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Featured Application: The paper proposes a novel method of calibrating system parameters for a
PMD (phase measuring deflectometry) based system. This calibration method can be used in the
areas of reverse engineering, car industry and aerospace industry.

Abstract: Phase measuring deflectometry has been widely studied as a way of obtaining the
three-dimensional shape of specular objects. Recently, a new direct phase measuring deflectometry
technique has been developed to measure the three-dimensional shape of specular objects that have
discontinuous and/or isolated surfaces. However, accurate calibration of the system parameters is
an important step in direct phase measuring deflectometry. This paper proposes a new calibration
method that uses phase information to obtain the system parameters. Phase data are used to
accurately calibrate the relative orientation of two liquid crystal display screens in a camera coordinate
system, by generating and displaying horizontal and vertical sinusoidal fringe patterns on the two
screens. The results of the experiments with an artificial specular step and a concave mirror showed
that the proposed calibration method can build a highly accurate relationship between the absolute
phase map and the depth data.

Keywords: system parameter calibration; fringe reflection; phase matching; specular surface
measurement; direct phase measuring deflectometry

1. Introduction

The past several decades have seen revolutionary developments in three-dimensional (3D) optical
shape measurement techniques [1,2], which are now widely used across many different fields, including
reverse engineering, 3D games, digitization of cultural relics, clothing, biometrics and other biological
fields [3–9]. In the area of structured light techniques, phase-calculation-based fringe pattern projection
has made rapid progress so far, because it has the advantages of full-field measurement, non-contact
operation, automatic data processing, and fast data acquisition [10–13]. Nevertheless, there are a
large number of specular objects that need to be measured [14]. Current fringe pattern projection
techniques cannot deal with this demand, especially in the measurement of specular objects that have
discontinuous and/or isolated surfaces.

With the increasing demands of industrial development, much relative research has been done to
solve the problem of specular object measurement. Shape reconstruction from gradient data [15–18]
based on phase measuring deflectometry (PMD, also called fringe reflection profilometry) [19–28] has
been widely studied because of its high dynamic range, full-field measurement, fast data acquisition,
and automatic data processing. Cross path integration techniques, Fourier transform integration, and
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area wavefront reconstruction methods have been demonstrated [29]. However, existing PMD methods
have the drawback of local error accumulation and are incapable of measuring discontinuous specular
objects while reconstructing 3D shapes by integrating gradient data. Many improved algorithms
have been proposed to avoid this integration procedure. Huang et al. [30] presented an iterative
method that uses discrete cosine transforms to deal with the integration problem, with an incomplete
gradient dataset in a Southwell configuration. Yuan et al. [31] presented a method of measuring the
absolute height and slope of a specular surface with an incident ray, camera pinhole, and dummy
assistant surfaces. Song et al. [32] selected a binary shifting strip as a structured light pattern for
3D reconstruction of the specular surface. Recently, Huang et al. [33] have proposed a model phase
measuring deflectometry technique that uses a mathematical method to reconstruct 3D shapes of
specular objects.

In all these PMD methods, calibration of the system parameters plays a key role in the
measurement of the specular surface because it directly influences the accuracy of the measurement
system. Ren et al. [34] presented an iterative optimization algorithm to calibrate stereo deflectometry.
It includes two steps: a stepwise method and a self-calibration method; however, errors accumulated
via the iterative principle is a potential problem. Xiao et al. [35] introduced a calibration method that
uses a markerless flat mirror. This method requires a two-dimensional cosine fringe pattern to be
reflected three times. It is easy for the images to become out of focus, which influences the accuracy of
extraction of the feature points on the screen. System calibration is thus still a challenging problem in
measuring 3D shapes by PMD.

A novel DPMD (direct PMD) method that can obtain the full-field 3D shape of specular objects
with discontinuous and/or isolated surfaces has been developed to solve the problem of measuring
complex specular surfaces [36–38]. This method builds a direct relationship between the absolute phase
and the depth information. The DPMD method can calculate depth data from one directional fringe
patterns at two display screens, instead of two orthogonal fringe patterns. Moreover, 3D shape data of
specular objects could be obtained from two unwrapped phase maps directly, without the procedure
of integrating gradient data. Calibrating the system parameters is an important step in measuring
3D shape data accurately, including the distance between the reference plane and the liquid crystal
device (LCD) screen, and the distance between the reference plane and the charge coupled device
(CCD) camera. In order to calibrate the system parameters, the existing methods used a translating
stage and a machine vision-based method. Therefore, the calibration accuracy, on one hand, depends
on the accuracy of the stage, but on the other hand, it has a low accuracy due to the limited depth of
field (DOF) of the lens.

