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Abstract: The time-delayed displacement feedback control is provided to restrain the superharmonic
and subharmonic response of the elastic support beams. The nonlinear equations of the controlled
elastic beam are obtained with the help of the Euler–Bernoulli beam principle and time-delayed
feedback control strategy. Based on Galerkin method, the discrete nonlinear time-delayed equations
are derived. Using the multiscale method, the first-order approximate solutions and stability
conditions of three superharmonic and 1/3 subharmonic resonance response on controlled beams are
derived. The influence of time-delayed parameters and control gain are obtained. The results show
that the time-delayed displacement feedback control can effectively suppress the superharmonic
and subharmonic resonance response. Selecting reasonably the time-delayed quantity and control
gain can avoid the resonance region and unstable multi-solutions and improve the efficiency of the
vibration control. Furthermore, with the purpose of suppressing the amplitude peak and governing
the resonance stability, appropriate feedback gain and time delay are derived.

Keywords: piezoelectric elastic beam; time-delayed feedback; superharmonic response; subharmonic
response

1. Introduction

The elastic beams have wide application in many engineering fields. Therefore, it is important to
investigate the vibration problem of the elastic beams. As a very important topic in structural dynamics,
the dynamics problem of the elastic beam is of practical importance in civil engineering [1–3]. At the
same time, the vibration control problem of flexible structures has also received extensive attention.
Different vibration control strategies are used to study vortex-induced vibrations of a bridge deck [4–6],
building structure [7–12], and other structures [13–15]. It is worth mentioning that scholars have
carried out much research on piezoelectric-based vibration control [16–26].

As a control strategy, the time-delayed feedback control technology, along with the rapid
development of control theory [27–29], sensor testing technology, and computer technology, has
attracted widespread attention and practical application in the field of aerospace engineering [30],
vehicles engineering [31], mechanical engineering [32] , civil engineering [33], etc. Delay feedback
control can improve the stability of the controlled system. Based on the time-delayed displacement
feedback, the time-delayed velocity feedback and the time-delayed acceleration feedback control
strategy, the vibration absorber has excellent effectiveness to suppress the vibration of the system.
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In the past few years, the time-delayed feedback control technology has received much attention.
An optimal control method for seismic-excited building structures with multiple time delays is
investigated [34]. The time delay may be used to improve the system stability [35,36]. The delayed
position-feedback technique is used to reduce the payload pendulations [37]. Daqaq et al. [38] presented
a comprehensive investigation of the effect of feedback delays on the non-linear vibrations of a
piezoelectrically-actuated cantilever beam. Qian and Tang [39] studied the time delay control and
presented that it can achieve good control performance of a dynamic beam structure system. Xu and
Pu [40] investigated the bifurcations due to time delay in the feedback control system with excitation.
Kalmar-Nagy, Stepan, and Moon [41] studied the existence of a subcritical Hopf bifurcation in the
delay-differential equation model of the so-called regenerative machine tool vibration. Peng et al. [42]
investigated the stability and bifurcation of an SDOFsystem with time-delayed feedback. Li et al. [43]
investigated the nonlinear dynamics of a Duffing–van der Pol oscillator under linear-plus-nonlinear
state feedback control with a time delay. Kammer and Olgac [29] conceived of a concept study
that explores new directions to enhance the performance of such energy-harvesting devices from
base excitation. Jin and Hu [44] investigated the stabilization of traffic flow in an optimal velocity
model via delayed-feedback control. Omidi and Mahmoodi [45,46] investigated nonlinear vibration
suppression of flexible structures using the nonlinear modified positive position feedback approach.
El-Ganaini et al. [47] investigated the positive position feedback (PPF) controller for suppression of
nonlinear system vibration. Warminski et al. [48] selected control algorithms for active suppression
of nonlinear composite beam vibrations. Belhaq et al. [49,50] investigated energy harvesting in
a Mathieu–van der Pol–Duffing MEMS device using time delay and quasi-periodic vibrations in
a delayed van der Pol oscillator with time-periodic delay amplitude. Ji et al. [51–53] presented
modeling and tuning for a time-delayed vibration absorber with friction and investigated sub-harmonic
resonances and periodic and chaotic motion of a time-delayed nonlinear system.

