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Abstract: In recent years, the installation of distributed generation (DG) of renewable energies has
grown rapidly. When the penetration of grid-integrated DGs are getting high, the voltage and
frequency of the power system may cause deviation. We propose an algorithm that reduces voltage
and frequency deviation by coordinating the control of multiple battery energy storage systems
(BESSs). The proposed algorithm reduces the total number of charging and discharging times by
calculating the sensitivity coefficient of BESS at different nodes and then selecting the appropriate
BESSs to operate. The algorithm is validated on a typical distribution testing system. The results
show that the voltage and frequency are controlled within the permissible range, the state of charge
of BESSs are controlled within the normal range, and the total number of charging and discharging
cycles of BESSs are reduced.

Keywords: battery energy storage system (BESS); coordinated control; voltage control; frequency
control; state of charge (SOC)

1. Introduction

In order to fulfil the growing demand for energy, there has been a rapid expansion of renewable
energies such as wind power and solar power in recent years [1]. Renewable energies are rapidly
emerging and showing significant value in the entire energy system with the advantage of sustainable,
less pollution, and reducing the costs of mitigating climate change [2]. However, renewable energies
are easily affected by weather conditions and have features of intermittent generation.

When the distributed generation (DG) of renewable energies is integrated to the grid, the voltage
and frequency of the grid will fluctuate due to the intermittent output of DG [3]. If the voltage
exceeds the allowable range, electrical equipment will operate at an over-voltage or under-voltage
condition, which will cause the insulation of electrical equipment to accelerate aging, increase the
power loss of the distribution network and may result in voltage collapse, and partial power grid
collapse. The frequency deviation in the power system adversely affects the operation of users and
power plants. For example, a frequency deviation of power system will change the speed and the
power of motors, resulting in a change in the output of the transmission machinery and affecting the
production efficiency.

Traditionally, traditional generators’ droop control is a typical method to address the frequency
issues in the power system. The droop control uses the real power output of a generator to calculate
the ideal operating frequency. This relaxing of a stiff frequency allows the grid to dampen the fast
effects of changing loads, increasing the stability of the system [4]. However, traditional generators
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may be phased out in the future due to the constraint of the greenhouse gas emissions on a global scale,
making the traditional generators insufficient to deal with the increasing requirements of frequency
regulation [5]. The change of the load’s operating power can provide frequency regulation service
when the system frequency fluctuates [6]. Moreover, the operating power of the Demand-side resource
can be regulated rapidly, while the generator regulates its power generation through a series of
processes, such as the speed governor process and the reheat steam turbine process, leading to a larger
inertia compared with Demand-side resource [5]. In terms of voltage, different types of regulators are
used to maintain the voltage within an acceptable range in traditional distribution systems, such as,
on-load tap changer (OLTC), step voltage regulators (SVRs), and shunt capacitors (SCs) [7–12]. The
tap operation of an OLTC and an SVR can directly regulate the distribution system voltage from the
system operator [13]. SCs can solve a series of problems caused by electrical loads’ reactive power
consumption, which can improve the voltage profile and reduce system losses. However, when the
penetration of grid-integrated DGs is getting large, those types of regulators are not efficient enough
to regulate the voltage in the fast nonlinear dynamics [14]. Moreover, frequent switching operation
will reduce regulating efficiency. PV inverters can inject or absorb reactive power, in order to mitigate
the overvoltage problems [15]. In addition, it is necessary to splits distribution networks into several
separate control areas to control the voltage profile of each area in an admissible time calculation for
online operation [16]. Because the resistance/reactance (R/X) ratio is relatively large in a low-voltage
distribution system, the effectiveness of reactive power in voltage control is limited. As a result, active
power adjustment should be considered for the voltage control of distribution systems. In addition,
demand response is an effective way to keep the voltage in a permissible range [17]. Demand response
changes consumers’ inherent power consumption mode, reduce or shift the power load for a certain
period of time, thus ensuring the stability of the power grid.

