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Abstract: A wind power short-term forecasting method based on discrete wavelet transform and long
short-term memory networks (DWT_LSTM) is proposed. The LSTM network is designed to effectively
exhibit the dynamic behavior of the wind power time series. The discrete wavelet transform is
introduced to decompose the non-stationary wind power time series into several components
which have more stationarity and are easier to predict. Each component is dug by an independent
LSTM. The forecasting results of the wind power are obtained by synthesizing the prediction values
of all components. The prediction accuracy has been improved by the proposed method, which is
validated by the MAE (mean absolute error), MAPE (mean absolute percentage error), and RMSE
(root mean square error) of experimental results of three wind farms as the benchmarks. Wind power
forecasting based on the proposed method provides an alternative way to improve the security
and stability of the electric power network with the high penetration of wind power.
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1. Introduction

Under the pressure of environmental pollution and an energy crisis [1], the use of renewable energy
sources, such as wind power, photovoltaic power, and biomass power, is rapidly increasing as alternatives
to conventional sources [2–8]. Many countries have made several projections for large-scale integration of
renewable energy sources into their grids [9–11]. Wind power generation is one of the fastest-increasing
types of renewable energy generation [12–15]. Due to the intermittent and variable nature of wind
power, wind power prediction [16] is of great importance for the safety [17,18], stability [19,20],
and economic efficiency [21,22] of power grids. Wind power prediction (WPP) models can provide
useful information about the upcoming wind power generation profile [12]. The Chinese government
has issued relevant regulations requiring grid-connected wind farms to establish independent wind
power prediction systems [23]. In order to guarantee the normal operation of the power grids and reduce
additional maintenance costs, it is of great significance to study high-accuracy WPP methods, especially
the short-term wind power prediction method [24].

The deterministic WPP techniques are mature and widely used, they can be divided into
statistical and physical methods [12,22,25]. The traditional physical method is an analytical method,
which achieves wind power prediction by a series of empirical formulas [24,26]; it is simple and easy to
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implement, but its accuracy is low. The statistical methods, on the other hand, predict the wind
power based on the historical power generation data rather than the geographical parameters
and the weather. In addition, its prediction model can be modified continuously according to
the evaluation indexes. Hence, the prediction accuracy of these methods is typically higher than
physical methods [27,28]. The prediction models for such methods mainly include the moving average
(MA) model, the autoregressive integrated moving average (ARIMA) model, the back-propagation
(BP) neural network [27], the support vector machine (SVM) [29], and the recurrent neural network
(RNN) [30].

In [27], a three-layer BP neural network prediction model was proposed for one-step prediction
of wind speed of wind farms, and thus can provide reference for short-term wind power prediction.
Aiming at solving the lag problem of wind power prediction. In [31], wavelet transform is adopted to
decompose the input data into an approximate signal and some detail signals. After that, the BP neural
network predicts future wind power data according to decomposed sub-signal. However, the wind
power is a non-stationary time series [32], which means the previously observed values will affect
future values. Additionally, the input data is time-ordered for the prediction of the time series.
The input nodes of the BP neural network are independent, which means that the BP network cannot
learn the temporal relationship contained in input historical wind power data. It is usually not suitable
to deal with the learning problem for the time sequence.

In [29], the support vector machine (SVM) was used to predict the wind power generation.
The SVM method can theoretically find global optimal predictions. However, when there is a large
amount of data, the computational cost of the SVM method would increase sharply. Therefore, it is
typically for the prediction with small samples.

In [33], a recurrent neural network (RNN) based method was proposed to predict wind
power by learning the time relationship contained in the time series. Unlike feedforward neural
networks, the RNN is a variant of artificial neural networks, and its unique internal state that
carries memory of past values makes an RNN able to form a directed graph along a sequence,
and learn the temporal dynamic behavior for a time series. However, the tanh activation function
may lead to gradient disappearance and gradient explosion [34,35], which will affect the prediction
performance. These shortcomings limit the RNN capability to fully learn the temporal dynamic
behavior of the time series.