These results show that the new control method (time-delayed feedback control) makes the system
more stable and improves the control performance. Therefore, in this paper, adopting the time-delayed
displacement feedback control strategy, the piezoelectric coupling elastic beam is controlled in order to
study its superharmonic resonance and subharmonic resonance response. Based on the established
delay dynamic system, we obtained the first-order resonance response approximate solution and
analyzed the influence of the control gain and the time delay values on the two resonant responses.
We organize the rest of the paper as follows: In Section 2, we present a mathematical formulation of
the problem. In Section 3 and Section 4, the three superharmonic resonance and 1/3 subharmonic
resonance are respectively discussed by using the method of multiple scales. A short summary of the
results is presented in Section 5.

2. Equations of Motion

The mathematical model for the cantilever is based on the nonlinear Euler–Bernoulli beam
theory.The partial-differential equation of planar motion and that associated with an external excited
elastic beam are as follows [54]:

mν̈ + cν̇− EAp(t)ν′′ + EIν′′′′ + kνδ(x− l)− EA
2l

ν′′
∫ l

0
ν′2dx = q(x, t) + Fn(x) cos Ωt, (1)

ν(0, t) = 0, ν′(0, t) = 0, ν′′(l, t) = 0, EIν′′′(l, t) + kν(l, t) = 0, (2)

where m is the linear density; c is the coefficient of linear viscous damping per unit length; v denotes
the displacement component along the y-axis; the primes and overdots indicate the derivatives with
respect to the arc length x and time t, respectively; E is Young’s modulus of elasticity; A is the
cross-sectional area; I is the moment of inertia about the neutral axis of the beam; l is the length of the
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beam; and p(t) is the axial force; The distributed load q(x, t) of the piezoelectric actuator (see Figure 1),
is given by:

q(x, t) =
∂2M
∂x2 , (3)

where M is a uniformly-distributed bending moment expressed as:

M =
3bdd31EaEIVa(t)

3EI + 6bEatad2 + 2bEat3
a
[H(x− x1)− H(x− x2)]. (4)

where b and ta are the width and thickness of the piezoelectric actuator, respectively; d31 is a
piezoelectric constant; Ea is the actuator Young’s modulus; tb is the thickness of the beam; Va(t)
is the control voltage; H(x) is the Heaviside step function; and x1 and x2 are the starting and ending
coordinates of the piezoelectric strip.
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Figure 1. The theory model of the controlled beams.

In this paper, the time delayed feedback control is used to suppress the large vibration of the
beam. The block diagram is shown in Figure 2.
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Figure 2. A block diagram of the time-delayed feedback control.

We derive a reduced-model for the system under consideration by using the Galerkin procedure
in the form:

ν =
∞

∑
i=1

φi(x)qi(t), (5)

where the qi(t) are generalized temporal coordinates and the φi(x) are the linear mode shapes of a
elastic beams and are given by:

φi(x) = Ai

[
cos δix− cosh εix− σi

(
sin δix−

δi
εi

sinh εix
)]

(6)
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where:

σi =
δ2

i cos δil + ε2
i cosh εil

δ2
i sin δil + εiδi sinh εil

, δi =

√(
ri +

g4

4

)1/2

+
g2

4
, εi =

√(
ri +

g4

4

)1/2

− g2

4
,

and g2 = p(t)/EI, while ri is calculated using the following transcendental equation:

EIδ5
i + EIε4

i δi + 2EIε2
i δ3

i cos δil cosh εil + EI(εiδ
4
i − ε3

i δ2
i ) sin δil sinh εi

−k(ε2
i + δ2

i ) sin δil sinh εil + k(δ3
i /εi + εiδi) cos δil sinh εi = 0 (7)

Substituting Equation (5) into Equation (1) and using the Galerkin method, we obtain the following
set of nonlinear ordinary differential equations:

q̈n(t) + µn q̇n(t) + ω2
nqn(t) +

∞

∑
i,j,k=1

Γnijkqi(t)qj(t)qk(t)