This paper presents a novel parameter calibration method that uses phase data to accurately
determine the two system parameters. The phase information is calculated from sinusoidal fringe
patterns, which are unaffected by the imaging lens being out of focus, so the calibrated system
parameters have high accuracy. The following section briefly describes the DPMD technique. Section 3
explains the principle of using phase data to calibrate the system parameters. Section 4 describes
the experiments used to verify the proposed calibration method and the results. Section 5 presents
our conclusions.

2. Direct Phase Measuring Deflectometry

Figure 1 is a schematic diagram of the proposed full-field 3D shape measurement system for
specular surfaces using the DPMD technique. The system consists of two LCD screens, one mirror, one
CCD camera, and one beam splitter plate.
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Figure 1. Schematic diagram of the measuring system using direct phase measuring deflectometry (DPMD).

The beam splitter was adjusted to a suitable position that makes a virtual image LCD1
′

of LCD1

parallel to LCD2, as if the two LCD screens were located in two parallel positions. The two screens
were parallel to a reference mirror located in the reference plane. The parallelism was established
by repeated adjustments of the relative orientations of the three components (the two LCD screens
and reference mirror). A checkerboard could be generated and displayed on the LCD1 and LCD2

screens, which were both located on the angular displacement platforms. As a result, the screens could
change position and direction randomly and accurately. A CCD camera captured the checkerboard
images on the two screens. The extrinsic parameters of LCD1 and LCD2 were calculated from the
captured checkerboard image. Then, based on their differences, the relative orientation between the
virtual image of LCD1 and LCD2 was adjusted to be parallel, using the angular displacement platforms.
This procedure was repeated several times until the three components were nearly parallel. And then
there is also Zhang’s method [39] for compensation by generating deformed fringes by software to be
equivalent to the exact parallel alignment of two display screens.

In the diagram, h is the depth of the measured point with respect to the reference mirror, d1 is
the distance between LCD1

′
and the reference mirror, and d2 is the distance between LCD2 and the

reference mirror.
As illustrated in Figure 1, two rays of light were displayed and reflected into the CCD camera via

the measured surface and the mirror at the reference position. The two incident rays corresponded to
the same reflection light. The absolute phases of the two incident rays are denoted as φ1 and φ2 on the
reference plane and φ′1 and φ′2 on the measured specular surface. θ and 2θ + β are the angle between
the incident ray and the normal vector of the reference and the angle between the incident ray and
the normal vector of the measured specular surface, respectively. The period of the displayed fringe
pattern on the LCD screen is denoted as q. l is the distance on LCD1

′
between the two incident rays

because of the height and gradient of the measured surface. Parameter h stands for the height of the
measured specular surface with respect to the reference plane. d1 is the distance between LCD1

′
and

the reference mirror, and d2 is the distance between LCD2 and the reference mirror.
According to geometric triangle relationships, which are illustrated in Figure 1, Equations (1)–(4)

can be acquired respectively.

(d1 − d2) tan β =
(φ1 − φ2)× q

2π
(1)

(d1 − d2) tan(2θ + β) =
(φ′1 − φ′2)× q

2π
(2)
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(d1 + h) tan θ + l = (d1 − h) tan(2θ + β) (3)

l =
(φ1 − φ′1)× q

2π
. (4)

Equation (5) can be derived based on the above Equations (1)–(4).

h =
d1(φ2 − φ′2)− d2(φ1 − φ′1)

(φ1 − φ2) + (φ′1 − φ′2)
. (5)

This equation shows clearly that the depth value can be calculated directly from the captured
fringe patterns as long as the two parameters d1 and d2 and phase information on the reference mirror
are known beforehand. The calibration method used to obtain the system parameters is explained in
the following section.

3. Calibration of System Parameters

An important step in obtaining 3D shape data is to build the relationship between the absolute
phase and the depth, which is known as calibration. In the mathematical model derived in Equation
(5), the two parameters d1 and d2, need to be determined beforehand. When the extrinsic parameters
(orientations) of the mirror, LCD1, and LCD2 have been acquired in the same camera coordinate system,
d1 can be calibrated from the relative distance between the mirror and LCD1, which can be obtained
through matrix transformation; d2 can be calibrated in the same way. A novel parameter calibration
method for the DPMD system has been proposed by using a phase target to solve the existing problems
of dependency on a translating stage and the limited depth of field (DOF) of the lens.

