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Abstract: The present work focuses on investigating the characteristics of the fracture process zone
(FPZ) in concrete. The Single-edge notched (SEN) concrete beams under three-points bending are
employed for conducting mode I fracture propagation. The displacement fields on the specimen
surface and the internal AE signal of specimen are obtained simultaneously in real time by digital
image correlation (DIC) and acoustic emission (AE) techniques. The experimental and analytical
results indicated that the crack tip position, the crack extension length and the stress intensity
factors (SIF) are obtained dynamically and quantitatively by DIC technique, and the length of FPZ is
identified, respectively, by DIC and AE techniques in the crack extension process. The distribution of
internal AE events is consistent with that of FPZ identified from surface deformation of specimens.

Keywords: fracture process zone; digital image correlation technique; acoustic emission technique;
stress intensity factor

1. Introduction

Concrete is a quasi-brittle material. The micro-cracking region ahead of the real crack tip in
concrete is defined as the fracture process zone (FPZ), and the characteristics of concrete FPZ have
been a subject of massive experimental debates. Various techniques have been developed to track
the evolution of micro-cracks in FPZ, such as the fiber optics technique [1], X-rays technique [2], fiber
optic sensor [3], and optical microscopy [4]. Compared to the methods mentioned above, digital image
correlation and acoustic emission techniques are increasingly popular recently.

The Digital image correlation (DIC) technique was firstly proposed by Peters and Sutton et al. [5,6].
It is an optical technique to determine surface deformations by matching the digital speckle images
before and after deformation. DIC is a non-destructive and non-contact full field displacement
measuring technique. The displacement and strain data obtained by DIC can be directly employed
to theoretical analysis. Benefit from such advantages, the DIC has been widely applied to the study
of concrete fracture. Choi and Shah [7] measured the lateral and axial deformations on a concrete
specimen surface subjected to compression. Corr et al. [8] studied the interfacial transition zone
between aggregates and cement paste in plain concrete. They also investigated its softening and
fracture behavior. Wu et al. [9] studied the properties of the fracture process zone in concrete using
DIC technique. Rouchier et al. [10] studied the whole process of concrete fracture using the DIC
technique. The acoustic emission (AE) technique has been extensively applied in concrete engineering
for approximately five decades since the 1960’s [11]. The AE technique can continuously monitor
the internal micro-cracks event and the failure process of concrete in real time, which makes it more
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popular than other methods. Wells [12] studied AE waveforms and determined the relationship
between strain measurements and AE events. A frequency analysis and a source location analysis were
reported to demonstrate the relationships [13]. These studies have produced practical applications
for monitoring micro-cracks in concrete structures and are very useful in diagnostic applications. AE
technique was utilized to assess the concrete fracture process, as the pioneering research works of
Colombo [14]. The research works of Colombo et al. [15] have indicated that concrete micro cracks emit
waves possessed smaller amplitudes, whereas macro cracks emit waves possessed larger amplitudes.
Muralidhara [16] shed lights on the relationship between the AE event and the evolution of the fracture
process in concrete. Recently, the relationship between the formation of FPZ in concrete and AE events
has been extensively studied [17–20]. In order to cover their weaknesses and improve their advantages,
DIC and AE techniques were combined to monitor the concrete crack evolution process [21–23].

In spite of the extensive work and many successes in characterizing FPZ, the comprehension of
the characteristics of concrete FPZ requires further research. In this presentation, the concrete fracture
tests are conducted on Single-edge notched beams through three-points bending conditions. The DIC
technique is applied to measure the displacement and strain fields around the crack tip in real-time.
Then the SIF, crack tip position and crack length are quantitatively and dynamically derived from the
displacement fields measured by DIC technique. The AE technique is applied to monitor the internal
fracture events during the crack propagation process, in particular the subcritical extension process. In
short, the objective of this research is to investigate the characteristics of FPZ during the concrete crack
propagation process.