= MnVa(t) + fn(x) cos Ωt, n = 1, 2, ..., ∞,

(8)

where:

µn = c
m , Γnijk = − EA

2ml

∫ l
0 φ′′i (x)φn(x)

∫ l
0 φ′j(x)φ′k(x)dxdx,

M = 3bdd31EaEI
3EI+6bEatad2+2bEat3

a
[φ(x1)− φ(x2)], fn = Fn ∑∞

0 φndx. (9)

We nondimensionalize Equation (8) and obtain:

q̈∗n(t
∗) + µ∗n q̇∗n(t) + ω∗n2q∗n(t

∗) +
∞

∑
i,j,k=1

Γ∗nijkq∗i (t
∗)q∗j (t

∗)q∗k (t
∗)

= M∗nV∗a (t
∗) + f ∗n cos Ω∗t∗, n = 1, 2, ..., ∞,

(10)

where t∗ = ω1t, τ∗ = ω1τ, q∗n = qn(t)/l, ω∗n = ωn/ω1, µ∗n = µn/ω1, Γ∗nijk = Γnijkl2/ω2
1, M∗n =

Mn, f ∗n = f /ω1l, and Ω∗ = Ω/ω1. For convenience, remove the asterisk of the following equation.
In this article, the driving voltage of piezoelectric excitation uses the time-delayed displacement

feedback strategy, for the following form:

Va(t) =
∞

∑
m=1
−k̄aφm(x3)qm(t− τ), (11)

where k̄a is control gain and τ is time delay. Substituting Va(t) into Equation (10), we obtain:

q̈n(t) + µn q̇n(t) + ω2
nqn(t) +

∞

∑
i,j,k=1

Γnijkqi(t)qj(t)qk(t) = −
∞

∑
m=1

kanmqm(t− τ) + fn cos Ωt, (12)

where Mn k̄aφm(x3) = kanm.
The governing equation expressed in the modal coordinate form is:

q̈n(t) + µn q̇n(t) + ω2
nqn(t) + Γnnnnq3

n(t) = −kannqn(t− τ) + fn cos Ωt. (13)
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3. Superharmonic Resonance

We use the method of multiple scales [55–57] to solve three superharmonic resonance. The
adjusting parameters are as follows: µn = O(ε), Γnnnn = O(ε), kann = O(ε), fn = O(ε), 3Ω = ω0 +

εσ, σ = O(1). We express the solution of Equation (13) in the form:

qn(t; ε) = qn0(T0, T1, ...) + εqn1(T0, T1, ...) + ..., (14)

Substituting Equation (14) into Equation (13) and equating the coefficients of ε0 and ε1 on both
sides, we obtain:

D2
0qn0 + ω2

0qn0 = fn cos ΩT0, (15)

D2
0qn1 + ω2

0qn1 = −2D0D1qn0 − µnD0qn0 − Γnnnnq3
n0 − kannqn0(t− τ). (16)

The general solution of Equation (15) can be written as:

qn0 = An(T1) exp(iω0T0) + Λn exp(iΩT0) + cc, (17)

where i =
√
−1, Λn = 1

2 fn(ω2
0 −Ω2)−1, and cc stands for the complex conjugate of the preceding

terms. Substituting qn0 into Equation (16), we obtain:

D2
0qn1 + ω2

0qn1 =− [iω0(2A′n + µn An) + 6Γnnnn AnΛ2
n + 3Γnnnn A2

n Ān

+ kann An exp(−iω0τ)] exp(iω0T0)− Γnnnn A3
n exp(3iωT0)

+ ΓnnnnΛ3
n exp(3iΩT0) + 3Γnnnn A2

nΛn exp[i(2ω0 + Ω)T0]

+ 3Γnnnn Ā2
nΛn exp[i(Ω− 2ω0)T0] + 3Γnnnn AnΛ2

n exp[i(ω0 + 2Ω)T0]

+ 3Γnnnn AnΛ2
n exp[i(ω0 − 2Ω)T0]−Λn[iµnΩ + 3ΓnnnnΛ2

n + 6ΓAn Ān]

exp(iΩT0)− kannΛn exp[iω0(T0 − τ)] + cc.