3.1. Calibration of Internal Parameters

To apply a machine vision-based method to determine distance d1 and d2 by a CCD camera, the
internal parameters need to be calibrated by using the following equation:

λ

 u
v
1

 = A
[

R T
]

XW
YW
ZW
1

, (6)

where R is a matrix representing the three rotation angles and T = [tx, ty, tz] is a vector representing
the three linear translations. [Xw, Yw, Zw] is the coordinate vector of a point in the world coordinate
system, while [u, v] is a coordinate vector of the corresponding point in the pixel coordinate system.
λ is an arbitrary scaling factor. A is a matrix of the CCD camera internal parameters, including
two focal lengths (Fu and Fv), two principal point coordinates (Pu and Pv), and four image radial
and tangential distortion coefficients (K1, K2, K3, and K4). The eight internal parameters need to be
calibrated beforehand and Zhang’s camera calibration method is used to obtain their values by using a
checkerboard at different positions [40].

3.2. Orientation of the Mirror

A mirror with a matrix of discrete hollow ring markers on its surface was used to determine the
distance between the reference plane and the two LCD screens in orientating the reference plane in the
camera coordinate system. After the mirror plane was adjusted to be parallel to the screen surface, the
CCD camera captured an image of the hollow ring marker matrix, as illustrated in Figure 2a.
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Figure 2. Image of hollow ring marker matrix captured by the camera: (a) texture image and (b) red
dots representing the center of each hollow ring marker.

After extracting the inner and outer edges of each ring marker, the center of each of the markers
was determined using the principles of cross ratio and the pole–polar relationship [41]. Figure 2b shows
the center positions determined for each marker in the matrix, illustrated by red dots. Because the
distance between neighboring ring markers is known beforehand, the external parameters of the
mirror, rotation matrix R, and translating vector T could be obtained in the camera coordinate system
to define the orientation of the mirror [42].

Obviously, the location accuracy of each center position was the most influential factor in the
above process, and had an effect on determining the orientation of the mirror. This paper used
Chen’s [30] method to calculate the real projection center to reduce the error as much as possible,
this method is more accurate and stable than using the ellipse fitting method, as the radius of inner
circle increases.

3.3. Orientations of the Two Screens

The luminance nonlinearity caused by the gamma effect of the digital screen and camera is the
major error source of digital phase shift technology [43]. As a result, gamma correction is necessary
to reduce the influence for the following calibration process. This paper adopted a direct, simple,
and effective method by encoding initial fringe pattern based on Wang’s paper [44]. Then, horizontal
and vertical encoded sinusoidal fringe patterns with the optimum fringe numbers were subsequently
generated and displayed on LCD1

′
and LCD2 to determine the orientations of the two LCD screens

in the same camera coordinate system. However, the fringe patterns were reflected by the reference
mirror and captured by the CCD camera from another position for post-processing. Because phase
data were calculated from the captured sinusoidal fringe patterns, they were insensitive to the imaging
lens being out of focus. The phase of each pixel on the two LCD screens could be known using certain
fringe numbers.

Absolute phase data were calculated using the optimum three-fringe number selection method
and a four-step phase shifting algorithm. However, the phase data in the location of the circles could
not be obtained correctly due to the low fringe modulation, as illustrated in Figure 3a for the horizontal
fringe pattern. Because all phase data were located on the plane mirror, a plane could be fitted by
using the obtained correct phase data without circles. This process can eliminate the influence of the
inaccurate phase data in the location of the circles, as shown in Figure 3b.
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Figure 3. Absolute phase on the mirror surface for a horizontal fringe pattern: (a) absolute map with
inaccurate phase data for the hollow ring markers and (b) absolute map processed with a 3D surface
fitting algorithm.