Long short-term memory (LSTM) was proposed in [36] to overcome the gradient disappearance
and the gradient explosion. As one of the improved variants of recurrent neural network, LSTM can
learn the information contained in time series data more effectively. LSTM has been widely used
in handwriting recognition [37], music generation [38], object detection [39], sentiment analysis [40],
and speech recognition [41]. In [42], the LSTM was used for dynamic modeling of the time series in
which the short-term prediction of wind power was carried out.

In summary, the LSTM networks can effectively capture the dynamic behavior of time series data
compared with the BP neural network and the support vector machine. However, if the LSTM network is
directly used to learn and predict the original data, the prediction accuracy is not high. If the non-stationary
wind power time series can be decomposed into several more predictable components with less
non-stationarity, the prediction accuracy can be significantly enhanced. Among the decomposition
approaches, wavelet decomposition [43] and empirical mode decomposition [44] have been effectively
applied to the non-stationary time series prediction. In recent years, wavelet transform has been
widely used in the fields of signal and image analysis, noise reduction, and compression [45,46].
In [12], a spatiotemporal WPP model consisting of wavelet transform, two-input symmetric correlation,
and the least squares support vector machine is proposed, which does not use LSTM.

This paper presents a discrete wavelet transform and long short-term memory network
(DWT_LSTM) WPP method based on LSTM and discrete wavelet transform (DWT). Its innovative
contribution is to develop an accurate and efficient deterministic WPP strategy using a combination
of a data filtering approach based on discrete wavelet transform (DWT) and the LSTM network.
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The strategy of the proposed DWT_LSTM consists of two stages. In the first stage, it decomposes
the original wind power datal into an approximate signal and some detailed signals through DWT.
In the second stage, every sub-signal is assigned a separate LSTM for training. After that, the final
prediction result is obtained by summing the corresponding predicted values of each sub-signal linearly.
Based on the actual wind power data provided by three wind farms, the effectiveness and accuracy of
the method are verified. The experimental results show that the prediction method proposed in this
paper has higher prediction accuracy than the benchmark prediction methods.

The rest of this paper is organized as follows. Section 2 presents the problem description;
Section 3 proposes the DWT_LSTM forecasting method; Section 4 presents the experimental design.
Numerical validation is presented in Section 5. Section 6 concludes the paper.

2. Problem Description

The power data generated by the wind turbine is a time series, which means that the previous
power data has a certain influence on the subsequent power data. {Pt} (t = 1, . . . , N) represents
a discrete wind power time series. The value of Pt is the power generated at time t. The time sequence
{Pt} can be described as a stochastic process as follows:

Pt = f (Pt−1, Pt−2, . . . , Pt−h, εt, θ) (1)

where, as shown in Equation (1), the value of Pt is obtained from the mapping of sequence (Pt−1, Pt−2,
. . . , Pt−h) and white noise εt through a function f. Generally, the function f is ambiguous, non-linear,
and highly complicated. θ is the parameter set of the function. The white noise εt is the noise of
the entire time series. The white noise obeys the normal distribution with 0 mean and the σ standard
deviation. It is described as follows:

εt ∼ N
(

0, σ2
)

. (2)

The function f that needs to be established is the wind power prediction model. Considering that
f is ambiguous, non-linear, and highly complicated, it is difficult to obtain f using traditional analytical
methods. In this paper, we make use of deep learning techniques to obtain its approximation function
f̂ considering the powerful function fitting ability of the neural network. Then the predicted power
generation value P̂t at time t is obtained as follows:

P̂t = f̂ ( Pt−1, Pt−2, . . . , Pt−h, εt, θ). (3)

An evaluation function is constructed to quantify the performance of the forecasting function
as follows:

g(θ) = ∑
t ε test set

(Pt − P̂t)
2. (4)