(18)

Secular terms will be eliminated from the particular solution of Equation (18), if we let:

iω0(2A′n + µn An) + 6Γnnnn AnΛ2
n + 3Γnnnn A2

n Ān + ΓnnnnΛ3
n exp(iσT1)

+kann An exp(−iω0τ) = 0.
(19)

To solve Equation (19), we write An in the polar form:

An =
1
2

an exp(iβn), (20)

where an and βn are real functions of T1 . Substituting Equation (20) into Equation (19) and separating
the result into real and imaginary parts, we have:

a′n = −1
2

µnean −
ΓnnnnΛ3

n
ω0

sin γn, (21)

anγ′n = σean −
3ΓnnnnΛ2

n
ω0

an −
3Γnnnn

8ω0
a3

n −
ΓnnnnΛ3

n
ω0

cos γn, (22)

where γn = σT1 − βn, µne = µn − kann sin(ω0τ)/ω0 and σe = σ− kann cos(ω0τ)/(2ω0). Therefore, for
the first approximation:

qn =
1
2

an cos(3Ωt− γn) + fn(ω
2
0 −Ω2)−1 cos Ωt + O(ε). (23)

where an and γn are defined by Equations (21) and (22).
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The steady-state motions correspond to a′n = γ′n = 0; that is, they correspond to the solutions of:

− 1
2

µnan +
kannan

2ω0
sin(ω0τ) =

ΓnnnnΛ3
n

ω0
sin γn (24)

(
σ− 3ΓnnnnΛ2

n
ω0

)
an −

3Γnnnn

8ω0
a3

n −
kannan

2ω0
cos(ω0τ) =

ΓnnnnΛ3
n

ω0
cos γn (25)

Squaring and adding these equations leads to the frequency-response equation:[(
−1

2
µn +

kann

2ω0
sin(ω0τ)

)2
+

(
σ− 3ΓnnnnΛ2

n
ω0

− 3Γnnnn

8ω0
a2

n −
kann

2ω0
cos(ω0τ)

)2]
a2

n

=
Γ2

nnnnΛ6
n

ω2
0

.

(26)

Here, we study the stability of the steady-state motion , setting:

a = an0 + an1, γn = γn0 + γn1, (27)

Substituting Equation (27) into Equations (21) and (22), expanding for small an1 and γn1, noting
that an0 and γn0 satisfy Equation (24), and keeping linear terms in an1 and γn1, we obtain:

a′n1 = −1
2

µnean1 − an0(σe −
3ΓnnnnΛ2

n
ω0

−
3Γnnnna2

n0
8ω0

)γn1, (28)

(1 +
an1

an0
)γ′n1 =

1
an0

(σe −
3ΓnnnnΛ2

n
ω0

− 9Γnnnn

8ω0
a2

n0)an1 −
1
2

µneγn1, (29)

Using Equations (28) and (29), one can obtain the following eigenvalue equation:∣∣∣∣∣∣ − 1
2 µne − λ −an0(σe − 3ΓnnnnΛ2

n
ω0

− 3Γnnnna2
n0

8ω0
)

1
an0

(σe − 3ΓnnnnΛ2
n

ω0
− 9Γnnnn

8ω0
a2

n0) − 1
2 µne − λ

∣∣∣∣∣∣ = 0

Expanding this determinant yields:

λ2 + µneλ + ρ = 0, (30)

where:

ρ =
1
4

µ2
ne + (σe −

3ΓnnnnΛ2
n

ω0
−

3Γnnnna2
n0

8ω0
)(σe −

3ΓnnnnΛ2
n

ω0
− 9Γnnnn

8ω0
a2

n0).

