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Abstract: To test the nonlinearity and non-stationarity of measured dynamic signals from a bridge
structure with high-level noise and dense modal characteristics, a method that combines the
adaptive signal decomposition with the recurrence analysis is proposed to solve the difficulty
of testing nonlinearity and non-stationarity of bridge structure signals. A novel white noise
assistance and cluster analysis are introduced to the ensemble empirical mode decomposition to
alleviate mode-mixing issues and generate single-mode intrinsic mode functions. Combining the
hypothesis-testing scheme of nonstationary and nonlinear synchronization and surrogate techniques,
a data-driven recurrence quantification analysis method is proposed and a novel recurrence
quantification measure pairs are set up. To demonstrate the efficacy of the proposed methodology,
complex signals, which are collected from a carefully instrumented model of a cable-stayed bridge,
are utilized as the basis for comparing with traditional nonlinear and non-stationary test methods.
Results show that the proposed multiscale recurrence method is feasible and effective for applications
to a nonlinear and non-stationary test for real complex civil structures.

Keywords: multiscale recurrence analysis; ensemble empirical mode decomposition; bridges;
complex signals

1. Introduction

With the fast advancement of microprocessors, miniature sensors, wired and wireless digital
transmission networks, and contemporary monitoring devices are able to collect an enormous amount
of signals exhibited from bridge structures. However, it is well known that complex bridge structures
show high-level nonlinear and non-stationary behaviors due to a variety of causes such as continuous
ambient vibrations, vehicle-bridge coupling effect, cumulative crack growth, and degradation of
columns, joints, and beams [1]. This brings considerable challenges for civil engineers to inspect
the time-varying performance of complex bridge structures. It is of great significance to consider
the characteristics of bridge structure signals for detecting the inherent non-stationary and nonlinear
nature of signals.

Conventional stationary analysis methodologies and linear statistical approaches tend to have
limitations to capture the nonlinear and nonstationary variations in the signals [2]. For example,
the fast Fourier transformation cannot provide the temporal localization of the frequency components
and assumes that spectral components are stationary. Furthermore, linear statistical methods, e.g.,
regression models or the analysis of variance, have certain difficulties to capture the nonlinearity
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and non-stationarity of signals. As a result, linear and stationary methods lead to less realistic
characterization and estimation of time series from real-world bridge structures.

In recent decades, the recurrence plot (RP) and the recurrence quantification analysis (RQA) has
already become a commonly powerful tool for its better understanding and interpretation of complex
dynamic behaviors [3]. RP is usually utilized to give a qualitative visual impression of the dynamics
of a given system. It is essentially a global probabilistic autocorrelation function that consider the
relative frequencies at which a system returns to a given dynamic state [4]. Based on the recurrence
point density, the diagonal and vertical line distribution in RP [4], RQA [5] is proposed to quantify the
structures displayed by RP. Compared with many classical signal-processing methods, e.g., Fourier
transform-based methods, RP and RQA have the distinct advantage of sensitivity to some varying
dynamic properties and is relatively immune to noise [5].

In recent years, RP and RQA or their variations, like cross recurrence plot [6], the ordinal
patterns recurrence plot [7], the multivariate recurrence plot [8], and the recurrence network [9]
have been widely and successfully applied to test the nonlinearity and non-stationarity of the signal
from the real world in various branches of science and technology, such as in physiology [9–12],
economy [13,14], chemistry [15,16], and engineering [17,18]. Marwan et al. [1] and Zbilut et al. [19]
presented excellent reviews of the earlier studies on RP and RQA. In addition, recent reviews by
Catone et al. and Webber et al., covering detailed and extensive theories and various application, are
available in References [6,20].

Although powerful in testing the properties of nonlinear and nonstationary signals, the success
of RP and RQA application is mainly on the signal from the numerical simulation or small-scale
and controlled laboratory experiments [6,20]. In these research studies, the influencing factors of the
experiments are controllable and RP patterns of the signals are simple. However, when being used in
the measured signals from bridge structures, RP and RQA faces several requirements of the bridge
dynamic signal processing [21]: (1) high-level noise, (2) multi-mode and closely spaced mode, and (3)
data-driven. On one hand, as summarized above, RP and RQA are usually effective when dealing with
the signal with a single recurrence mode and low-level noise. However, bridge structures are generally
large and complex systems. The signals from bridge structures are influenced by intrinsic and extrinsic
factors (e.g., the rich structural information, the existence of high-level noise effect), which lead to
inaccurate and spurious results by using RP and RQA. On the other hand, the choice of parameters
of RP, especially the crucial recurrence threshold, mainly depends on the goal of the analysis [22,23],
which seriously restrict the application of RP and RQA in civil engineering.

Recently, Xiong et al. [24] and Gao et al. [25] made some worthy contributions in this area where
the complex traffic flow signals had been dealt with by using a combination of empirical mode
decomposition (EMD) and the RP method. The multiscale framework has been considered a promising
solution to explore recurrence dynamics in complex systems [1]. However, an undesirable disadvantage
of EMD is the mode mixing effect when applied in the field of signal processing [21,26]. This means
that oscillations or frequencies with the same time scale are assigned to different decomposed modes or
the oscillations of disparate amplitudes that appear in one mode [27]. In order to lessen this problem,
the ensemble EMD (EEMD) [28] has been proposed as an adaptive noise-assisted method capable
of providing a partial solution to the mode-mixing problem. However, this method may produce
spurious frequencies due to the added white noise and has difficulties estimating closely spaced
frequencies [27].