A two-dimensional feature point matrix can be designed for the LCD screen to match the
calibration requirements, as illustrated in Figure 4. The world coordinate and corresponding phase
data of each feature point can be determined by following equations:

xw

φx
=

nx × p
2π

, (7)

yw

φy
=

ny × p
2π

, (8)

where p is the size of LCD screen pixel pitch, nx is the number of LCD screen pixels per horizontal
fringe, and ny is the number of LCD screen pixels per vertical fringe. According to Equations (7) and
(8), one camera pixel can uniquely locate its corresponding physical position (xw, yw) in the world
coordinate system based on its phase value (ϕx, ϕy).
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As a result, the position of each feature point in the unwrapped phase map was determined using
a phase matching algorithm. The absolute phase of every pixel was invariable in the image captured
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from different camera viewpoints. The phase data can thus be used to build the relationship of the
feature points between the world coordinate system and camera coordinate system.

The orientations of the two LCD screens in the camera coordinate system were determined from
the parameter matrix of the LCD screen and the calibrated internal parameters of the CCD camera.

3.4. Calculation of the two system parameters

In order to calculate the distance, the orientations of the reference mirror and the two screens LCD1

and LCD2 needed to be transformed into the same camera coordinate system. After obtaining the
orientations of the reference mirror and screens LCD1 and LCD2 in the same camera coordinate
system, the coordinate transformations for the LCD screens and the mirror were given by the
following equations.

RMC × PMW + TMC = PMC, (9)

RL1C × PL1W + TL1C = PL1C, (10)

RL2C × PL2W + TL2C = PL2C, (11)

where, RMC, RL1C, and RL2C are the rotation matrices for the mirror, LCD1, and LCD2 from the world
coordinate system to the camera coordinate system; PMW , PL1W , and PL2W are the world coordinates of
the mirror, LCD1, and LCD2; TMC, TL1C, and TL2C are the translation vectors of the mirror, LCD1, and
LCD2 from the world coordinate system to the camera coordinate system; and PMC, PL1C, and PL2C are
the position coordinates of the mirror, LCD1, and LCD2 in the camera coordinate system.

The distances between the two LCD screens and the mirror were calculated to give the value of
the two system parameters d1 and d2, and a plane was fitted based on the data for PMC. In Figure 5,
d1 and d2 are the distances between PL1C and the fitted plane and between PL2C and the fitted
plane, respectively, allowing the two system parameters to be calibrated in the same camera
coordinate system.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 15 
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In order to describe the proposed calibration method of this paper, a flowchart with the whole
calibration procedure is shown in Figure 6.
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4. Experiments and Results

4.1. System Hardware

Calibration experiments were carried out to verify the proposed method using the developed
DPMD measurement system, as illustrated in Figure 7. The setup consisted of a CCD camera, two
LCD screens, a beam splitter plate, and a mirror with a matrix of hollow ring markers. The camera was
the model ECO655CVGE from SVS (Bremen, Germany), and had a resolution of 2448 × 2048 pixels.
Two small size LCD screens were used in the DPMD system. The two LCD screens were the model
LP097QX2 from LG (Seoul, Korea) and had a resolution of 2048 × 1536 pixels. However, they were
low quality and the flatness was not so good. The three angular displacement platforms had a
minimum readout of 5′ from Micro-nano Optics Automation Equipment Cooperation (Beijing, China).
The mirror with the matrix of hollow ring markers and the beam splitter plate were manufactured by
Jiaite Photoelectric Corporation (Shenzhen, China) to match the experimental requirements.
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4.2. Calibration experiments

In order to determine the internal parameters of the CCD camera, the checkerboard was placed
at eighteen random positions and orientations with a large angle between the imaging axis and the
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board’s normal. The checkerboard size along the rows and columns had the same value of 6 mm, as
illustrated in Figure 8.
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At each position, the CCD camera captured the checkerboard image. Using the known
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obtained by the Camera Calibration Toolbox for Matlab [45], the results are shown in Table 1. The radial
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respectively, as illustrated in Figure 9.
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After obtaining the internal parameters of the CCD camera, the calibration procedure included
the following steps: (1) The camera captured an image of the mirror with the hollow ring marker
matrix to calibrate its extrinsic parameters and determine its orientation in the camera coordinate
system; (2) Two groups of orthogonal phase-shifted fringe patterns with the optimum three fringe
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numbers were displayed on screens LCD1 and LCD2. The camera captured these fringe pattern images
in sequence. The absolute maps were obtained from the captured fringe patterns using a four-step
phase shifting algorithm and the optimum three-fringe number selection method [46,47]. A matrix
with 12 × 9 feature points was designed on the LCD screens to enable the corresponding points on the
absolute map to be searched for. The orientations of the two screens were determined in the camera
coordinate system based on the phase matching and fringe order constraint principle; (3) The two
system parameters d1 and d2 were calculated based on the orientations of the two LCD screens and
the reference mirror; (4) Using the known distance between neighboring markers, calibration was
achieved by determining the relationship between each pixel position and its XY coordinates.