Hence, the steady-state motions are stable when µne > 0 and ρ > 0, and are otherwise unstable.
Through concrete examples, we carry out the numerical analysis and discussion of the

superharmonic resonance response of the first order modal of the controlled beam. Geometric
dimensions and material characteristic parameters of the beam and piezoelectric actuator are as follows.
Beam: l = 99.62× 10−2 m, A = 15.36× 10−4 m2, E = 34.5 GPa, I = 9.8662× 10−8 m4, k = 6.872×
104 N/m, p = 2.574× 10−1 kN, m = 4.4 kg/m.Piezoelectric actuator: d31 = −270× 10−12 m/V, Ea =

108 GPa, b = 0.2 × 10−2 m, 2ta = 0.04 × 10−2 m, d = 0.5 × 10−2 m, x1 = 12 × 10−2 m, x2 =

18× 10−2 m, x3 = 80× 10−2 m. For such an elastic beam, the first four non-dimensional natural
frequencies and eigenfunctions are shown in Figure 3.
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Figure 3. The planar mode shapes and natural frequencies of the elastic beam.

In order to more intuitively display the suppression effect of the delay feedback control, Figure 4a
shows the response of the system with no control, active control, and time delay feedback control.
It shows that the time delay feedback control can achieve significant vibration suppression effects,
and the effect is better than active control. On the other hand, the delay feedback control depends on
two important parameters, the control gain and the time lag value. If the parameters are not properly
selected, the system response will increase, as shown in Figure 4b.
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no control
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active control delayed control
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 k=0.25, = /4

 

 

q

t

(a)

Figure 4. Time history curve of the system response. (a) Time history curve under no control, active
control, and time delay feedback control; (b) increased response under time delay feedback control.

Given f1 = 0.005, u1 = 0.02, Figure 5 is the amplitude frequency curve of the first order modal
of the beam with different control gain and time delay, from which we can see, when ka11 = 0, the
non-control system response amplitude is larger. When ka11 6= 0, that is the response amplitude is
evidently suppressed by using the time-delayed displacement feedback control. In particular, when
τ = π/2, ka11 = 0.5, the peak amplitude of the response of the beam is decreased by about 53%, which
is compared with τ = π/2, ka11 = 0.25. Moreover, the curves are multivalued. The multivalued of
the response curve due to the nonlinearity has significance from the physical point of view because it
leads to jump phenomena.

Figure 6 shows the first order modal excitation-response amplitude curve of the controlled beam
in the case of different time delay τ and detuning parameter σ. We can see that as the delay time
increases, the response amplitude increases. At the same time, it also can be demonstrated by Figure 7.
Figure 7 shows the time history curve of the system response when τ = π/4 and τ = π/2.
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Figure 5. The amplitude-frequency curve of the superharmonic resonance.
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Figure 6. The response-excitation amplitude curve of the superharmonic resonance.
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Figure 7. The time history curves of the response of the controlled beams.

4. 1/3 Subharmonic Resonance

In this section, to analyze the 1/3 subharmonic resonance of the system , we let:

Ω = 3ω0 + εσ. (31)
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To eliminate the secular terms in Equation (18), we put:

iω0(2A′n + µn An) + 6Γnnnn AnΛ2
n + 3Γnnnn A2

n Ān + 3ΓnnnnΛn Ā2
n exp(iσT1)

+kann An exp(−iω0τ) = 0, (32)

Substituting An = an exp(iβn)/2 into Equation (32) and separating the result into real and
imaginary parts, we have:

a′n = −µnean −
3ΓnnnnΛn

4ω0
a2

n sin γn, (33)

anγ′n =

(
σe −

9ΓnnnnΛ2
n

ω0

)
an −

9Γnnnn

8ω0
a3

n −
9ΓnnnnΛn

4ω0
a2

n cos γn, (34)

where γn = σT1 − βn, µne = µn/2 − kann sin(ω0τ)/(2ω0) and σe = σ − 3kann cos(ω0τ)/(2ω0).
Therefore, for the first approximation:

qn =
1
2

an cos[
1
3
(Ωt− γn)] + fn(ω

2
0 −Ω2)−1 cos Ωt + O(ε). (35)