In order to solve the shortcomings of traditional regulation methods, researchers have proposed
many solutions using battery energy storage systems (BESSs) to adjust voltage and frequency recently.
The BESSs with fast dynamic response characteristic can maintain power balance in the grid. The
voltage and frequency deviation of the grid can be alleviated by the charging and discharging of
BESSs [18]. Installing a BESS in a suitable place, utilizing battery charging and discharging to solve
the voltage/frequency deviation is becoming a trend of future power system development [19–22].
Several studies have been conducted recently on the voltage and frequency regulation by using
BESS. Reference [23] analyses the effect of BESS on the short-term frequency control in autonomous
microgrids. Load factor has been improved by BESSs in References [24,25]. Reference [26] configures
capacity of the BESS according to the renewable energy production rate and proposes a control strategy
to track the power reference. According to the researches of [27,28], BESS applications can stabilize
renewable energy output. Predictably, BESS will be more commonly employed in the distribution
system because of its advantages. When the number of BESSs is getting larger in the distribution
system, the charging and discharging of BESSs should be properly controlled because different
locations of BESSs have different effects on the grid. Lee et al. propose a coordinated control algorithm
for distributed BESSs [29]. In Lee’s algorithm, the main control center sends charging or discharging
commands to BESSs when the voltage or frequency deviation exceeds the normal range. When the state
of charge (SOC) of the selected BESS reached the upper or lower limits, then the algorithm selected
another BESS to operate. Voltage regulation and frequency regulation are performed independently in
this algorithm, simultaneous voltage and frequency regulation are not considered in Lee’s algorithm.
Moreover, the control of SOC needs further exploration.

Therefore, we propose a novel control algorithm for coordinated control of BESSs, which enable
power systems to deal with emergencies and combines voltage regulation and frequency regulation
in one process by using the operating reserve. Through the coordinated charging and discharging of
multiple BESSs, the grid voltage and frequency are controlled within the permissible range, and the
adverse effects caused by deviation are alleviated. BESSs’ adjusting speed is outstanding, it can reach
the required power within the time set by the Union for the Coordination of Transmission of Electricity
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in Europe (30s) [30]. The number of charging and discharging cycles of BESSs is minimized to save the
life time. The contributions of this study are as follows:

(1) The proposed coordinated control algorithm firstly calculates the required power for voltage
and frequency deviation control, respectively, and then compares the two values and obtains
an optimal regulating power for simultaneously solving the voltage and frequency deviation,
which reduces the number of BESSs charging and discharging cycles, and improves the life time
of the batteries.

(2) The proposed method is compared with Lee’s algorithm [29] through the case studies. In
Lee’s algorithm, the voltage and frequency regulation by BESSs are operated in a sequential
order, which operates the BESSs more frequently. The results of the case study illustrate that a
smaller number of charging/discharging cycles and better SOC control can be achieved by our
proposed algorithm.

The remainder of this paper is organized as follows. Section 2 describes the proposed system
architecture. Section 3 presents the problem formulation and solution algorithm. The simulation
results in a 33-node distribution system is provided in Section 4. Section 5 presents the conclusion of
this study.

2. System Framework of Distribution System with DGs and BESSs

The specific architecture proposed in this study is shown in Figure 1. Distributed generations
convert renewable energy into electricity and integrate to the distribution system. There are several
BESSs such as electric vehicles and batteries, which can be used for voltage/frequency regulation. The
BESSs can interact with the control center through the communication network. The owner of BESSs
can get profit by providing voltage/frequency regulation service [31–36]. The cost-benefit of a Smarter
Network Storage project of 6 MW/10 MWh-BESSs in Great Britain has been investigated in [34]. Total
social cost, such as battery cells, construction, and operating costs, is £7,402,284 (average value). The
social benefit streams from BESSs like frequency response, arbitrage and carbon abatement can get
£9,731,525 (average value). Comparing the costs and benefits, the profit can be taken by BESSs as
£2,329,241, i.e., 31.5% of the cost.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 18 
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Figure 1. Battery energy storage systems (BESS) coordination control architecture model.

