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Compared with the counting method based on double virtual lines, the block-based method can
better adapt to the counting area with different shapes, which is more suitable for the application
scenarios of front-down cameras. In addition, the block-based method is easier to achieve the effect of
counting part of the road area through flexible setting of counting area. In addition, by setting the start
and end areas, it is easier to count only for the target entering from a specific entry or leaving from a
specific exit.

Figure 6. Virtual block-based method, pedestrian counting method.

4. Experiment

4.1. The Performance of Pedestrian Flow Statistics Algorithms in Real Scene

Since there is no dataset specifically for pedestrian flow statistics, we use the image sequence
captured by front-down cameras at the entrance of crowded scenic spots to verify the detection and
counting effect of the proposed algorithm.

To develop an algorithm with high robustness against the changes of illumination and fog
concentration, we have manually detected and labeled the images captured by the camera, and made
a new dataset. As a detection dataset, five half-hour video recordings were collected. There were
intense changes in illumination in the videos, and some videos have dense fog. The frame rate of video
recordings is 25 fps, and an image is saved every 12 frames. The total number of annotated images
is 18,750, including 282,674 pedestrian bounding boxes. Among them, 2000 images from the end of
two videos with different perspectives are used as the test set, while the remaining 16,750 images are
used as the training set. After training, the detection effect of the algorithm is evaluated, and the most
popular evaluation indicators in the detection field, such as precision, recall, mAP (mean Average
Precision), are selected as the evaluation indicators. The detection performance is shown in Table 1.
Compared with detectors trained only with coco datasets, the robustness of the detector trained with
new images to the changes of illumination and fog concentration is greatly improved.

Table 1. Detection performance of detector trained with different data.

Precision↑ Recall↑ F1-Score↑ TP↑ FP↓ FN↓ mAP↑
detector (coco) 0.87 0.67 0.76 17786 2644 8887 72.88%

detector (coco + new data) 0.86 0.79 0.82 21156 3550 5517 83.39%

For pedestrian counting effect, we selected five other videos to evaluate. By observing the counting
results manually, the missing alarm and false alarm of the counting algorithm are counted. Finally,
the counting algorithm is evaluated by the precision, recall and F1-Score of the counting algorithm.
The evaluation results of the algorithm in five videos are shown in Table 2.
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Table 2. The evaluation results of the algorithm in test videos.

Sequence Count Result GT FP FN TP Precision Recall F1-Score

Seq1 552 567 21 36 531 96.20% 93.65% 94.91%
Seq2 411 412 18 19 393 95.62% 95.39% 95.50%
Seq3 571 572 21 22 550 96.32% 96.15% 96.24%
Seq4 923 955 18 50 905 98.05% 94.76% 96.38%
Seq5 669 693 16 40 653 97.61% 94.23% 95.89%

TOTAL 3126 3199 94 167 3032 96.99% 94.78% 95.87%

It can be seen that the mean F1-score of the algorithm is over 95% in the five videos, which proves
the effectiveness of the algorithm. The running speed of the algorithm on NVIDIA GTX1060 GPU is
28.4 FPS, which has good real-time performance. The actual running effect is shown in Figure 7.

Figure 7. The actual operation effect of the algorithm.

4.2. The Performance of Tracking-by-Detection Algorithm Compared with Other Algorithms

In pedestrian flow statistics algorithms, the performance of detecting and tracking algorithms
has an important impact on the counting results. Therefore, we evaluate the proposed algorithm by
comparing the comprehensive performance of the proposed detecting and tracking algorithm with
other algorithms.

Here we choose to use the 2DMOT2015 benchmarks [38] to evaluate the performance of the
algorithm quantitatively. 2DMOT2015 benchmark is a well-known framework for the fair evaluation
of multi-pedestrian tracking algorithms. The dataset includes 22 image sequences, of which 11 are
training sets and 11 are test sets. Image sequences come from several influential pedestrian detection
and tracking datasets, including KITTI, ADL, ETH, PETS and TUD.

The main evaluation indicators are as in Table 3.

Table 3. Main evaluation indicators.

Measure Better Description

MOTA higher Multiple Object Tracking Accuracy.
MOTP higher Multiple Object Tracking Precision.
IDF1 higher The ratio of correctly identified detections.
MT higher Mostly tracked targets.
ML lower Mostly lost targets.
FP lower The total number of false positives.
FN lower The total number of false negatives.
ID Sw. lower The total number of identity switches.
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Among them, MOTA is a comprehensive evaluation of FP, FN and IDSW. Its formula is as follows:

MOTA = 1− ∑t(FNt + FPt + IDSWt)

∑t GTt
(4)

where GTt is the number of ground truth in frame t.
MOTP focuses on the average difference between TP and its corresponding ground truth.

The formula is as follows:

MOTP =
∑t,i dt,i

∑t ct
(5)

Where dt,i denotes the overlap of the bounding box i with its corresponding ground truth, ct

denotes the amount of bounding boxes which match ground truths successfully.
To verify the comprehensive performance of detector and tracker, we compare the proposed

algorithm with other algorithms using private detector, including MDP_Subcnn [39], DMT [40] and
Sort [41]. The specific comparison results are shown in Table 4.

Table 4. The performance of proposed tracking-by-detection algorithm compared with other algorithms
in 2DMOT2015 dataset. The green and yellow colors indicate the best and the second best algorithm in
each measure.