In this regard, two new works have been done in this paper. First, an improved EEMD method
is developed to alleviate the mode-mixing problem of EEMD in order to meet the requirements of
the previously mentioned high-level noise and dense modal characteristics. By taking advantage
of the uniform distribution of the probability density function of the added white noise in the
full frequency domain, a new white noise assistance way is introduced to the EMD in order to
ensure the single-mode characteristic of intrinsic mode functions (IMF). Second, by combining the
method of “surrogate data” [29] and the hypothesis testing scheme of nonstationary and nonlinear
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synchronization, a data-driven RQA method is proposed in this paper to meet the requirements of the
previously mentioned data. The data-driven RQA method is applied to a single-mode signal, which is
corresponding to each IMF, the true recurrence mode, and the recurrence quantification values are
obtained. Then, verification is carried out based on a 1:20 scale model of the cable-stayed bridge
experiment. The results associated with the proposed method in this paper are compared with that of
conventional non-stationary and nonlinear test methods.

The structure of the paper is organized as follows: Section 2 provides the background of EEMD
and introduces the improved EEMD. Section 3 introduces the method of data-driven RQA. In Section 4,
a real scale model of cable-stayed bridge is utilized, the comparison between the conventional method,
and the proposed method is performed. Section 5 discusses and concludes the present study.

2. Improved Ensemble Empirical Mode Decomposition

2.1. Ensemble Empirical Mode Decomposition

The EEMD method is an empirical mode decomposition method assisted by noise. By adding N
times of random white noise to the signal, the new signal is decomposed by N times of EMD, and the
integrated average of each order IMF is achieved to improve the effect of mode mixing in IMF. The
EEMD algorithm can be described [28]:

1. Generate xi[n] = x[n] + wi[n], where x[n] is the original signal and wi[n](i = 1, · · · , I) are
different realizations of added white noise.

2. Each xi[n](i = 1, · · · , I) is fully decomposed by EMD and get their modes IMFi
k[n],

where k = 1, · · · , K indicates the modes.
3. Assign IMFk as the k-th mode of x[n], obtained as the average of the corresponding IMFi

k:

IMFk[n] =
1
I

I

∑
i=1

IMFi
k[n] (1)

2.2. Improved Ensemble Empirical Mode Decomposition

It should, however, be noted that, in the EEMD method, each xi[n] is decomposed independently
from the other realizations and, for each one residue, ri

k[n] = ri
k−1[n] − IMFi

k[n] is obtained.
In the so-called improved ensemble empirical mode decomposition (IEEMD) method presented,
the decomposition modes will be noted as ĨMFk and the first residue r1[n] and ĨMF1[n] is obtained by
the EEMD method. Then the added Gaussian white noise wi(t) (i = 1, 2, · · · , N) is decomposed by

the EMD method and the ĨMF
i
k(k = 1, 2, · · · , K) of the wi(t) is obtained first. Taking the other residue

ri[n] as the signal to be decomposed, add the corresponding ĨMF
i
k of wi(t) and perform EMD.

Let us define the operator Ej(·) which, given a signal, produces the j-th mode obtained by EMD.
Let wi be the zero mean unit variance Gaussian white noise. IMFj stands for the averaging j-th mode
of the signal x[n] and εi is the signal noise ratio (SNR) coefficients at each stage. The IEEMD algorithm
can be described using the information below.

1. Add N Gaussian white noise wi(t) (i = 1, 2, · · · , N) in signal x(t):

xi(t) = x(t) + wi(t) (i = 1, 2, · · · , N) (2)

2. Obtain the first residue r1(t) and the first mode IMF1 by EEMD:

IMF1 =
1
N

N

∑
i=1

Ej

(
xi(t)

)
(3)

r1(t) = x(t)− IMF1 (4)
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3. Perform EMD on Gaussian white noise wi(t) and generate the IMFs and residue of wi(t):

wi(t) =
m

∑
j=1

Ej

(
wi(t)

)
+ r′mi(t) (5)

where Ej
(
wi(t)

)
is the j-th mode of wi(t) decomposed by the EMD method and the total number

is m. r′mi(t) is the residue of wi(t) decomposed by the EMD method.
4. Take r1(t) as the signal to be decomposed, add E1

(
wi(t)

)
(i = 1, 2, · · · , N) and generate rk

1i(t).

rk
1i(t) = r1(t) + ε1E1

(
wi(t)

)
(6)

5. Perform EMD on rk
1i(t) and obtain the IMF2 of signal x(t) by averaging the N IMFs.

IMF2 =
1
N

N

∑
i=1

Ej

(
rk

1i(t)
)

(7)

6. For k = 2, · · · , K, calculate the k-th residue.

rk(t) = r(k−1)(t)− IMFk(t) (8)

7. Decompose rk(t) + εkEk
(
wi(t)

)
, i = 1, · · · , N, until their first EMD mode and define the (k+1)-th

mode using the equation below.

IMFk+1 =
1
N

N

∑
i=1

E1

(
rk(t) + εkEk

(
wi(t)

))
(9)

8. Go to step 6 for the next k.
9. Step 6 to 8 are performed until the obtained residue is no longer feasible to be decomposed

(the residue does not have at least two extrema). The final residue is expressed using the
equation below.