In the structure, control center collects status information of BESSs through the communication
network. To achieve the coordinated control of the BESSs, it is necessary to know the energy storage
status. As show in Figure 2, status information includes the upper limit state of charge (SOCmax),
the lower limit state of charge (SOCmin), the location information, the capacity of the energy storage
device, and the connection status.
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Status information is consisted by information matrix H, and we use the matrix representation of
the characteristics of the BESS model. Specific steps are as follows:

The control center obtains the distance according to the position information of BESSs, and then
formulates the distance matrix of Formula (1).

D = [d1, d2, . . . , dn]
T (1)

where n indicates the number of the nodes in the distribution systems.
The control center formulates energy capacity matrix of Formula (2) according to the capacity of

the BESSs.
E = [E1, E2, . . . , En]

T (2)

The SOC limit is formulated as matrix of Formula (3) and Formula (4) according to the upper and
lower limits of the current state of the BESSs.

SOCmax = [SOCmax1, SOCmax2, . . . , SOCmaxn]
T (3)

SOCmin = [SOCmin1, SOCmin2, . . . , SOCminn]
T (4)

Control center formulates SOC matrix of (5) according to the current SOC of the BESSs.

SOC = [SOC1, SOC2, . . . , SOCn]
T (5)

Finally, the information matrix H can be formulated as:

H = [D, SOCmax, SOCmin, SOC, E] (6)

After developing the information matrix H, the control center optimizes the coordinated control
according to the proposed algorithm, and sends the commands of the charging or discharging power
to BESSs. BESSs receive commands from the control center, and then complete the corresponding
operations. In the charging and discharging operation, the regulation power is completed by all the
BESSs of each node. As a result, SOC of a single BESS will not be too high or too low.

3. Proposed Collaborative Control Algorithm

3.1. Full-time SOC Control

The SOC of BESSs should be considered during the operation. The SOC of BESSs should be
considered during the operation. Charging and discharging processes have different effects on
SOC. The Pchar represents the charging power, and the value is positive. The Pdischar represents the
discharging power, and the value is negative. The characteristics of the BESSs are as follows:

1. SOC dynamics

SOC(t + 1) = SOC(t) +
Pchar
Capb

∆t (7)

SOC(t + 1) = SOC(t) +
Pdischar
Capb

∆t (8)
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where SOC(t) is the SOC at time t; and Capb is the capacity of the battery, Pchar and Pdischar is the
charging and discharging power of battery, respectively.

2. SOC limits
SOCmin ≤ SOC(t) ≤ SOCmax (9)

where SOCmin and SOCmax are the minimum and the maximum SOC, respectively.
3. Power limits

Pchar(t) ∈
{
[Pmin

char , Pmax
char ], 0

}
(10)

Pdischar(t) ∈
{

0, [Pmax
dischar, Pmin

dischar]
}

(11)

where Pmin
char , Pmin

dischar and Pmax
char , Pmax

dischar are the minimum and the maximum charging, discharging
power, respectively.

For each node, the flow chart of SOC control is shown in the Figure 3.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 18 
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Figure 3. State of charge (SOC) controlling block diagram.

As shown in Figure 3, for each node, the control center collects the SOC data of the BESSs and
counts the quantity of BESSs of which the SOC is in the normal range. This process helps determine
the specific amount of regulation for each BESS, which will be used in the coordinated control.
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3.2. Independent Voltage Regulation Algorithm

According to the voltage tolerance range of the IEEE 1159-2009 standard [37], voltage deviation is
divided into voltage rise and voltage drop, respectively. A voltage drop indicates that the root mean
square of voltage is between 0.1 and 0.9 p.u. of the rated voltage for a duration of between 0.5 and
1 min, and a voltage drop of more than 1 min is considered to be an undervoltage. A voltage rise
indicates that the voltage is between 1.1 and 1.8 p.u. of the rated voltage for a duration of between 0.5
and 1 min, and a voltage rise of more than 1 min is considered to be an overvoltage.