2. Experimental Procedure

2.1. Digital Image Correlation Technique

Digital image correlation method relies on observations of random speckle patterns on the
specimen surface. Image patterns are recorded before and after deformation of the specimens, then
they are digitized and stored in a computer. The undeformed and deformed images are divided
into small regions called “subsets”, with each subset containing a group of pixels. Digital image
correlation is used to match the subsets on the undeformed image with their corresponding subsets on
the deformed image, as shown in Figure 1.
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The f (xi, yj) represents the gray level value at coordinate (xi, yj) of the undeformed image, while
the g(x∗j , y∗j ) represents the gray level value at coordinate (x∗j , y∗j ) of the deformed image, the subset
size is N × N. The coordinates (xi, yj) and (x∗j , y∗j ) are directly related by the deformation occurring
between the two images. If the deformation occurs in two dimensions parallel to the camera, then the
coordinates are related by Equation (2):

x∗ = x + ux +
∂ux
∂x ∆x + ∂ux

∂y ∆y

y∗ = y + uy +
∂uy
∂x ∆x +

∂uy
∂y ∆y

(2)

The ux and uy are the displacements of the subset center in the x and y directions, respectively,
and ∆x and ∆y are distances from the subset center to any point in the subset (x, y).

2.2. Estimation of Stress Intensity Factors

The method for estimating mode I and mixed-mode I-II stress intensity factors is proposed here,
based on the displacement fields determined via the DIC method. The displacement fields around a
crack tip of the concrete specimen are expressed as Equation (3):{
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The ux and uy are the displacement components in the specimen considered, and G is shear
modulus. The κ is (3− µ)/(1 + µ) for plane stress, and r and θ are the polar coordinates around a
crack tip, as shown in Figure 2.
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In the series solutions, the coefficient of the first terms AI1 and AII1 are related to stress intensity
factors KI and KII of mode I and mode II through the relations of Equation (4).

AI1 =
KI√
2π

, AII1 = − KII√
2π

(4)

For the cases of mode I fracture, the displacement component of the specimen is perpendicular to
the crack surface. This means that the uy displacement field can be generally used to determine the
stress intensity factors. In mixed-mode cases, however, the dominant displacement component for
the crack can’t be predicted before analysis. Therefore, radial ur and circumferential displacement
components uθ on a polar coordinate system are used in this study to transform Cartesian
displacements ux and uy. The displacements ur and uθ are obtained as Equation (5):
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The displacement fields in Equation (5) can, hence, be rewritten as Equation (6):{
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The N is the number of terms of the series expansion of the displacement field. From
Equations (5) and (6) with rigid-body displacements taken into account, the displacement fields
can be expressed as Equations (7) and (8):
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The Tx and Ty express the rigid-body translation in the x and y directions, respectively, and R is
the rigid-body rotation. The subscript k (k = 1, 2, . . . , M) denotes the index of the function evaluated at
a point (rk, θk) in the displacement field at which the displacement values are urk and uθk. The M is
the total number of displacement data points used in solving displacement equations. The unknown
coordinates around a crack tip may thus be given in polar coordinates as Equation (9):

rk =

√
(xk − x0)

2 + (yk − y0)
2, θk = tan−1

(
yk − y0

xk − x0

)
(9)

The x0 and y0 are the location of the crack tip relative to an arbitrary Cartesian coordinate system.
At any point in the displacement field, the coordinates rk and θk, and displacements urk or uθk can be
substituted into Equations (7) and (8). Therefore, stress intensity factors, higher-order terms and crack
tip locations can be derived automatically from the displacement field determined by the DIC method.

2.3. Acoustic Emission Event Localization Technique

The AE technique has been extensively applied for the condition assessment and damage detection
for concrete structures, as it was described by Grosse and Ohtsu in their book [13]. In particular, the
AE technique can detect crack propagation that occurs not only on the surface but also deep inside the
material. Therefore, a large number of AE analyses have been performed on concrete and concrete
structures in Golaski’s work [24]. One of the most important features of AE technique is the ability to
localize the source of an AE event. Through the AE technology and signal localization method, the
fracture process in concrete can be observed throughout the loading history. Signal localization is the
basis of all analysis techniques used in AE technique. According to the 3-D localization problem, it is
exactly determined when four or more travel times are available to calculate the three coordinates and
the source time of an event. A least absolute deviation method is proposed as the AE location method
in this presentation, and the objective function is defined as Equations (10) and (11)