R(t) = x(t)−
K

∑
j=1

IMFj (10)

where K is the total number of modes.
10. Let us define that each IMF contains two parts (i.e., the useful characteristic signal and noise

signal), and set IMFj = sj(t) + nj(t). sj(t), which stands for the characteristic signal component,
and nj(t) stands for the noise component. The cross-correlation function between different IMFs
is shown below.

Rij(τ) = Rsisj(τ) + Rsinj(τ) + Rsjni (τ) + Rninj(τ) (i 6= j) (11)

11. It is known that corresponding IMFs of different series of noise have no correlation with each
other. Then, we can set Rsinj(τ) = Rsjni (τ) = Rninj(τ) = 0, and Equation (11) can be expressed
by the formula below.

Rij(τ) = Rsisj(τ) (i 6= j) (12)
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12. Normalized cross correlation coefficient rij(τ) is introduced to quantify the correlation between
two different IMFs, which can be expressed by the equation below.

∣∣rij(τ)
∣∣ =

∣∣∣Rsisj(τ)
∣∣∣√

Rsi (0)Rsj(0)
≤ 1(i 6= j) (13)

In general, when
∣∣rij(τ)

∣∣ ≥ 0.8, the two IMFs are considered to have a strong correlation and the
two IMFs are merged [30]. Therefore, the given signal x(t) can be expressed by the formula below.

x(t) =
M

∑
j=1

IMFj + R(t) (14)

where M is the total number of modes after cluster analysis, and M ≤ K.
Observe that εi can be a different value at each decomposition stage. Concerning the amplitude

of the added white noise, Huang [31] suggested using small amplitude values for data dominated by
high frequency signals, and vice versa. Following the IEEMD method, we fixed the same SNR for all
stages. This value might depend on the level of noise contained in the given signal.

The flow chart of the EEMD method and the IEEMD method is shown in Figure 1.
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Figure 1. The flow chart of ensemble empirical mode decomposition (EEMD) and improved ensemble
empirical mode decomposition (IEEMD): (a) EEMD and (b) IEEMD.

Figure 1 has shown that the crucial point for EEMD to lessen the mode-mixing problem is that the
number of IMF of different signal xi(t) decomposed by EMD must be equal. However, it is difficult to
ensure the same IMF number when the signal xi(t) with different series of noise is decomposed by
EMD in each period. For the proposed IEEMD method, the mode-mixing problem that the oscillations
of very disparate amplitude appear in a mode is improved by taking advantage of the uniformity of
the white noise probability density function. The other mode-mixing problem where oscillations or
frequencies with the same time scale are assigned to different estimated modes, is improved by the
cluster analysis.



Appl. Sci. 2019, 9, 1302 6 of 21

2.3. Testing and Verification

In this section, a synthetic signal will be used to test and verify the advantage of the IEEMD
method when compared with the EEMD method. The noisy signal from the bridge structures is
simulated as follows.

s(t) = 15cos
(

2πt +
π

3

)
+ 12cos

(
10πt +

π

8

)
+ 10rand (15)

where two cosine signals with center frequency 1 Hz and 5 Hz stand for the “true” signals,
which contain the structural dynamical information. 10rand models the monitoring noise with a
signal-to-noise ration [32] 2.66, and a peak signal to noise ration [32] 15.95. The sampling frequency is
256 Hz and the sampling period is 10 s.

The decomposition results are shown in Figure 2.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 20 
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Figure 2. Intrinsic mode functions (IMFs) decomposed by EEMD and IEEMD. (a) EEMD. (b) IEEMD.

Figure 2 has clearly shown that the number of IMFs decomposed by EEMD is 11, which is two
more than the IEEMD. By using EEMD, the frequency of IMF4 is 1 Hz. However, the IMF5 and IMF6
both have 5 Hz frequency components, which indicates that different IMFs contain the same frequency
components, and the mode mixing problem still exists. By contrast, by using IEEMD presented in this
paper, it can be seen clearly that IMF5 and IMF6 are the main frequency components. The frequency
of IMF5 is 1 Hz, and the frequency of IMF6 is 5 Hz. The IEEMD method effectively alleviates the
mode-mixing issues.

The decomposition error is compared by superimposing all the decomposed IMFs and comparing
them with the original signal. The reconstruction error of the two methods is shown in Figure 3. From
Figure 3, it can be seen clearly that the error of IEEMD is in the order of 10−13 and that EEMD is in
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the order of 1. Clearly, the decomposition accuracy of IEEMD is much higher than that of the original
EEMD method.
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Figure 3. Reconstruction error of the simulation signal.

3. Data-Driven Recurrence Quantification Analysis (RQA)

3.1. Brief Description on Recurrence Plot (RP) and RQA

Recurrence plot (RP) measure recurrences of a trajectory xi ∈ Rm in its m-dimensional phase
space by the recurrence matrix R, which is defined as the equation below [33].

Ri,j(ε) = Θ
(
ε− ‖xi − xj‖

)
, i, j = 1, 2, · · · , N (16)

where N is the number of measured points, ε is a recurrence threshold distance, Θ(·) is the Heaviside
function, and ‖·‖ is a norm. Then, Ri,j(ε) = 1 if the states of the system at time i and that at time j are
in an ε-neighborhood, and Ri,j(ε) = 0 otherwise. The phase space trajectory xi is reconstructed from a
time series {ui}N

i=1 by time delay embedding [33].

xi =
(

ui, ui+τ , ui+2τ , · · · , ui+(m−1)τ

)
(17)

where m is the embedding dimension and τ is the time delay.
The RP is obtained by plotting the recurrence matrix R in its binary entries: a black dot if Ri,j = 1

(recurrence) and a white dot if Ri,j = 0 (no recurrence). Thus, by the definition of R, the RP has a black
main diagonal line and is symmetric with respect to the main diagonal [33].