In the distribution network, the power injected to a node will affect the voltage of other nodes. As
a result, the charging and discharging of BESSs at different locations of the grid has different impact
on the voltage regulation. Voltage sensitivity matrix control strategy is applied for determining the
optimal active power adjustment of each node for the voltage regulation in this study. According
to the sensitivity matrix, the nodes with high sensitivity coefficient are preferentially selected in the
voltage regulation, and the nodes with low sensitivity coefficient are chosen for the coordinated
frequency regulation.

The voltage sensitivity coefficient [38] can be obtained by the following two power flow
calculation formulas

Pi = |Ui|
n

∑
j=1

∣∣Uj
∣∣∣∣Yij

∣∣ cos
(
θij − δi + δj

)
(12)

Qi = −|Ui|
n

∑
j=1

∣∣Uj
∣∣∣∣Yij

∣∣ sin
(
θij − δi + δj

)
(13)

where i, j denote the nodes number. P, Q, U, δ, Y and θ denote, respectively, the active power flow,
reactive power flow, phasor bus voltage, voltage angle, line admittance, and impedance angle.

The system Jacobian matrix is updated at each iteration until convergence tolerance is satisfied,
and the resultant Jacobian matrix J is inversed to compute the S matrix.[

∆θ

∆U

]
= J−1

[
∆P
∆Q

]
(14)

Let the S matrix equal to the J−1

S = J−1 =

[
SθP SθQ
SUP SUQ

]
(15)

The variation of the voltage amplitude ∆U and the variation of the phase angle ∆θ is decoupled
by Equation (14). ∆U can be calculated by Equation (16).

∆U = SUP · ∆PV + SUQ · ∆Q (16)

If only the active power regulating of the BESSs is considered, then Equation (17) will become

∆PV = S−1
UP · ∆U (17)

where ∆PV is the power which can regulate the voltage to the permissible range.
The specific voltage regulation algorithm of each node is divided into five steps, which is shown

in Figure 4.
Step 1: Get the voltage regulation power (∆PVi) of this node from control center.
Step 2: In order to prevent the BESSs suffering damage while grid voltage being too high or too

low, it is necessary to perform grid voltage detection. If the voltage is between 0.1 and 0.9 p.u., the
BESS is ready to be discharged. On the other hand, if the voltage is between 1.1 and 1.8 p.u., the BESS
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is ready to be charged. When the magnitude of the voltage is less than 0.1 p.u or greater than 1.8 p.u.,
the BESS is disconnected from the system [29,37].

Step 3: Detect the SOC value of BESSs in this node by the SOC control strategy shown in Figure 3.
Count the number (N) of BESSs which the SOC is in the normal range. The total regulation amount of
this node is evenly distributed to the N BESSs.

Step 4: BESSs perform charging or discharging operations.
Step 5: Perform grid voltage detection again. If Vs is not between 0.9 and 1.1p.u., steps 1–4

are repeated.
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3.3. Independent Frequency Regulation Algorithm

According to the GB/T15945 “Power Quality Power System Frequency Permissible Deviation”,
in China, the power grid frequency is normally 50 Hz. For grid capacity of 3 million kW and above,
the upper and lower limits of grid frequency deviation are 0.2 Hz and −0.2 Hz, respectively. For those
with a capacity of less than 3 million kW, the upper and lower limits of grid frequency deviation are
0.5 Hz and −0.5 Hz, respectively.

Frequency regulation is the process of controlling the frequency within the normal range.
Since the BESSs charging and discharging at different positions has almost the same influence
on the grid frequency, therefore, the nodes with small sensitivity coefficients are preferred for the
frequency regulation.

