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Abstract: Volumetric tooth wear measurement is important to assess the life of scraper conveyor
sprocket. A shape from focus-based method is used to measure scraper conveyor sprocket tooth
wear. This method reduces the complexity of the process and improves the accuracy and efficiency of
existing methods. A prototype set of sequence images taken by the camera facing the sprocket teeth is
collected by controlling the fabricated track movement. In this method, a normal distribution operator
image filtering is employed to improve the accuracy of an evaluation function value calculation.
In order to detect noisy pixels, a normal operator is used, which involves with using a median
filter to retain as much of the original image information as possible. In addition, an adaptive
evaluation window selection method is proposed to address the difficulty associated with identifying
an appropriate evaluation window to calculate the focused evaluation value. The shape and size
of the evaluation window are autonomously determined using the correlation value of the grey
scale co-occurrence matrix generated from the measured pixels’ neighbourhood pixels. A reverse
engineering technique is used to quantitatively verify the shape volume recovery accuracy of different
evaluation windows. The test results demonstrate that the proposed method can effectively measure
sprocket teeth wear volume with an accuracy up to 97.23%.

Keywords: shape from focus; wear measurement; sprocket teeth; normal distribution operator image
filtering; adaptive evaluation window; reverse engineering

1. Introduction

A scraper conveyor is the primary production and transportation equipment in a fully mechanized
mining face [1]. In modern coal mining, the conveyor transports coal and provides hydraulic support
and a walking track for the shearer. Therefore, its reliability directly affects the safety and production
efficiency of modern coal mines. Sprockets are the core components of the chain drive system, which
is the most important subsystem in the scraper conveyor [2]. Sprocket’s performance is directly related
to the transport performance and service life of the scraper conveyor [3]. Sprockets contact chains
directly; consequently, friction causes wear and excessive wear is the main form of sprocket failure
and the main cause of scraper conveyor failure [4]. The sprocket conveyor chain may jump when it
engages with the excessively worn sprocket; worn sprocket teeth may break, which affects the safe and
efficient production of the coal mine, therefore, sprocket teeth wear analysis is required. Conventional
wear measurement methods for scraper conveyor sprocket teeth include a weighing method, water
volume measurement method, ANSYS analysis method [5] and wear monitoring [6]. Wang et al. [7]
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discussed the wear condition of a driving sprocket and the influence of wear on the sliding distance
by taking the sliding speed and sliding distance of the meshing process as the index. Wang et al. [8]
also analyzed the relationship between the deformation of a ring chain and driving sprocket wear by
combining numerical analysis with experiments. However, these methods are not only tedious and
time-consuming, they are also not sufficiently accurate or efficient.

The research of computer vision in industry field has attracted more and more attention of many
researchers. Alverdi et al. [9] proposed a new way of using images to model the kerf profile in
abrasive water jet milling. Qian et al. [10] presented an algorithm to compute the axis and generatrix
focus on complex surfaces or irregular surfaces. A new monitoring technique for burr detection
was proposed for the optimization of drill geometry and process parameters [11]. In addition, as a
relatively simple and practical 3D reconstruction technology, shape from focus (SFF) has been applied
to tool wear measurements [12,13], LCD/TFT (Liquid Crystal Display/Thin-Film Technology) display
manufacturing [14] and grinding wheel surface morphology [15], etc.

To realize 3D surface topography restoration, in 1988, Darrell et al. [16] proposed using a Laplace
operator-Gauss fitting method to search the clear frame of pixels in the sequence partial focus image
according to image focusing information. In the 1990s, Nayar et al. [17,18] proposed an SFF-based
method and obtained the height information of the corresponding surface of the window image by
searching the image position corresponding to the maximum value of the focus evaluation function in
the evaluation window. However, SFF suffers from some technical defects in pro-processing images
and choosing evaluation function window size, thus developing methods to improve SFF accuracy
has been the focus of ongoing research.

Many studies have proposed image pre-processing methods. For example, for wavelet transform,
Karthikeyan et al. [19] introduced an effective denoising method for grey images using joint bilateral
filtering. Khan et al. [20] introduced a new impulse noise detection algorithm that is based on
Noise Ratio Estimation and a combination of K-means clustering and Non-Local Means based filter.
An adaptive type-2 fuzzy filter is used to remove salt-and-pepper noise from images [21]. To improve
the processing performance of image texture-free regions, Fan et al. [22] presented a shape focusing
method combined with a 3D adjustable filter that considered edge response and image blurring.
Liu et al. [23] proposed a graph Laplacian regularizer to preserve the inherent piecewise smoothness
of depth, and this method demonstrated effective filtering. An iterative algorithm that combines
stationary wavelet transform, bilateral filtering, Bayesian estimation and anisotropic diffusion filtering
was used to reduce speckle noise in SAR images [24]. Khan et al. [25] designed a meshfree algorithm
(Kansa technique) that uses a DTV method and a radial basis function approximation method to solve
DTV-based model numerically to eliminate multiplicative noise in measurements. However, although
the above methods can remove image noise to some extent, they change the grey-level information of
non-noise areas of the image and affect the accuracy of 3D morphology restoration.