Since the initial purpose of RP was to visualize trajectories in the phase space, the interpretation of
RP is qualitative and subjective. Therefore, it lacks quantitative standards [1]. Hence, a quantification
of the obtained structures of RP is necessary for a more objective investigation of the considered system.
To this end, the recurrence quantification analysis (RQA) was proposed as a quantitative description of
RP by Marwan et al. [34], Zbilut et al. [35], and Webber et al. [36] whose diagonal and vertical lines are
the base [37]. Furthermore, the RQA can provide information about different characteristics of the RP
and can be used to detect transitions in dynamical systems. The RQA measures, which are adopted in
this paper, are as follows:

Recurrence rate, RR, is a measure of the density of recurrence points in the RP [37].

RR(ε) =
1

N2

N

∑
i,j=1

Ri,j(ε) (18)

where Ri,j(ε) is the recurrence matrix defined in Equation (13) and the main diagonal (i = j) is usually
excluded. The RR can be used to reveal changes in dynamic systems.

Determinism, DET, is the ratio of recurrence points that form diagonal structures of at least length
lmin to all recurrence points [37].

DET =
∑N

l=lmin
lP(l)

∑N
l=1 lP(l)

(19)
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where P(l) is the histogram of diagonal lines of length l given the threshold ε. Processes with
uncorrelated or weakly correlated, stochastic or chaotic behavior cause none or very short diagonals,
whereas deterministic processes cause longer diagonals and less single, isolated recurrence points.
Therefore, the DET provides a measure for determinism or predictability of the system.

Average diagonal line length, L, is the average time that two segments of the trajectory are close
to each other [37].

L =
∑N

l=lmin
lP(l)

∑N
l=lmin

P(l)
(20)

This can be interpreted as the mean prediction time.
Longest diagonal line, Lmax, is related to the exponential divergence of the phase space

trajectory [37].
Lmax = max

(
{li}

Nl=l
i=1

)
(21)

where Nl = ∑l≥lmin
P(l) is the total number of diagonal lines. The faster the trajectory segments

diverge, the lower the Lmax will be. Analogously to Lmax, the maximal length of the vertical lines, Vmax,
in the RP can be regarded as [37] the following equation.

Vmax = max
(
{vl}Nv

l=1

)
(22)

where Nv is the absolute number of vertical lines.
Entropy, ENTR, refers to the Shannon entropy of the probability p(l) = P(l)/Nl to find a diagonal

line of exactly length l in the RP [37].

ENTR = −
N

∑
l=lmin

p(l) ln p(l) (23)

ENTR reflects the complexity of the RP with respect to the diagonal lines. Therefore, for
uncorrelated noise, the value of ENTR is rather small, which indicates its low complexity.

Laminarity, LAM, is the ratio between the recurrence points forming the vertical structures and
the entire set of recurrence points [37].

LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

(24)

Its definition is analogous to the DET in Equation (19), which represents the occurrence of laminar
states in the system without describing the length of these laminar phases.

Analogously to ENTR, a new RQA measure, the Entropy of vertical lines (VENTR) is defined in
this paper.

VENTR = −
N

∑
v=vmin

p(v)ln(p(v)) (25)

where p(v) = P(v)/Nv, Nv = ∑v≥vmin
P(v). P(v) is the histogram of vertical lines of length v given

the threshold ε.

3.2. Data-Driven RQA

The synchronization analysis is usually used to detect the transitions of different complex systems.
The basic types of synchronization in coupled complex systems may be broadly divided into three
categories [38]: completely synchronization, generalized synchronization, and phase synchronization.
In this section, the relationship between recurrences and phase synchronization of complex systems
will be adopted. If two systems synchronize in the same way, their recurrences in phase space are not
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independent from each other. Hence, by comparing the recurrences of each single system with RQA,
some statistical indications about their synchronization type and degree will be set up and tested.

3.2.1. Improved RQA Method

RQA is very sensitive in detecting any dynamic change. However, it can be easily influenced by
the value of the setup parameters. One crucial parameter of an RP is the Euclidean distance threshold
ε. Too small value of ε may result in quantification of much noise and a very low recurrence rate,
which leads to the loss of recurrence information of the underlying system. While, on the other hand,
too large values of ε may produce false recurrences or saturate the measurement, which leads to many
artefacts [1]. Inspired by the DVV method [39] and the DVRQA method [40], an improved RQA
method is proposed here to solve the difficulty of adaptive determination of the Euclidean distance
threshold. The basic process is as follows.

1. Set the initial value of recurrence threshold ε0 and target recurrence rate vector RRtar, the value of

ε0 can be set up based on the equation [39]: ε0 = 0.5·
√

∑j

∣∣∣vk,j

∣∣∣2/N, (k = 1, · · · , N; j = 1, · · · , M),

where vk,j is a delay matrix consisting of embedding the dimension and delay time.

2. Set εi = εi−1 and construct a recurrence matrix RPi based on Equation (16). Obtain the RRi value
based on Equation (18).

3. If RRi and RRtar,i satisfy the set tolerance, record the target threshold value εtar,i. If not,
the solution process is performed iteratively until the allowable error is satisfied.