The control center calculates the regulated power by frequency and grid information, including
the following formula:

∆ f = fn − f0 (18)

KH =
∆Pf

∆ f
(19)

∆PL = KH · ∆ f (20)

Formula (19) and (20) can be obtained according to the frequency characteristics of the power
system load. Where f0 is the rated frequency 50 Hz, fn is the current frequency value; ∆ f (Hz) is the
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system frequency deviation; ∆PL (MW) is the active load variation; KH (MW/Hz) is the load frequency
regulating effect coefficient, which is obtained by:

KH =
d(PH/PH0)

d( f / f0)
=

∆PH/PH0

∆ f / f0
(21)

where PH0 is the total load at the rated frequency, and PH is the total load at the fn value. The power of
frequency regulation can be obtained by Formula (22):

∆Pf = ∆ω · KH = 2π · ∆ f · KH (22)

The block diagram of the frequency regulating algorithm is shown in Figure 5.
The frequency regulation algorithm of each node is divided into five steps:
Step 1: Obtain the frequency regulation power (∆Pf i) of this node from the control center.
Step 2: In order to prevent the BESSs suffering damage while grid frequency being too high or too

low, it is necessary to perform grid frequency detection. If the frequency is between 47.5 and 49.8 Hz,
the BESS is ready to be discharged. On the other hand, if the frequency is between 50.2 and 52.0 Hz,
the BESS is ready to be charged. When the grid frequency is less than 47.5 Hz or greater than 52.0 Hz,
the BESS is disconnected from the system.

Step 3: Perform the SOC control as shown in Figure 3. And then evenly distributed total regulation
amount to the N BESSs.

Step 4: BESSs perform charging or discharging operations.
Step 5: Perform grid frequency detection again. If f is not between 49.8 and 50.2Hz, steps 1–4

are repeated.
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Figure 5. Battery energy storage systems (BESS) frequency regulation block diagram.

3.4. Coordinated Voltage and Freguency Regulation Algorithm

Sections 3.3 and 3.4 describe the independent voltage/frequency regulation process, however,
the two independent regulation processes will frequently operate the BESSs to charge and discharge,
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which is not conducive for the long-term use of energy storage equipment. Therefore, a further optimal
coordinated regulation algorithm is proposed in this study.

Figure 6 shows the overall flow chat of the BESS coordinated control algorithm proposed in this
paper, which is mainly composed of four parts: (1) The full-time SOC control, it is used to confirm the
situation of the BESSs, which includes the quantity of power-adjustable batteries, charging/discharging
power of batteries and the SOC of each battery. The information will be used for the selection of
BESSs. (2) The independent voltage regulation algorithm, it is used to calculate the power required for
voltage regulation of each node at the current time. The sum of the power adjustments of each node is
calculated at the end of this step. (3) The independent frequency regulation algorithm, it calculates
the required power for the entire distribution frequency regulation. (4) The coordinated voltage
and frequency regulation algorithm, it compares the frequency regulating power of the distribution
network and the sum of each node’s voltage regulating power. If voltage regulating power is larger
than the frequency regulating power, the voltage regulating power will be the final regulation power.
If frequency regulating power is larger than the voltage regulating power, the frequency regulating
power will be the final regulation power. The larger part of the power will be allocated to the nodes
with lower sensitivity coefficient according to Section 3.4.
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The coordinated control algorithm consists the following eight steps:
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Step 1: Obtain the status of battery from information matrix H (Formula (6)).
Step 2–3: Calculate the sensitivity coefficient and voltage regulation power of all nodes (the

specific steps are shown in Section 3.2), and then select some nodes (x) with low sensitivity coefficient
for frequency regulation compensation.