Mahmood et al. [26] analyzed the influence of different evaluation window sizes and noise types
on the focusing evaluation function and concluded that, for different resolutions, the best evaluation
window size for the same evaluation function was no single. Lee et al. [27,28] studied the focusing
evaluation function window size. To determine the focusing evaluation function value, different
standard window sizes were used to analyze the evaluation results of the size and shape of the
focusing evaluation function window. Muhammad et al. [29] conducted 3D morphology restoration
experiments on images collected using imaging equipment with different parameters and formulated
the selection of the evaluation window. However, most of the above studies are based on the optimal
size selection of a fixed square evaluation window without simultaneously optimizing both the shape
and size of the window.

This paper presents an SFF-based method to measure scraper conveyor sprocket teeth wear
efficiently. A specially designed device was used to collect a set of sprocket tooth wear sequence
images. Normal distribution operator filtering, adaptive window evaluation and a Laplacian focusing
evaluation function are applied to the obtained images. We obtain an initial depth map of the entire
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tooth wear surface. Then, a 3D shape recovery map is constructed to calculate the wear volume.
This method improves measurement accuracy, can be operated remotely, and can be used to predict
the life of the sprocket. More importantly, it is an efficient, fast and safe measurement method that
provides data and technical support for coal mine production safety.

2. Measurement Scheme of Sprocket Teeth Wear of Scraper Conveyor

The scraper conveyor sprocket tooth wear measurement system based on SFF primarily comprises
hardware and software. The hardware includes industrial cameras and control tracks, and the software
includes 3D topography recovery and calculation of wear volume. The measurement process is
summarised as follows. First, the sequence images of the tooth are collected using the hardware device.
Then, the images are transmitted to the computer. Finally, the wear volume and geometric position of
the sprocket teeth are obtained via 3D topography recovery and wear volume calculation.

2.1. Structure and Wear of Sprocket Teeth of Scraper Conveyor

A scraper conveyor sprocket [30] comprises a hub and sprocket teeth. The shape of the teeth is a
geometric polygon, and each sprocket generally has five or seven teeth. The structure of the sprocket
is shown in Figure 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 24 

focusing evaluation function are applied to the obtained images. We obtain an initial depth map of 

the entire tooth wear surface. Then, a 3D shape recovery map is constructed to calculate the wear 

volume. This method improves measurement accuracy, can be operated remotely, and can be used 

to predict the life of the sprocket. More importantly, it is an efficient, fast and safe measurement 

method that provides data and technical support for coal mine production safety. 

2. Measurement Scheme of Sprocket Teeth Wear of Scraper Conveyor 

The scraper conveyor sprocket tooth wear measurement system based on SFF primarily 

comprises hardware and software. The hardware includes industrial cameras and control tracks, 

and the software includes 3D topography recovery and calculation of wear volume. The 

measurement process is summarised as follows. First, the sequence images of the tooth are collected 

using the hardware device. Then, the images are transmitted to the computer. Finally, the wear 

volume and geometric position of the sprocket teeth are obtained via 3D topography recovery and 

wear volume calculation. 

2.1. Structure and Wear of Sprocket Teeth of Scraper Conveyor 

A scraper conveyor sprocket [30] comprises a hub and sprocket teeth. The shape of the teeth is a 

geometric polygon, and each sprocket generally has five or seven teeth. The structure of the sprocket 

is shown in Figure 1. 

 

Figure 1. Structure diagram of scraper conveyor sprocket. 

The working principle of the sprocket is to rotate the drive shaft to drive the hub to rotate, and 

the sprocket teeth engage with the circle chain. The different wear degrees of sprocket teeth are 

shown in Figure 2. 

Figure 1. Structure diagram of scraper conveyor sprocket.

The working principle of the sprocket is to rotate the drive shaft to drive the hub to rotate, and
the sprocket teeth engage with the circle chain. The different wear degrees of sprocket teeth are shown
in Figure 2.
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Figure 2. Scraper conveyor sprocket teeth structure shape: (a) Before wear; (b) After wear;
(c) After failure.