The steady-state motions correspond to a′n = γ′n = 0, that is they correspond to the solutions of:

− µnean =
3ΓnnnnΛn

4ω0
a2

n sin γn (36)

(
σe −

9ΓnnnnΛ2
n

ω0

)
an −

9Γnnnn

8ω0
a3

n =
9ΓnnnnΛn

4ω0
a2

n cos γn (37)

Squaring and adding these equations leads to the frequency-response equation:[
9µ2

ne +

(
σe −

9ΓnnnnΛ2
n

ω0
− 9Γnnnn

8ω0
a2

n

)2]
a2

n =
81Γ2

nnnnΛ2
n

16ω2
0

a4
n. (38)

Equation (38) shows that either an = 0 or:

9µ2
ne +

(
σe −

9ΓnnnnΛ2
n

ω0
− 9Γnnnn

8ω0
a2

n

)2

=
81Γ2

nnnnΛ2
n

16ω2
0

a2
n, (39)

which is quadratic in a2
n. Its solution is:

a2
n = ν± (ν2 − ι)1/2, (40)

where:

ν =
8ω0σe

9Γnnnn
− 6Λ2

n and ι =
64ω2

0
81Γ2

nnnn

[
9µ2

ne +

(
σe −

9ΓnnnnΛ2
n

ω0

)2]
, (41)

We note that ι is always positive, and thus, nontrivial free-oscillation amplitudes occur only when
ν > 0 and ν2 ≥ ι. These conditions demand that:

Λ2
n <

4ω0σe

27Γnnnn
,

ΓnnnnΛ2
n

ω0

(
σe −

63ΓnnnnΛ2
n

8ω0

)
− 2µ2

ne ≥ 0. (42)

is follows that Γnnnn and σe must have the same sign.
It follows from Equation (42) that, for a given Λn, nontrivial solutions can exist only if:

Γnnnnσe ≥
2µ2

neω0

Λ2
n

+
63ΓnnnnΛ2

n
8ω0

(43)
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while for a given σe, nontrivial solutions can exist only if:

σe

µne
−
(

σ2
e

µ2
ne
− 63

)1/2

≤ 63ΓnnnnΛ2
n

4ω0µne
≤ σe

µne
+

(
σ2

e
µ2

ne
− 63

)1/2

. (44)

In the Λn-σe/µne-plane, the boundary of the region where nontrivial solutions can exist is given by:

63ΓnnnnΛ2
n

4ω0µne
=

σe

µne
±
(

σ2
e

µ2
ne
− 63

)1/2

(45)

For Γnnnn > 0, Figure 8 shows the regions where the subharmonic response exists. Figures 9 and 10
show the amplitude-frequency curve and the response-excitation amplitude curve of the subharmonic
resonance of different time delay and control gain. We note that there is no jump phenomenon in
this case.
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Figure 8. Regions where the subharmonic response exists.
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Figure 9. The amplitude-frequency curve of the subharmonic resonance.

Can be seen from Figure 10, as ka11 increases, the resonance regions decrease obviously, but as τ

increases, those are on the contrary. As excitation amplitude increases, the resonance curve moves
to the right, the resonance regions of the system expand, and the vibration amplitude increases.
The subharmonic resonance regions of the system are very sensitive to external excitation amplitude.
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It is worth noting that the amplitude can be effectively suppressed by adjusting the control gain ka11

and time delay.
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Figure 10. The response-excitation amplitude curve of the subharmonic resonance.

5. Conclusions

In this paper, we study the control effect of time-delayed displacement feedback control on the
superharmonic and subharmonic resonance response of the elastic beam. The first-order approximate
solutions of the superharmonic and subharmonic resonance containing the control parameters are
obtained. The response curves of the external excitation amplitude f, the control gain k, and the time
delay τ are presented. The results show that the vibration of the beam can be effectively suppressed by
using the time-delayed displacement feedback control. Adjusting the control gain and time delay can
avoid the resonance region and unstable solutions. Hence, the time-delayed displacement feedback is
an effective control strategy to control the vibration of the system.
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