Step 4–5: Calculate the total power for voltage regulation (∆PV) and frequency regulation (∆Pf ).
Step 6: Compare the voltage regulation power (∆PV) and the frequency regulation power (∆Pf ).
Step 7–8: If ∆Pf ≤ ∆PV , there is no need to complete frequency regulation compensation at this

time, therefore ∆Pf i = 0. If ∆Pf > ∆PV , it is necessary to perform frequency regulation compensation

in the candidate nodes and the power of compensation is ∆Pf i =
(

∆Pf − ∆PV

)
/x.

Step 9: Get the total regulation amount ∆Pi = ∆Pf i + ∆PVi. And then send regulation commands
to each node.

4. Test and Result Analysis

4.1. Test Model and Parameters

IEEE 33-node power distribution system is applied to verify the proposed coordinated control
algorithm (as shown in Figure 7) [39]. Node 1 is the reference node and the voltage is fixed at 1 p.u.
The other 32 nodes are user nodes, and the allowed range of each node voltage is [0.9, 1.1] p.u. The
test data are based on the generated power of PV and the load in Ota city, on June 1st, 2007 [40]. The
simulation is carried out during one day, 24 h period is divided equally into 2880 slots, i.e., each slot
is 30s.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 18 
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Figure 7. IEEE 33 nodes power distribution system.

In this paper, a Li-ion battery is considered as the BESSs. Figure 8 shows the change of SOC in
different states. The horizontal axis of Figure 8 is 24 h, indicating a full-day SOC operation. In order to
make the BESSs have a charging and discharging margin and prevent over charge and over discharge,
SOC should be controlled in 0.1 ≤ SOC(t) ≤ 0.9.

In Figure 8, number of 1–5 indicates the BESS operation as follows:

(1) T3, T6: Standby period, voltage and frequency are in the normal range, and no
regulation required.

(2) T1, T4: Discharging period, BESS is discharged power
(3) T2, T5: Charging period, BESS is charged power from the power system.

We assumed each battery with the capacity of 23 kWh. The initial SOC of the batteries is assumed
by the Gaussian distribution on [0.3, 0.4] with the mean value of 0.35, and the standard deviation is
1. The number of candidate nodes which are used to perform frequency regulation compensation is
assumed as one third of the total number of BESSs of the node (x = n/3).

We assume 100 users in a node, and each user is equipped with a photovoltaic (PV) system. In
this paper, the daily load data and PV generation data are referenced in the literature [40], which are
showed in Figure 9. The PV output is large during the period of 9:15–11:40 and 12:15–15:10. The peak
power is 9032 kW. Daily load curve fluctuates between 2306 kW and 4994 kW.
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4.2. Result Analysis

The voltage fluctuation curves before and after voltage regulation are shown in Figures 10 and 11
respectively. Each curve in Figures 10 and 11 each curve represents the voltage status of a node during
the 24 h.

According to the voltage sensitivity coefficient, nodes number of 1–4 and 19–25 have small
sensitivity coefficient and therefore voltage deviation is small in these nodes. It is can be seen from
Figure 11 that during the period of 9:15–11:00 and 12:30–13:10, the grid is in an overvoltage state because
of the large output of PV generation and low load consumption. During the time of 18:30–22:00, the grid
is in an undervoltage state. The peak and valley of voltage are 1.13573 and 0.88816 p.u., respectively.

The result after voltage regulation is shown in Figure 11. The proposed algorithm regulates
the voltage fluctuations within he permission range by coordinated control of BESSs charging and
discharging. The maximum voltage deviation shown in Figure 11 is 0.09895 p.u.
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Figure 12 shows the power system frequency deviation curve regulated by the proposed algorithm.
Dashed and solid curves indicate the frequency before and after regulation, respectively. During the
period of 6:40–7:05 and 11:45–12:15 frequency exceeds the lower limit, 9:35–10:30 and 12:10–12:45
frequency exceeds the upper limit. Actually, the net load (load-PV) that, shown in Figure 9, is in a high
load state during 6:40–7:05 and 11:45–12:15, and in a low load state during the period of 9:35–10:30 and
12:10–12:45. In addition, the fluctuation of PV is intense during this period, the frequency fluctuation is
consistent with the trend of the daily net load curve. After the regulation, the frequency of the power
distribution system is within the normal range.
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Figure 12. Frequency deviation curve obtained with proposed coordinated control algorithm.