F =
n

∑
i=1
|Ci − Cm| (10)
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Ci = ti −
(√

(xi − x0)
2 + (yi − y0)

2 + (zi − z0)
2/v

)
(11)

The Ci is the source time to the sensor; and Cm is the median of Ci(i = 1, 2, . . . , n), which can be
treated as the real source time. Ci − Cm is the measurement error between calculated source time and
real source time. The ti is the onset time of the sensor, (xi, yi, zi) is the coordinate of the sensor location,
and (x0, y0, z0) is the coordinate of the event source location.

2.4. Specimen, Loading Condition, and Measurement System

The concrete specimens are prepared with a standard P.O 32.5 Portland cement, which is crushed
stone with a maximum diameter of 6 mm and river sand used as coarse and fine aggregate, respectively.
The mix proportions are listed in Table 1. The modulus of elasticity and Poisson’s ratio are measured
through standard material test methods, the specimen size is 100× 50× 50 mm3. The measured values
of the modulus of elasticity and the Poisson’s ratio of the concrete material are E = 35 GPa, µ = 0.26,
and the compressive strength is 27.5 MPa.

Table 1. Concrete mix proportions.

Water/Cement Ratio Cement (kg/m3) Sand (kg/m3) Aggregate (kg/m3) Water (kg/m3)

0.48 446 593 1102 214

Six single-edge notched concrete beams under the three point bending are used for mode I fracture
testing in the present study. Figure 3 shows a schematic representation of the concrete specimen and
the locations of the three loading points of a three point bending test. The dimension of the SEN
concrete beam is 210× 70× 23 mm3, and the span is 170 mm. A notch is made at the center of the
concrete specimen edge using a diamond saw of 0.3 mm in thickness, with a length of a0 = 10 mm. In
implementing the DIC method, the interest regions of specimen surface are painted with white ink,
and then covered with a black dot pattern with spray painting. An example of specimen prepared in
this manner is shown in Figure 4.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 13 
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Figure 3. Concrete specimen and three-points bending conditions.

A servo hydraulic test machine with a capacity of 50 kN is applied for fracture tests, the
displacement rate of the loading plane is set to 0.02 mm/min. In order to ensure contact between the
loading system and specimens, a 50 N preload is applied before the testing. During the loading process,
the painted area around the crack tip is recorded by a monochromatic charge-coupled device camera
(Basler 404k, 2352 × 1720 pixels, BASLER, Ahrensburg, Germany) with a 105 mm focal lens. The
specimen failure and crack propagation process is recorded by the camera in a rate of 15 frame pictures
per second, then the pictures are stored in a computer automatically. The resolution of all captured
images is 0.055 mm/pixel. As shown in Figure 4, sixteen AE sensors with a resonant frequency of
approximately 150 kHz are attached to the specimen surface. Six sensors are in front surface and
behind surface respectively, and four sensors are on the up and down edge of the specimen respectively.
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AE signals are amplified 40 dB gain by a pre-amplifier. The sixteen sensor’s signal data in 16-bit is
recorded continuously and simultaneously in a frequency of 3 MHz.
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3. Results and Discussion