It is noted that a smaller value of the evaluation function g(θ) implies a better prediction f̂ .
Therefore, it is necessary to find θ̂ that minimizes g(θ). Then the objective function is introduced as:

θ̂ = argmin
θ

g(θ). (5)

The neural network updates the weight parameters through the back propagation algorithm to
minimize the g(θ). The weight parameters of the neural network are updated according to the gradient.
By repeating the process of feedforward propagation and back propagation, the weight parameters of
the neural network are continuously updated until the error of the loss function meets the precision
requirement, i.e., the approximation function f̂ is fitted.
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3. Proposed DWT_LSTM Forecasting Method

3.1. Sketch of DWT_LSTM

The proposed DWT_LSTM forecasting method has two important components: the LSTM
and DWT. The two components are used to implement the strategy of dividing and conquering.
Specifically, the proposed method uses DWT to decompose original wind power data into sub-signals
and independent LSTMs to learn the temporal relationship from sub-signals, respectively.

3.2. Long Short-Term Memory (LSTM)

The long short-term memory network (LSTM), which is a variant of RNN, was proposed in
1997 [36]. An LSTM unit shown in Figure 1 is composed of a cell, an input gate, an output gate,
and a forget gate. The unique structure of LSTM can effectively solve the problems of gradient
disappearance and gradient explosion problems in the training process of RNN.
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The plus sign in Figure 1 denotes the addition of element levels, the multiplication sign denotes
element level multiplication, and con presents vector merge. ft, it, gt, ot present the forgotten gate,
the input gate, the input node, and the output gate, respectively. The dependencies relationship
between the data in the input sequence is caught by the cell. The input gate controls the extent of
the values which flow into the cell. The forget gate controls the extent of the values which remain in
the cell. The values in the cell are used to calculate the output activation of the LSTM; its extent is
controlled by the output gate.

The calculation formulas related to the LSTM structure in Figure 1 are:

ft = σ
(
Wf[ht−1, xt] + bf

)
(6)

it = σ(Wi[ht−1, xt] + bi) (7)

gt = tanh
(
Wg[ht−1, xt] + bg

)
(8)

ot = σ(Wo[ht−1, xt] + bo) (9)

st = st−1 � ft + gt � it (10)

ht = tanh(st)� ot (11)

In Equations (6)–(11), Wf, Wi, Wg, Wo are the corresponding weight matrix connecting the input
signal [ht−1, xt], and � represents the element level multiplication. σ represents the sigmoid activation
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function, and tanh represents the hyperbolic tangent function. The state (st) of cell remembers
previous values over arbitrary time intervals and the three gates control the flow of information into
and out of the cell. Thus, the LSTM network is very suitable for prediction problems based on a time
sequence. Hence, this paper uses LSTM to fit the approximation function f̂ mentioned in Formula (3).
The schematic diagram of the LSTM network training is shown in Figure 2.
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3.3. Discrete Wavelet Transform (DWT)

Considering that the wind power generation is caused by a variety of natural factors, including
wind speed, wind direction, air density, air pressure, and wind turbine friction, the output power
series of the wind turbine is non-stationary, volatile, and time-ordered. The influence of these factors
on output power are different. The wind speed and wind direction are the two major factors affecting
the wind power generation. The wind power signal contains the components of various frequencies:
the contribution of the low-frequency components and high-frequency components of wind power
data are of different importance to its dynamic behavior.

If these components with different frequencies can be learned by independent LSTMs respectively,
the performance of data mining will be improved. Thus, the divide and conquer strategy requires
the decomposition of the original wind power data into low-frequency sub-signal and high-frequency
sub-signal by a proper decomposition algorithm.

This paper uses the discrete wavelet transform for decomposing the original wind power
data. It uses a time-scale function to analyze data, so that wavelet transform has multi-scale
resolution and time-shifting characteristics. Scaling operations can observe signals on different scales.
Therefore, the wavelet transform is very suitable for dealing with non-stationary time series problems
including wind power data.