Because of the different sensitivity coefficients of each node, the variation of the SOC of BESS
for all the nodes are different. Nodes numbering 1–4 and 19–25 have small sensitivity coefficient,
therefore these nodes are selected as the candidate nodes for frequency regulation. The gaps between
voltage regulation and frequency regulation are evenly distributed to the BESSs of the candidate nodes.
Therefore, SOC variation of candidate nodes BESSs fluctuate greatly.

In order to show the dynamic analysis of our proposed coordinated control algorithm, we take
a time point of 9:27:30, which is shown with black dot in Figures 10–12. At this time point, the
voltage fluctuation of Node 18 is the largest which reached 1.109 p.u., and the frequency deviation of
distribution network reached 0.3402 Hz. Both of the voltage and frequency exceed the permissible
range, which are needed to be regulated. According to the calculation of Sections 3.2 and 3.3, the
required power for the voltage and frequency regulation are 1065.68kW and 2902.68kW, respectively.
As the power required for frequency regulation is larger than the required for voltage regulation, the
total power of 2902.68kW was chose, and the difference part of 1837kW was allocated to the nodes
with lower voltage sensitivity coefficient according to Section 3.4. After regulating, the frequency
deviation of the distribution network reduced to 0.153Hz, and the voltage of Node 18 reduced to
1.06 p.u., the frequency fluctuation reduced 55.03% and the voltage reduced 15.32%, both of them are
within a permissible range. In Lee’s algorithm, the BESSs are operated in a sequential order for the
voltage and frequency regulation, and total power of 3968.36kW will be charged.

The proposed coordinated control algorithm is compared with Lee algorithm [29]. Figure 13
shows the total number of BESSs charging and discharging cycles, and Figure 14 shows the total BESS
charging and discharging power. The number of charging cycles of Lee algorithm is 2312 and the
number of discharges cycles is 7130. The number of charging and discharging cycles of proposed
algorithm is 1597 and 3470, respectively. The number of charging cycles is reduced by 30.86% and the
number of discharging cycles is reduced by 51.33%. As shown in Figure 14, the total charging power
of the Lee algorithm is 3615.24 kWh and the discharge power is 3557.87 kWh. The charging power of
the proposed algorithm is 2476.02 kWh, which is reduced by 31.51% compared to the LEE algorithm.
The discharge power of the proposed algorithm is 3557.87 kWh, which is reduced by 38.71%.
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5. Conclusions

In this paper, a novel coordinated control algorithm of distributed BESSs is proposed, which
regulates the voltage and frequency deviation of the power distribution system by coordinated control
of charging and discharging of multiple BESSs. The proposed algorithm regulates the maximum
voltage of the power system from 1.136 p.u. to 1.0995 p.u., and regulates the maximum frequency of
the power system from 50.3653 Hz to 50.1598 Hz. In comparison with Lee algorithm, the total number
of charging and discharging cycles and total power of BESSs are reduced. The results show that the
proposed algorithm improves the life time of BESSs by reducing the total number of charging and
discharging cycles. The BESSs can be better utilized for the voltage and frequency deviation regulation
in the distribution system.
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Appendix A

Figure A1 shows the diagram of frequency regulation model through Simulink. We add a model
of energy storage equipment to participate in primary and secondary frequency modulation based
on a typical single-area power system model. “Governor” and “Prime Mover” are governor and
prime mover models respectively. “Gen-Load” is generator inertia and load damping model, modules
“-1/R”, “-B” and “Ki/s” constitute the primary and secondary frequency modulation model of the
generator set, and “P” is the system load fluctuation.
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