4. Repeat step 2 and step 3 until the threshold vector εtar corresponding to RRtar is obtained.
5. According to every value of εtar, the RQA is performed to obtain the RQA measure vector RQAs.

The flow chart of the previously mentioned Improved-RQA method is shown in Figure 4.
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3.2.2. Selection of Other RQA Parameters and Surrogate Techniques

Generally, the mutual information (MI) function [41] and false nearest neighbors (FNN) [41]
method are common and robust tools to, respectively, decide the appropriate time delay τ and
embedding dimension m. In this paper, the reasonable value for τ is decided based on the first local
minimum of the time-delayed mutual information and the selection of the minimum embedding
dimension m, which is based on the false nearest neighbor algorithm proposed in Reference [42].

Theiler et al. [43] introduced the concept of “surrogate data,” which has been extensively used in
the context of statistical non-stationary and non-linearity testing. A surrogate time series is generated
as a realization of the null hypothesis under study. Thus, given an original signal, realizations of
this data must be generated by modifying only the desired characteristic of the signal that is being
tested while the rest of the characteristics remain the same. In this paper, the classic Fourier-based
technique [44] and the iAAFT (Iterative Amplitude Adjusted Fourier Transform, iAAFT) technique [44]
for the nonstationary and nonlinearity generation of surrogates that will be used later in a statistical
analysis based on RQA.
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3.2.3. The Statistical RQA Measures

The statistical RQA measures proposed in this case are based on the computation of an ensemble
of surrogates, which are representative stationary and linear realizations of the null hypothesis.
A statistical measure is computed for the original given time series and the surrogates. If the statistic
is significantly different from the values obtained for the surrogate set, the null hypothesis can be
rejected. The details of the analysis process is as follows.

1. The stationary surrogate technique and linear surrogate technique are adopted separately to
generate N groups of stationary and linear surrogate signals.

2. Improved-RQA is carried out for each group of stationary and linear signals and the RQA
measure matrix corresponding to the target recurrence rate are obtained. Each column of the
RQA measure matrix represents a set of index vectors of the surrogate signals.

3. Calculate the mean and the variance of the RQA measures to obtain the non-stationarity

testing and nonlinearity testing confidence interval ξS =
[

uS − 3σS uS + 3σS

]
,

ξL =
[

uL − 3σL uL + 3σL

]
.

4. Improved-RQA analysis is carried out for the original given signal. Considering the strong noise
test environment of the bridge structure, the noise influence factor is introduced to avoid the
strong noise submerging the signal and cover up of the real recursive topology of the signal.
The mathematical expression of the RQA measures is as follows.

RQAsori = anoise·RQAsimproved−RQA (26)

where anoise is the noise influence factor. anoise = 1 if the given signal is pure. Otherwise, anoise is
selected according to the SNR level.

5. If each element RQAsori,i of the given signal is within the confidence interval, the null hypothesis
will be accepted. The nonstationary element ΞS,i = 0 and the nonlinear element ΞL,i = 0.
Otherwise, ΞS,i = 1, ΞL,i = 1. Let the total size of the RQAs be N (i = 1, 2, · · · , N), the number of
the nonstationary elements and nonlinear elements, which are within the confidence interval,
be ns,nl . When the ratios of ns/N,nl/N are greater than the threshold η, the null hypothesis is
accepted. Otherwise, the null hypothesis is rejected. Let the binary non-stationarity statistical
RQA measure be SNS and nonlinearity statistical RQA measure index be SNL. SNS and SNL can
be calculated as follows.

ΞS,i =

{
0, i f RQAsori,i ∈ ξS
1, i f RQAsori,i /∈ ξS

(27)

ΞL,i =

{
0, i f RQAsori,i ∈ ξL
1, i f RQAsori,i /∈ ξL

(28)

ns = ∑ ΞS,i, nl = ∑ ΞL,i (29)

SNS =

{
0, i f ns/N ≤ ηS
1, i f ns/N > ηS

(30)

SNL =

{
0, i f nl/N ≤ ηL
1, i f nl/N > ηL

(31)

6. Let the median value of RQAs be RQAm, then the element pair (RQAm,SNS) and (RQAm,SNL)
will be set up as the statistical nonstationary and nonlinear test measures.

The flow chart of the data-driven RQA algorithm is shown in Figure 5.
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4. Multiscale Recurrence Analysis of a Model Cable-Stayed Bridge

Test Description

A 1:20 scale model cable-stayed bridge subjected to dynamic tests will be taken as the case study
for the validation of the proposed algorithm in this section. The model bridge, which is shown in
Figure 6, may consist of five spans based on the arrangement of the location of towers and piers.
The span lengths in this context are: 2.45 m + 4.05 m + 14.24 m + 4.05 m + 2.45 m, which gives the
bridge a total length of 27.24 m.
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Figure 6. A model cable-stayed bridge (unit: m).

The superstructure of the model bridge is constructed of a steel π-shaped girder with box
cross-section on both sides of the girder. The width of the girder is 1.1 m and the height of the
girder is 0.081 m. The superstructure is divided into six sections, which are made separately and
connected by connecting plates which are numbered inside a circle in the figure, e.g., 1©, 2©, etc.
The superstructure is supported by 60 pairs (or 120 in total) of stay-cables, which are fabricated from
wire-ropes of 10 mm diameter and are anchored to the top of the tower. The tower is constructed of
two rectangular (0.21 m × 0.14 m) hollow steel columns with wall thickness of 8 mm, which stands
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5.95 m in height above the footing. Three cross-beams connect the columns at each tower. The two
upper cross-beams are at spacing of 0.34 m center-to-center at the top, and the lower cross-beam is at
spacing of 1.397 m center-to-center at the columns. The end spans of the superstructure are supported
by four piers. The towers and superstructure are constructed of steel plate, with a yield strength of
f ′y = 235 MPa. The piers are constructed of concrete, with a compressive strength of f ′c = 30 MPa.