Assuming that the square of x(t) can be integral, x(t) can be expanded under a wavelet basis
function. This operation is called a continuous wavelet transform of x(t). The mathematical definition
of the wavelet basis function is:

Ψa,b(t) =
1√
|a|

Φ(
t− b

a
), a 6= 0, b ∈ R. (12)

The mathematical definition of continuous wavelet transform of x(t) is:

Wx(a, b)=< x(t),Ψa,b(t) >=
1√
|a|

∫
R

xt(t)Φ(
t− b

a
)dt. (13)

In Equations (12) and (13), a represents the scale parameter, and b represents the time center
parameter. When a and b change continuously, the whole transformation process is called continuous
wavelet transform. However, in practical applications, the continuous transformation which greatly
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increases the computational complexity, application cost, and the implementation difficulty, is actually
replaced by discrete wavelet transform (DWT) with a small step size.

Discrete wavelet transform makes the application of wavelet transform easy to be put into practice.
It discretizes the a and b parameters exponentially, which reduces the computational complexity
and avoids the information redundancy caused by continuous wavelet transform. The discrete wavelet
transform of x(t) is defined as:

Wx(j, k) = < x(t),Ψj,k(t) > =
1√
|a|

∫
R

xt(t)Φ(
t− b

a
)dt. (14)

In Formula (14), a and b are discrete, a = aj
0, b = kaj

0b0, a0 > 1, b0 > 0, j ∈ Z, k ∈ Z.

The algorithm for discrete wavelet transform is the Mallat algorithm proposed in 1988. It is actually
a signal decomposition method. For the multi-resolution characteristics of wavelets, the variable j is
used to determine the resolution at different scales. Specifically, the main contour of the original signal
is observed on a large scale, and the detailed information of the original signal are observed on a small
scale. Finally, the decomposition results are obtained by the stepwise increase of j: one approximate
signal (i.e., low-frequency components) and n (the value of n needs to be set by a human) detail signals
(i.e., high frequency) dn, dn−1, dn−2 . . . , d1. The original signal and the two types of sub-signals are
satisfied by the following equation:

x(t) = an + dn + dn−1 + . . . + d1. (15)

A schematic diagram of discrete wavelet transform decomposition is shown in Figure 3.
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3.4. The Proposed DWT_LSTM Method

This section presents the DWT_LSTM prediction method, as shown in Figure 4. The method
mainly has two stages: the preprocessing of original wind power data, and the training and forecasting
of sub-signal data.
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network (DWT_LSTM).

Wind power data are divided into a training set, a validation set, and a test set according to
the order of the time series. The training set, validation set, and test set account for 70%, 20%,
and 10% of the original data, respectively. Approximate signal and detail signal values vary widely,
which is not conducive to the training of LSTM. Therefore, the z score normalization method shown in
Equation (16) was used to standardize the decomposed data in this paper. The normalized data z(t)
obeys the standard normal distribution.

z(t) =
x′(t)− x′mean

x′std
(16)

x′(t) represents one of the sub-signals (an, d1 · · · dn), x′mean and x′std are the mean and standard
deviation of x′(t), respectively.
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After the training of the LSTMs, each sub-signal of the test set was predicted, and the normalized
predicted value p(t) of each sub-signal was obtained. Then p(t) was denormalized to y(t)
of the corresponding sub-signal. The formula of y(t) is shown in Equation (17).

y(t) = p(t) ∗ x′std + x′mean (17)

Finally, the wind power prediction results of the original data were obtained by superimposing
all denormalized predicted values y(t).

4. Experimental Design

4.1. Benchmarks and Hyperparameter Settings

In order to verify the performances of the DWT_LSTM method proposed in this paper,
five algorithms including DWT_RNN, DWT_BP, LSTM, RNN, and BP were selected as benchmarks.
The proposed forecasting method DWT_LSTM and the five benchmarks were classified into two
groups: group 1 includes DWT_LSTM, DWT_RNN, and DWT_BP; group 2 includes LSTM, RNN,
and BP. Obviously, all the forecasting algorithms of group 1 contain the discrete wavelet transform
operation, while the members of group 2 contain only the corresponding neural networks of group
1. Group 1 shows the influence of discrete wavelet transform on prediction accuracy, and group
2 was used to find the most suitable neural network of LSTM, RNN, and BP for the time series
prediction problem.