3.1. FPZ Evolution and SIFs

During a typical concrete fracture testing process, 13,089 images are captured by CCD in 872.6 s.
A 55 × 30 mm2 interest area covering the crack extension trace is shown in Figure 5, the displacement
contour map of the interest area is obtained by the DIC technique. The crack tip position and
displacement data around the crack tip are used as the initial value of the solution to the iterative
Equation (8), then the SIFs and real crack tip position are obtained. As shown in Figure 5, 230 data
points are selected around the crack tip, the data point position is marked by black dots. Although
the accurate positions of the pre-crack tip can hardly be precisely ascertained at the outset, it is well
known that the failure must start from the upper edge of the notch. Therefore, the center point of
the notch’s upper edge is set as the crack tip’s initial position for the first iterative procedure. Then
the obtained value of crack tip position is set as a new crack tip position for the consequent iterative
procedures. As it is mentioned above, a series crack tip position can be derived from the displacement
field around the crack tip during the crack propagation process. These crack tip positions are in the
crack extension trace. These crack tip positions are used to calculate crack extension length δa during
the FPZ evolution process. As shown in Figure 6, the crack extension length curve and loading curve
are plotted together.
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As shown in Figure 6, the crack extension length gradually increases from t = 577.34 s, the crack
extension speed increases sharply after t = 712.26 s, the crack extension speed slows down after
t = 752.35 s. Therefore, the first stage is usually called crack stable growth stage or subcritical growth
stage. In this stage, micro-cracks are nucleating in front of the pre-crack tip along the notch direction,
the crack extension length can be set as FPZ length. As shown in Figure 6, the concrete subcritical
growth stage can be identified quantitatively and easily from the crack extension curves, and the
FPZ length is about 8.35 mm. The second stage is unstable crack growth stage, micro-cracks coalesce
into meso- and macro cracks, the crack extension length increases sharply, and the FPZ length is
about 20.5 mm. In the third stage, the crack extension speed is mainly controlled by the test machine
displacement rate. So, the concrete FPZ length is obtained from crack extension length curve derived
from displacement field by DIC technique proposed in this presentation.

In Figure 7, the mode I SIF KI curve and loading curve are plotted together. The SIF KI is expected
to be proportional to the applied load P and the square root of the length of preexisting crack a,
as per the theory of fracture mechanics, while the value of KI does not increase before t = 577.34 s.
The SIF KI begins to increase from t = 577.34 s, and reaches a critical value KI = 3.332 MPa·m1/2 at
t = 752.35 s. Then the curve of KI drops slightly and tends to a constant value. Hence, the critical value
of KI = 3.332 MPa·m1/2 is defined as the mode I fracture toughness KIC. As shown in Figure 8, the
value of SIF KII are much less than the value of KI. It means that the beam is mainly cracked by tension
force. Based on the analysis above, the typical contour maps of horizontal displacement during the
loading process are shown in Figure 9.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 13 
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Figure 9. Horizontal displacement contour maps of the interest area (Unit: mm).

The displacement contour maps are corresponded with four spots marked on loading curve in
Figure 6, respectively. Table 2 contained more details on specific values mentioned above, such as the
loads, SIFs and crack extension lengths.

Table 2. Key experimental result.

Load Time (t) Load (kN) KI (MPa·m1/2) KII (MPa·m1/2) ∆α (mm) Load/Max Load (%)

577.34 1.58 0.206 0.018 4.65 67.2

712.26 2.29 2.545 0.281 8.35 97.4

752.35 2.35 3.332 0.390 15.02 100

825.92 1.24 3.0065 0.281 24.63 52.8

3.2. Internal AE Event of FPZ

Figure 10 shows the positions of 16 AE sensors and the last location distribution of the AE event.
The 3rd to 8th AE sensors are attached onto the front specimen surface, and the 9th to 14th sensors
are attached onto the back specimen surface. The first, second and the 15th and 16th AE sensor are
attached onto the downside and upside of specimen edge respectively. A sufficient number of sensors
can effectively suppress the influence on the events localization caused by the individual signals
attenuation and sensors position. The definition of AE events is defined by a threshold of 100 millivolts.
From Figure 10a, the pencil lead break position is near the 9th AE sensor. The total 9035 AE events are
checked out from the signal waves. A total of 175 AE event positions are located effectively by the
proposed method. It can be found that the location distribution of AE event in Figure 10b agreed with
the deformation localization positions in Figure 9. Therefore, the location of AE events can be applied
to study the micro-cracking events and the evolution of FPZ internal the concrete specimen.
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Figure 10. The AE sensor position and the AE event location.