Dynamic properties of the model cable-stayed bridge are characterized by uni-directional
piezoelectric accelerometers, which have a sensitivity of 2500 mv/g and an operating frequency
in the range of 0.05 to 300 Hz. The arrangement of accelerometers is shown in Figure 6, where 13 solid
triangles have been used to denote the location of the vertical accelerometers mounted on the girders.
Pulse excitation at the location of the middle span is used to characterize the dynamic properties of
the bridge. The damped acceleration attenuation responses of the girder are measured by 13 vertical
accelerometers. Different damage locations of the girder is modeled by loosening the bottom bolts of
the connecting plate, as shown in Figure 7b. The cable damage is modeled by uninstalling the stay
cable, as shown in Figure 7c. In this paper, the responses measured from the girder corresponding to
the damage of the connecting plate 2© are used to verify the proposed algorithm.
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5. Results and Discussions

The response measured from the number 6 accelerometer under damage conditions of the
connecting plate 2© is used as an example to show the analysis process. The acceleration waveform in
the time domain is shown in Figure 8.
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The IMFs of the given signal can be obtained by using the IEEMD method proposed in Section 2.2,
which is shown in Figure 9.
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Figure 9. The extracted IMFs and residual of the selected signal.

The stationary and linear surrogate signals of each IMF can be generated by using the method in
Section 3.2.2, which are shown in Figures 10 and 11.
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Figure 10. The stationary surrogate signals of each IMF.
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The appropriate time delay and embedding dimension of each IMF can be obtained by using the
method explained in Section 3.2.2. The mutual information, false nearest neighbors, and phase-space
figures of IMF1 are shown in Figure 12. From the figure, we can see that the first local minimum of the
time-delayed mutual information is 3∆t (∆t is the Sampling interval) and the false nearest neighbors
equal zero when the embedding dimension is 7. The appropriate time delay and embedding dimension
of other IMFs is similar to the analysis process of the IMF1. The appropriate time delay and embedding
dimension parameters of all IMFs are listed in Table 1.
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Table 1. The appropriate time delay and embedding dimension of IMFs.

Parameters IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11

3 3 5 12 16 18 28 35 45 40 23
m 8 9 6 5 3 2 2 2 2 2 2

Eckmann [33] and Marwan [1] both have stated that the length of the diagonal lines is related
to the largest positive Lyapunov exponent, which is usually taken as an indication that the system
is chaotic and nonlinear. In addition, the length of vertical lines allows for the investigation of
intermittency, even for rather short and non-stationary data series [1]. According to this point, in this
paper, the diagonal line-based RQA measures (e.g., Lmax, ENTR, DET) are used as indicators of the
nonlinear level. The vertical line-based RQA measures (e.g., Vmax, VENTR, LAM) are used as the
indicators of the nonstationary level. The statistical six indicators of each IMF can be calculated by
using the method described in Section 3.2.3. Due to the length of the paper, we only select the statistical
RQA measures of the IMF1 and IMF7 to compare the results, which are shown in Figure 13.

From Figures 13 and 14, it can be clearly seen that the nonstationary indicators (Vmax, VENTR,
LAM) and the nonlinear indicators (Lmax, ENTR, DET) of IMF1 are all in the confidence interval, which
indicates that the stationary and linear hypothesis should be accepted. However, the nonstationary
indicators and nonlinear indicators of IMF7 all fall outside the confidence interval, which indicates
that the stationary and linear hypothesis should be rejected. The conclusion in this case is consistent
with the results shown in Figure 9 in which IMF1 mostly contains the stationary and linear white noise,
and IMF7 mostly contains the non-stationary and nonlinear structural dynamic information.

To further prove the effectiveness of the above nonstationary indicators, the time-frequency
analysis of IMF1 and IMF7 is performed by the continuous wavelet transform algorithm [45], which is
shown in Figure 15. The figure has shown that the IMF1 has a relatively uniform frequency distribution
with time. Unlike the former, the frequency range 1–2 Hz of IMF7 is the major frequency components
and the main frequency in IMF7 is steadily decreasing with time. The time-frequency analysis results
of IMF1 and IMF7 indicate that the IMF1 is stationary and IMF7 is nonstationary, which are consistent
with the results of the proposed nonstationary test indicators in this paper.
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Figure 13. The statistical RQA index of IMF1.
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Figure 14. The statistical RQA index of IMF7.

The bispectrum-based method [46] is used to test for linearity of IMF1 and IMF7, which can
further prove the effectiveness of the above nonlinear indicators. The bi-spectrum-based test results
are shown in Figure 16. The figure has shown that the estimated (full line) and theoretical (dashed line)
values of R, the interquartile range of the estimated bi-coherence values, are very close, which indicates
that the test of IMF1 show strong evidence of linearity. Contrary to the former, the estimated and
theoretical values of R of IMF7 are clearly different and the estimated value is large, which indicates
that the test of IMF7 show strong evidence of nonlinearity. The results are consistent with that of the
proposed nonlinear test indicators in this paper.