The hyperparameters were set as follows: the number of input layer nodes and the number of
the hidden layer nodes in the neural network of the six methods mentioned above were all set to
10, based on repeated experiments. The wind power generation prediction belongs to the regression
problem, so the output layer of the neural network of the six methods does not have to set the activation
function. The iteration period (epoch) was uniformly set to 100.

To make the experiment more persuasive, for each of the six methods, experiments with
the prediction step size from one to five were carried out.

4.2. Optimization Algorithm

Deep learning often requires a lot of time and computational resources for training, which is
a major driving force for the development of the optimization algorithm.

Although distributed parallel training can be adopted to accelerate the deep learning, the required
computational resources will not be drastically reduced. Hence, only the optimization algorithm that
consumes less computational resources and makes the model converge faster can fundamentally
accelerate the learning speed and improve the forecasting performances of the neural network.
The Adam optimizer was introduced for this reason [47] as a further development of the stochastic
gradient descent algorithm. The Adam algorithm can update the weights of the neural network
iteratively based on the training data. Since only first-order gradients were needed, the stochastic
gradient descent maintains a fixed learning rate (i.e., alpha) to update all weights. Adam designs
an independent adaptive learning rate for different parameters by calculating the first-order
moment estimation and the second-order moment estimation of the gradient. The Adam algorithm
includes the advantages of two random gradient descent extensions: AdaGrad and RMSProp.
The adaptive gradient algorithm (AdaGrad [48]) retains a learning rate for each parameter to improve
the performance of the sparse gradient; and the RMSProp [49] maintains the learning rate adaptively
for each parameter based on the mean value of the nearest weight gradient. Adam not only calculates
the learning rate of adaptive parameters based on the first-order moment mean, but also makes full
use of the gradient second-order moment mean. Adam is a first-order optimization algorithm that can
replace the traditional stochastic gradient descent algorithm.
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4.3. Data Description

Three time series wind power data from three different wind farms were selected for experiments
in this paper. Every time series covered 12 months in order to make experiments more supportive.
The time interval between two neighboring power data was 15 min (35,000 points in total).
The parameter of the wind power data was MW. Three wind farms were located in inner Mongolia
(farm 1), The Netherlands (farm 2), and Yunnan of China (farm 3), respectively. These wind farms
were far away enough to ensure that the three time series wind power data were different. The three
different data are shown in Figure 5.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 17 
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Figure 7 shows one-step forecasting results of wind farm 1, three-step forecasting results of wind
farm 2, and five-step forecasting results of wind farm 3. It can be seen that the prediction accuracy of
the proposed method is the best compared with the benchmarks.
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Figure 8 shows the mean absolute percentage error (MAPE) of one-step forecasting for farm 1,
the MAPE of three-step forecasting for farm 2, and the MAPE of five-step forecasting for farm 3.
The MAPE of the proposed method was the lowest.
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In order to further verify the validity and performance of the proposed prediction method,
three evaluation indexes including the mean absolute error (MAE), the mean absolute percent error
(MAPE), and the root mean square error (RMSE), were selected to evaluate the performance of every
method according to Equations (18)–(20). The experimental results including MAE, MAPE, and RMSE
of the original data test set are shown in Tables 1–3.

MAE =
1
N

N

∑
i=1
|y_reali − y_predi| (18)

MAPE =
1
N

N

∑
i=1

∣∣∣∣y_reali − y_predi
y_reali

∣∣∣∣ ∗ 100 (19)

RMSE =

√
∑N

i=1(y_reali − y_predi)
2

N
(20)

Table 1. Evaluation indexes of farm 1. RNN: recurrent neural network; BP: back-propagation; MAE:
mean absolute error; RMSE: root mean square error.