4.3. Evaluation of Results

A concave mirror, from Micro-nano Optical Corporation (Beijing, China), was measured using the
calibrated DPMD system. The center of the concave surface was obtained according to the measured
3D shape data by fitting all the points. The radius could be calculated as a true value. The difference
between every point and the obtained true radius was calculated. The average value of all the
differences was the calculated systematic error of 26 µm. To evaluate the calibrated system parameters
quantitatively, the calibrated DPMD system was also tested using a standard artificial step with
specular surfaces, the photos of the objects are illustrated in Figure 10. The specular step was designed
and manufactured with known distances between neighboring steps, as shown in the first column
in Table 2. Twelve sinusoidal fringe patterns with fringe numbers of 81, 80, and 72 were generated
and displayed sequentially on the two LCD screens. The fringe patterns reflected by the specular
objects being tested were deformed by the slope and shape of the measured surface. The reflected
fringe patterns captured by the CCD camera are shown in Figure 11a for the step and Figure 12a for
the concave mirror. Figures 11b and 12b illustrate single absolute phase maps for the specular step
and the mirror, respectively. The absolute phase map was then converted into depth data, and the
calibrated parameters d1 and d2 were used to obtain the 3D shape data for the specular step and the
concave mirror, as shown in Figures 11c and 12c. Figures 11d and 12d show the profile maps of the
specular step and concave mirror being tested.
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of the mirror and (d) profile map of the mirror.

All the points measured on one step surface were fitted onto a plane to calculate the distance
between neighboring steps. The measured distance between neighboring steps was calculated using
the average of the distance from all the points obtained on the other step surface to the fitted plane.
The measured distance, the absolute error (absolute difference between the average distance measured
and the calibration distance), and the standard deviation are listed in the second to fourth columns of
Table 2.

Table 2. Evaluation results for the artificial specular step (units: mm).

Calibration Distance Measured Distance Absolute Error Root Mean Square Error

3.987 3.965 0.018 0.022

7.025 7.044 0.015 0.019

5.006 5.030 0.022 0.024

6.099 6.079 0.021 0.020

The experimental results demonstrate that the proposed calibration method can reconstruct the
3D shape of specular objects with high precision and reliability. The absolute error in the distance
between neighboring steps was below 22 µm, while the value is 52 µm by using the existing calibration
method [37].
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5. Conclusions

This paper proposes a novel method of calibrating system parameters for the PMD technique.
The method uses a reference mirror with a matrix of hollow ring markers to determine the orientations
of two LCD screens in the same camera coordinate system, by displaying orthogonal sinusoidal fringe
patterns on the screens using phase data. This allows the two system parameters d1 and d2 to be
calibrated in the camera coordinate system. The calibrated DPMD system was tested with an artificial
specular mirror with known distances between steps, and a standard concave mirror of known radius.
The experimental results validated the effectiveness and reliability of the proposed calibration method
for the system parameters.

The proposed calibration method has the following advantages: (1) The parameters of the DPMD
system are calibrated using phase information calculated from sinusoidal fringe patterns. The digital
phase calibration board has been designed to calibrate the position of LCD screens instead of geometric
feature points. Because the plane and screen are different distances from the imaging device, they
cannot be clearly captured, given the limited DOF of the lens. Using the phase target can solve
this problem efficiently; (2) The calibrated DPMD system can measure specular objects that have
discontinuous and/or isolated surfaces; (3) The mirror surface is selected as the reference plane,
making it unnecessary to replace components, and ensuring an accurate reference position. Also, the
proposed calibration method can obtain the two parameters in the same way, so that it does not need
to remove the board in the measuring system after calibration, which is more convenient.
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Of course, this paper also considered several factors which would affect the accuracy of whole
calibration process. Firstly, Chen’s method was used instead of the traditional ellipse fitting method
to calculate the real projection center to reduce the error as much as possible, as it has been proven
to have a higher accuracy. Secondly, gamma correction by encoding the initial fringes was applied
to reduce the influence of nonlinear distortion. However, the influence of a finite width of the beam
splitter, the accuracy evaluation of phase matching principle and other error sources for calibration
also need to be studied in further experiments.
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