Appl. Sci. 2019, 9, 1302 16 of 21

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 20 

analysis results of IMF1 and IMF7 indicate that the IMF1 is stationary and IMF7 is nonstationary, 
which are consistent with the results of the proposed nonstationary test indicators in this paper. 

    
(a) (b) 

Figure 15. Time-frequency diagram of IMF1 and IMF7: (a) IMF1. (b) IMF7. 

The bispectrum-based method [46] is used to test for linearity of IMF1 and IMF7, which can 
further prove the effectiveness of the above nonlinear indicators. The bi-spectrum-based test results 
are shown in Figure 16. The figure has shown that the estimated (full line) and theoretical (dashed 
line) values of R, the interquartile range of the estimated bi-coherence values, are very close, which 
indicates that the test of IMF1 show strong evidence of linearity. Contrary to the former, the estimated 
and theoretical values of R of IMF7 are clearly different and the estimated value is large, which 
indicates that the test of IMF7 show strong evidence of nonlinearity. The results are consistent with 
that of the proposed nonlinear test indicators in this paper. 

  
(a) (b) 

Figure 16. The interquartile range of the estimated bi-coherence values of IMF1 and IMF7: (a) IMF1. 
(b) IMF7. 

The analysis process has repeated for other IMFs, and the statistical nonstationary and nonlinear 
RQA measures pairs of all IMFs have been listed in Table 2. In the table, 𝑍௜ሺ𝑖 = 1, ⋯ ,6ሻ refers to the 
median value of the statistical RQA measures. 𝐷௜ሺ𝑖 = 1, ⋯ ,6ሻ refers to the binary statistical RQA 
measures index. 

Table 2. The statistical RQA measures of IMFs. 

IMFs 
DET ENTR Lmax LAM VENTR Vmax 

Z1 D1 Z2 D2 Z3 D3 Z4 D4 Z5 D5 Z6 D6 
IMF1 0.61 0 0.69 0 86 0 0.34 0 0.44 0 93 0 
IMF2 0.32 0 0.37 0 43 0 0.46 0 0.57 0 45 0 
IMF3 0.64 1 0.79 1 260 1 0.82 1 1.14 1 80 1 
IMF4 0.86 1 1.84 1 1501 1 0.91 1 2.51 1 256 1 

Figure 15. Time-frequency diagram of IMF1 and IMF7: (a) IMF1. (b) IMF7.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 20 

analysis results of IMF1 and IMF7 indicate that the IMF1 is stationary and IMF7 is nonstationary, 
which are consistent with the results of the proposed nonstationary test indicators in this paper. 

    
(a) (b) 

Figure 15. Time-frequency diagram of IMF1 and IMF7: (a) IMF1. (b) IMF7. 

The bispectrum-based method [46] is used to test for linearity of IMF1 and IMF7, which can 
further prove the effectiveness of the above nonlinear indicators. The bi-spectrum-based test results 
are shown in Figure 16. The figure has shown that the estimated (full line) and theoretical (dashed 
line) values of R, the interquartile range of the estimated bi-coherence values, are very close, which 
indicates that the test of IMF1 show strong evidence of linearity. Contrary to the former, the estimated 
and theoretical values of R of IMF7 are clearly different and the estimated value is large, which 
indicates that the test of IMF7 show strong evidence of nonlinearity. The results are consistent with 
that of the proposed nonlinear test indicators in this paper. 

  
(a) (b) 

Figure 16. The interquartile range of the estimated bi-coherence values of IMF1 and IMF7: (a) IMF1. 
(b) IMF7. 

The analysis process has repeated for other IMFs, and the statistical nonstationary and nonlinear 
RQA measures pairs of all IMFs have been listed in Table 2. In the table, 𝑍௜ሺ𝑖 = 1, ⋯ ,6ሻ refers to the 
median value of the statistical RQA measures. 𝐷௜ሺ𝑖 = 1, ⋯ ,6ሻ refers to the binary statistical RQA 
measures index. 

Table 2. The statistical RQA measures of IMFs. 

IMFs 
DET ENTR Lmax LAM VENTR Vmax 

Z1 D1 Z2 D2 Z3 D3 Z4 D4 Z5 D5 Z6 D6 
IMF1 0.61 0 0.69 0 86 0 0.34 0 0.44 0 93 0 
IMF2 0.32 0 0.37 0 43 0 0.46 0 0.57 0 45 0 
IMF3 0.64 1 0.79 1 260 1 0.82 1 1.14 1 80 1 
IMF4 0.86 1 1.84 1 1501 1 0.91 1 2.51 1 256 1 
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The analysis process has repeated for other IMFs, and the statistical nonstationary and nonlinear
RQA measures pairs of all IMFs have been listed in Table 2. In the table, Zi(i = 1, · · · , 6) refers to the
median value of the statistical RQA measures. Di(i = 1, · · · , 6) refers to the binary statistical RQA
measures index.

Table 2. The statistical RQA measures of IMFs.