From Figure 11, the AE events are marked during the loading process. The marked positions
on loading curve are the same as what have been mentioned in the Section 3.1. Therefore, it can be
analyzed correspondingly for the internal micro-cracking characteristics and the surface deformation
localizations of FPZ. The first AE event is caused by the pencil lead break. The following AE event is
caused by the micro-cracking during the FPZ evolution process.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 13 
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It can be seen that the most AE events are concentrated between the main crack initial and unstable
extension period. AE energy is sharply increased as macro crack forms in a FPZ. The emission energy
of the event around the peak loading is higher than the other event. The AE energy in this analysis is
defined as the product of amplitude and duration of the emission.

The AE event distribution in the FPZ at loading points P1, P2, P3, and P4 are shown in Figure 12.
As it is shown in Figure 12a, the first AE event location is near the up loading roller, but the event
is an isolated one. Conversely, the AE events which occurred from the pre-crack tip are a series of
event in Figure 12b–d. Meanwhile, these events are distributed in a narrow band, the width of the
band is about 10 mm. The band is in accordance with the displacement localization band in Figure 9.
Therefore, it can be concluded that the internal AE event band is in accordance with the FPZ ahead of
the pre-crack tip. The length of FPZ in Figure 12c,d are in agreement with the crack length shown in
Figure 6 observed by the DIC method.

Corresponding to Figure 12, the surface horizontal strain fields are shown in Figure 13. The
surface strain is obviously localized in a narrow band in Figure 13c,d. From Figures 12 and 13, it is
observed that the FPZ corresponds to both the surface strain localization zone and the internal AE
event zone.
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3.3. Concrete FPZ Characteristics

The internal and external characteristics of FPZ in concrete are identified by DIC and AE
techniques quantitatively during the mode I fracture extension process. Although the measurement of
FPZ length has attracted the attention of most researchers, the quantitative measurement of FPZ length
has not yet been realized until now. The crack tip position and FPZ length is measured automatically
and quantitatively by the DIC technique proposed in this presentation. The length of FPZ obtained
by DIC and AE technique are in good agreement. The maximum of FPZ length is about 20 mm,
the experimental results agreed with the hypothesis that the length of FPZ is about three times the
maximum aggregate size [24].

The internal micro-cracking process is monitored by AE technique. The cracking source of AE
events are located precisely by the proposed location methods. The results show that the internal
AE event propagation process is completely consistent with the displacement and strain localization
process obtained by DIC method on the surface of concrete specimen. During the concrete crack
extension process, the FPZ corresponds to the surface deformation localization band and the internal
AE event band. The width of fracture process zone is 3 mm on the surface of specimen and 10 mm in
the interior of specimen. It means the internal influence area of crack in concrete is larger than that of
FPZ observed on concrete surface.

The measurement of stress intensity factors at crack tip is usually a difficult problem during the
FPZ extension process. The SIFs are derived from the displacement field around the FPZ tip by the
DIC technique proposed in this presentation. The stress intensity factors indicate the distribution
characteristics of the stress field around the FPZ. It should be mentioned that the emission energy
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monitored by AE sensor is a relative parameter, which can’t be directly applied to quantify the real
released energy of AE event. The comparative analysis of AE results based on deformation field and
SIFs will help to explain and analyze the experimental results of AE in the FPZ of concrete.

4. Conclusions

The following conclusions can be drawn from experiments with Single-edge notched concrete
beams under three-points bending using the digital image correlation and acoustic emission technique:

(1) The displacement fields, strain fields, crack tip position, crack extension length, and SIFs are
obtained automatically and quantitatively by DIC technique proposed in this presentation, the FPZ is
identified by the surface deformation of specimen during the crack extension process.

(2) The internal micro-cracking events of FPZ are localized automatically and dynamically by the
proposed AE event location method. The distribution of internal acoustic emission events corresponds
to the FPZ on the surface of the specimen.

(3) The length of the FPZ is obtained by DIC and AE technique, the results are consistent with
each other.

(4) The internal and surface characteristics of FPZ evolution are identical during the concrete crack
extension process. The comparative analysis based on DIC and AE technique is helpful to comprehend
the characteristics of concrete FPZ.
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