Sequence Algorithm MOTA IDF1 MOTP MT ML FP FN ID Sw

TUD-Crossing

MDP_Subcnn 78.9 74.5 76.7 0.692 0 32 195 6
DMT 70 56.3 73.3 0.615 0 73 229 29
Sort 67.5 57.6 74.5 0.462 0.077 32 308 18
PFS(our) 74.6 49.9 76.2 0.615 0 49 193 38

PETS09-S2L2

MDP_Subcnn 47.5 36.8 72.6 0.071 0.095 341 4524 196
DMT 47.7 36.8 70.4 0.214 0.19 502 4429 113
Sort 27.4 23.6 67.4 0 0.262 806 5958 240
PFS(our) 56.7 32 74.4 0.19 0.048 358 3519 295

ETH-Jelmoli

MDP_Subcnn 48.2 65.7 77.3 0.356 0.222 492 814 9
DMT 48.2 62.8 75 0.6 0.111 758 529 26
Sort 39 52.9 74.1 0.2 0.289 439 1071 38
PFS(our) 61.5 59 76.2 0.356 0.267 176 754 46

ETH-Linthescher

MDP_Subcnn 63.9 67.1 77.1 0.244 0.31 495 2657 70
DMT 60.5 60.2 76.4 0.437 0.244 1425 1963 138
Sort 52.2 54.5 73.8 0.147 0.406 397 3725 144
PFS(our) 62.8 57.5 76.8 0.335 0.223 735 2374 215

ETH-Crossing

MDP_Subcnn 63.8 76.5 79.5 0.192 0.269 64 293 6
DMT 59 54.7 81.5 0.308 0.308 169 221 21
Sort 55.4 49.7 80.3 0.154 0.385 58 368 21
PFS(our) 62.4 53.9 79.5 0.308 0.077 135 215 27

AVG-TownCentre

MDP_Subcnn 49.5 64.5 70.1 0.389 0.155 1381 2106 121
DMT 45.5 54.6 68.5 0.283 0.274 653 3127 117
Sort 27.2 45.1 67.4 0.058 0.279 1111 3930 162
PFS(our) 47.5 59.7 69.5 0.372 0.115 1483 2094 178

ADL-Rundle-1

MDP_Subcnn 33.4 49.9 72.4 0.344 0 2899 3230 70
DMT 26 42.2 70.1 0.219 0.281 1697 5146 47
Sort 20.3 31.5 72.5 0.188 0.375 1493 5812 108
PFS(our) 39.8 38.6 73.8 0.25 0.094 1444 3998 164

ADL-Rundle-3

MDP_Subcnn 44.9 51.6 79.6 0.205 0.159 793 4752 56
DMT 43.3 45.4 75.4 0.295 0.136 1168 4517 84
Sort 37.4 43.4 77 0.295 0.182 1498 4765 99
PFS(our) 34.8 34.1 80 0.273 0.159 2012 4422 197

KITTI-16

MDP_Subcnn 50 66.6 70.3 0.353 0.059 262 566 22
DMT 44.7 60.5 69.3 0.235 0 232 690 19
Sort 34.6 42.8 70.1 0.118 0.059 144 938 30
PFS(our) 50 56.7 73.2 0.235 0.059 268 544 39
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Table 4. Cont.

Sequence Algorithm MOTA IDF1 MOTP MT ML FP FN ID Sw

KITTI-19

MDP_Subcnn 40.9 61.8 68.1 0.242 0.081 1143 1965 51
DMT 45.7 55.5 72.8 0.306 0.097 884 1946 72
Sort 29.1 46.4 68.4 0 0.258 855 2852 79
PFS(our) 37.8 46.4 69 0.274 0.129 1327 1890 109

Venice-1

MDP_Subcnn 42.6 48.4 76 0.353 0.235 729 1867 21
DMT 32.4 38 70.9 0.294 0.412 527 2538 18
Sort 24.7 24.4 69.7 0.118 0.471 485 2888 62
PFS(our) 43.7 40.1 75.8 0.294 0.176 435 2071 64

TOTAL

MDP_Subcnn 47.5 55.7 74.2 0.3 0.186 8631 22,969 628
DMT 44.5 49.2 72.9 0.347 0.221 8088 25,335 684
Sort 33.4 40.4 72.1 0.117 0.309 7318 32,615 1001
PFS(our) 48.1 45 74.7 0.327 0.15 8422 22,074 1372

It can be seen that the proposed algorithm has high accuracy. The actual effect of the algorithm on
the MOT2015 dataset is shown in Figure 8.

Figure 8. Tracking result on 2DMOT15 dataset.

5. Conclusions

In this paper, we propose a pedestrian flow tracking and statistics algorithm for front-down
monocular camera. The algorithm relies on convolutional neural network for real-time pedestrian
detection, and uses Kalman filter linear motion model and data association algorithm to track
pedestrian targets. Finally, a counting method based on virtual blocks is proposed to complete
pedestrian flow statistics. We use real scene videos to evaluate the counting performance of the
algorithm. At the same time, we compare the detection and tracking performance of the algorithm
with other algorithms using a public dataset, MOT 2015, which proves the effectiveness of the algorithm.
The experiment results show that the algorithm has good accuracy and real-time performance,
and has high application value. Although the algorithm has achieved good results, there are still
some shortcomings, which need further improvement. Since the accuracy of the algorithm will be
affected when the pedestrian is seriously occluded, future work is to further improve the tracking
accuracy of the algorithm in the case of serious occlusion by means of optical flow and re-identifying
appearance model.
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