IMFs
DET ENTR Lmax LAM VENTR Vmax

Z1 D1 Z2 D2 Z3 D3 Z4 D4 Z5 D5 Z6 D6

IMF1 0.61 0 0.69 0 86 0 0.34 0 0.44 0 93 0
IMF2 0.32 0 0.37 0 43 0 0.46 0 0.57 0 45 0
IMF3 0.64 1 0.79 1 260 1 0.82 1 1.14 1 80 1
IMF4 0.86 1 1.84 1 1501 1 0.91 1 2.51 1 256 1
IMF5 0.92 1 3.79 1 3667 1 0.93 1 3.93 1 1201 1
IMF6 0.95 1 4.21 1 4123 1 0.94 1 4.23 1 764 1
IMF7 0.98 1 4.46 1 5012 1 0.98 1 4.58 1 664 1
IMF8 0.98 1 4.75 1 5056 1 0.98 1 5.14 1 458 1
IMF9 0.98 1 4.99 1 5072 1 0.99 1 5.25 1 489 1
IMF10 0.99 1 5.43 1 5030 1 0.99 1 5.74 1 547 1
IMF11 0.99 1 5.64 1 5206 1 0.99 1 6.51 1 552 1

From Table 2, it can be clearly seen that the binary statistical RQA measures of IMF1~IMF2 are
zero and that of IMF3~IMF11 are one, which indicates that IMF1~IMF2 are linear and stationary and
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IMF3~IMF11 are nonlinear and non-stationary. To prove the correctness of the conclusion based on
binary statistical RQA measures, the energy [47] of each IMF is calculated, which is shown in Figure 17.
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Figure 17. The IMFs energy of the given signal.

According to References [24,47], the first group of IMFs whose energies are monotonically
decreasing can be viewed as white noises. From Figure 17, it can be clearly seen that the first groups
of IMFs, which can be regarded as noises are IMF1~IMF2. In addition, it has become a consensus
that white Gaussian noise is stationary and linear, which is identical with the conclusion based on the
binary statistical RQA measures index proposed in this paper.

The RQA measures median value and statistical RQA measure index of each IMF are shown in
Figure 18. The left Y-axis refers to the median value of each RQA measure and the right Y-axis refers to
the statistical RQA index. The Y-axis headings have the same meaning as Table 2.
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Figure 18. The statistical RQA measures of each IMF.

Figure 18 shows that the vibration signal monitored from the model bridge has nonstationary and
nonlinear components. IMF1 and IMF2 are stationary and linear and IMF3~IMF11 are nonstationary
and nonlinear. The median value of statistical RQA measures indicate the nonstationary and nonlinear
level of IMF3~IMF11. The nonstationary level and nonlinear level of IMF3~IMF4 are weak, and the
nonstationary level and nonlinear level of IMF5~IMF11 are strong. With the increase of IMF, the level of
non-linearity and non-stationarity increases, which indicates that apparent dynamics of the considered
data are mainly controlled by its medium-frequency and low- frequency components. The conclusion
happens to be consistent with that of Reference [19]. It is worth noting that the previously mentioned
law cannot be obtained only according to the single RQA measure.

On the basis of the nonlinear and non-stationary test of the model bridge vibration signal,
the time-varying dynamical characteristics of the model bridge are studied further. The identification
of the time-varying frequency damping ratio has been conducted by using the stochastic subspace
identification method with a sliding window technique [48], and the results are shown in Figure 19.
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Figure 19. Time-varying diagram of the first two-order frequency, damping ratio of the curved
cable-stayed model bridge: (a) first order, (b) second order, (c) first order, and (d) second order.

Figure 19 has shown that the first two-order frequency and damping ratio of the model bridge
are gradually rising with a zigzag line, which indicates obvious time-varying characteristics, and the
model bridge system is nonstationary and nonlinear. It is remarkable that the time-varying dynamic
information will be lost if the non-stationarity and nonlinearity of the signal is not considered.

6. Conclusions

Nonlinear and non-stationary detection of complex signals is usually a prerequisite for further
developing time-varying system identification methods. In this paper, the framework of the
combination of signal decomposition methods with statistical RP and RQA is adopted to solve the
difficulty of original RP’s application in bridge engineering. The following concluding remarks can be
drawn from this study.

1. By introducing a new white noise assistance way by considering the uniformity of white noise
probability density function, and cluster analysis to original EEMD, an improved EEMD method
is proposed to alleviate the mode mixing issues of the EEMD method. The decomposition and
reconstruction of a numerical simulation signal has proven the superiority of IEEMD.

2. By combining the surrogate techniques and hypothesis-testing scheme of nonstationary and
nonlinear synchronization, a data-driven RQA method is performed on the single-mode signal
components and the true indicator pairs, which contain the statistical RQA measures median and
a binary RQA index are set up. The results of the conventional time-frequency analysis method,
nonlinear test method, and energy analysis are separately used to prove the effectiveness of
the nonstationary, nonlinear RQA measures and binary RQA index. Based on the effective
implementation of a model cable-stayed bridge, the frequency-evolving RQA of the given
signal indicates that the apparent dynamics are mainly controlled by its medium-frequency
and low-frequency components.

Conclusively, although the novel method that combines signal decomposition with statistical
RP and RQA was applied to detect the nonlinearity and non-stationarity of signals from a model
cable-stayed bridge, this method has the potential to be applied to bridges in real complex operating
environment. The difference is that the level of noise contained in those signals is generally high
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and some effective signal processing technologies such as adaptive noise reduction methods may be
needed to improve the SNR.

7. Future Works

In future works, in addition to continuing with the topic, we will: (i) study the method for
detecting and repairing the abnormal data in signals, (ii) study the fast RP and RQA algorithm, (iii) try
to conduct nonlinear and non-stationary detection on very long time series from the full-scale bridge,
and (iv) apply the method proposed in this paper to other structures such as high-rise buildings as
well as large and long tunnels.
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