Prediction Step Algorithms MAE/MW MAPE/% RMSE/MW

1

DWT_LSTM 10.12 3.01 14.22
DWT_RNN 13.95 3.41 21.23

DWT_BP 16.42 4.85 22.80
LSTM 28.31 4.80 39.27
RNN 29.10 5.17 40.51

BP 32.26 5.53 41.66

2

DWT_LSTM 18.98 4.01 27.11
DWT_RNN 26.27 4.29 40.08

DWT_BP 28.53 4.55 44.96
LSTM 24.83 3.39 35.43
RNN 29.93 7.45 50.48

BP 34.57 5.79 52.83

3

DWT_LSTM 29.48 5.15 41.33
DWT_RNN 30.66 6.33 43.51

DWT_BP 36.51 6.98 51.08
LSTM 40.73 7.41 59.02
RNN 41.23 7.81 61.26

BP 46.59 8.92 65.15

4

DWT_LSTM 37.70 6.66 53.32
DWT_RNN 40.23 7.02 58.11

DWT_BP 43.19 8.77 62.96
LSTM 47.18 8.13 68.51
RNN 46.65 8.52 68.54

BP 50.75 8.61 71.04

5

DWT_LSTM 45.23 8.10 63.22
DWT_RNN 46.36 11.54 63.67

DWT_BP 55.87 12.34 75.11
LSTM 54.32 9.91 77.12
RNN 55.01 10.27 78.96

BP 56.42 10.79 77.52
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Table 2. Evaluation indexes of farm 2.

Prediction Step Algorithms MAE/MW MAPE/% RMSE/MW

1

DWT_LSTM 11.26 2.02 17.35
DWT_RNN 12.16 2.60 17.57

DWT_BP 14.27 2.79 22.51
LSTM 28.78 5.07 46.08
RNN 29.97 5.17 46.20

BP 30.18 5.19 46.11

2

DWT_LSTM 21.11 3.52 32.13
DWT_RNN 24.84 3.95 34.26

DWT_BP 25.23 4.68 38.28
LSTM 36.71 6.56 55.32
RNN 37.23 6.79 56.02

BP 37.86 6.91 56.52

3

DWT_LSTM 28.55 5.31 43.6
DWT_RNN 29.64 5.40 44.09

DWT_BP 35.97 6.74 52.18
LSTM 43.70 8.05 64.87
RNN 44.75 8.16 66.05

BP 47.27 8.32 68.35

4

DWT_LSTM 38.13 6.96 55.91
DWT_RNN 39.24 7.17 56.34

DWT_BP 46.68 8,12 67.65
LSTM 48.91 9.02 72.88
RNN 51.83 9.33 74.65

BP 52.00 9.78 75.16

5

DWT_LSTM 44.52 8.36 64.62
DWT_RNN 44.73 8.77 65.21

DWT_BP 48.10 9.08 70.99
LSTM 55.71 10.17 81.56
RNN 58.29 10.21 83.33

BP 59.78 10.59 84.09

Table 3. Evaluation indexes of farm 3.

Prediction Step Algorithms MAE/MW MAPE/% RMSE/MW

1

DWT_LSTM 5.49 1.75 8.64
DWT_RNN 5.63 1.89 8.67

DWT_BP 8.96 3.64 12.95
LSTM 15.23 4.41 24.13
RNN 15.28 4.41 24.16

BP 15.74 4.94 24.33

2

DWT_LSTM 10.21 3.04 15.75
DWT_RNN 10.40 3.11 15.96

DWT_BP 13.12 3.95 20.29
LSTM 18.36 5.43 28.62
RNN 18.96 5.48 29.41

BP 19.77 6.87 29.44

3

DWT_LSTM 15.27 4.35 22.92
DWT_RNN 15.82 5.36 23.46

DWT_BP 19.71 7.66 28.15
LSTM 22.80 6.65 34.95
RNN 23.35 6.67 35.17

BP 23.92 8.42 35.32



Appl. Sci. 2019, 9, 1108 14 of 17

Table 3. Cont.

Prediction Step Algorithms MAE/MW MAPE/% RMSE/MW

4

DWT_LSTM 19.85 5.77 29.73
DWT_RNN 20.08 6.75 29.89

DWT_BP 22.94 6.76 34.37
LSTM 25.96 7.65 39.83
RNN 26.47 8.62 39.84

BP 26.71 8.71 39.96

5

DWT_LSTM 23.96 7.11 35.83
DWT_RNN 24.20 7.20 36.22

DWT_BP 26.67 8.48 40.01
LSTM 29.27 8.61 44.10
RNN 30.14 10.01 44.13

BP 30.26 10.06 44.96

In the Equations (18)–(20), y_reali and y_predi represent the real power generation and predicted
power generation at time i, respectively.

Take Table 1 for example—the analysis of evaluation index is as follows:
(1) For any prediction step size, MAE, MAPE, and RMSE of DWT_LSTM were lower than

DWT_RNN, DWT_BP, LSTM, RNN, and BP, so the prediction performance of DWT_LSTM proposed
in this paper is the best. Taking the experimental results of one step as an example, the MAE of
DWT_LSTM was sequentially reduced by 27.46%, 38.37%, 64.25%, 65.22%, and 68.63%, respectively,
compared with DWT_RNN, DWT_BP, LSTM, RNN, and BP; the MAPE of DWT_RNN, DWT_BP,
LSTM, RNN, and BP was sequentially reduced by 11.73%, 37.94%, 37.29%, 41.78%, and 45.57%;
the RMSE of DWT_RNN, DWT_BP, LSTM, RNN, and BP was sequentially reduced by 33.01%, 37.63%,
63.80%, 64.90%, and 65.87%. It can be seen that compared with the other five prediction methods,
the prediction accuracy of DWT_LSTM was significantly improved, which indicates that the application
of discrete wavelet transform enables independent LSTMs to more fully dig the major information
and minor information contained in the approximate signal and the detail signal, respectively.
Obviously, the discrete wavelet transform improves the prediction accuracy of wind power indeed.

(2) For any prediction step size, among the three algorithms of LSTM, RNN, and BP,
LSTM had the lowest MAE, MAPE, and RMSE, and its prediction performance was optimal.
Taking the experimental results of one step as an example, the MAE of LSTM was decreased by
2.71% and 12.24%, respectively, compared with RNN and BP; the MAPE of LSTM was decreased by
7.16% and 13.20%, respectively, compared to RNN and BP; the RMSE of LSTM was decreased by
3.06% and 5.74%, respectively, compared to RNN and BP. The experimental results demonstrate that
LSTM is more suitable for time series wind power prediction problems than RNN and BP neural
networks because the unique structure of LSTM can learn the temporal relationship contained in input
sequences better.

Analysis of Tables 2 and 3 shows the same conclusions as Table 1. However, for the brevity of this
paper, they were not demonstrated.

6. Conclusions

This paper proposed a DWT_LSTM prediction method based on the divide and conquer
strategy. The DWT was used to decompose original wind power data into sub-signals, the main
information. The independent LSTM was designed to approximate the temporal dynamic behaviors of
the sub-signals respectively.

With the proposed prediction method, the main information that was contained in
the approximated wind power sub-signal and the minor information contained in detailed wind power
sub-signals can be identified by different LSTMs more efficiently. Also, the temporal relationship
contained in the input sequence data can be learned through independent LSTMs. The experimental
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results show that the proposed prediction method has the best prediction accuracy compared with
the benchmarks.

In future work, the optimizer algorithm of LSTM can be further improved to enhance the learning
ability for time series prediction. In addition, DWT_LSTM is an accurate forecasting method that can
be used as a reference for the prediction of other renewable energy power generation.
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