Figure 3a,b show the hardware device’s design, where 1: box; 2: circular track; 3: tooth radial
motion module; 4: circular track slider; 5: circular slider driving module; 6: circular slider auxiliary
track; 7: light receiver; 8: linear light; 9: ring light; 10: industrial lens; 11: industrial camera;
12: longitudinal motion module; 13: slider connection plate; 14: box connection plate.
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The hardware device that measures sprocket wear includes position control, motion, centering,
sequence image acquisition and other modules. The position control module primarily comprises a
PLC unit and a driver unit, where the PLC unit includes different sub-units, such as longitudinal motion
control, circumferential motion control, sprocket teeth radial motion control, camera control, linear
light switch control, light receiver monitoring and ring light control. The motion module comprises a
longitudinal motion unit, a circumferential motion unit and a radial sprocket teeth movement unit.
The longitudinal movement unit includes a circular arc guide, a slider, a slider auxiliary guide rail and
a slider drive module, and the centering module comprises a linear light unit and a light receiver unit.
The sequence image acquisition module comprises a Charge Coupled Device CCD camera unit, a lens
unit and an auxiliary light unit, and the other modules include support units and connection units.
The structure of the sprocket wear measurement device is shown in Figure 3.

2.2. Wear Measurement Process Flow Chart

Figure 4 illustrates wear measurement process, which is addressed as follows.
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Figure 4. Technical route of sequence images acquisition.

Firstly, the longitudinal motion unit is driven to move in the longitudinal direction by the
longitudinal motion control unit and stops when the moving distance reaches the set distance of the
longitudinal distance unit. As a result, the camera unit is aligned with the longitudinal row of teeth.
Secondly, the two linear light switches are turned on using linear light control unit, and the circular
slider driving module is driven to move with the help of the circumferential control unit. When the
light receiver unit simultaneously receives the signals from the two lights reflected back through the
tooth surface, the circular slider driving module stops moving, which means that the camera unit is
aligned with one of the teeth in the circumferential direction. Thirdly, the radial motion unit is driven
to the designated focal length position by the sprocket tooth radial control unit, and the step distance
is set to one N of the sprocket tooth height. The camera is driven by the camera control unit. Each step
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forward, the camera takes a picture, which cycles N times. The radial motion unit stops moving and
returns to the original position, and then sequence image acquisition is completed.

The technical flow chart of the focused morphology restoration algorithm is shown in Figure 5.
First of all, the collected sequence images are read into the computer, and the field of view and

resolution and cropping of all N-frame sequence images are transformed according to the proportional
relationship of the target region of the N-frame sequence image. Normal distribution operator image
filtering is used to filter the sequence images to obtain the same resolution. The pre-processed
sequence images have N frames of the field of view. Therefore, N-frame pre-processed sequence
image of the same resolution and field of view are obtained. Then, the clear pixel points of each
pre-processed sequence image are extracted in order to construct a full-focus image. Then, the proposed
adaptive method is used to select the focus evaluation window of any pixel in the full-focus image.
The focus factor of each pixel in the pre-processed sequence image is calculated and the sequence
image number corresponding to the maximum focus factor of all pixels in the full-focus image is
obtained. The sequence image number is taken as the depth value of the corresponding pixels to
form the initial depth map of the full-focus image. Next, a full-focus image is obtained with the help
of image binarization, inversion, filling and contour recognition, and the object contour is extracted.
The extracted object contour is applied to the initial depth map and the region outside the object
contour is hollowed out to obtain a three-dimensional shape recovery map of the object. Lastly, the
wear volume is calculated. The pixel equivalent and actual depth value of each pixel in the complete
3D topography is calculated, the tooth volume is determined using the limit method and the volume
difference and wear volume between the recovered tooth model and the actual tooth model are
calculated using the difference method.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 24 

Each step forward, the camera takes a picture, which cycles N times. The radial motion unit stops 

moving and returns to the original position, and then sequence image acquisition is completed. 

The technical flow chart of the focused morphology restoration algorithm is shown in Figure 5. 

First of all, the collected sequence images are read into the computer, and the field of view and 

resolution and cropping of all N-frame sequence images are transformed according to the 

proportional relationship of the target region of the N-frame sequence image. Normal distribution 

operator image filtering is used to filter the sequence images to obtain the same resolution. The 

pre-processed sequence images have N frames of the field of view. Therefore, N-frame 

pre-processed sequence image of the same resolution and field of view are obtained. Then, the clear 

pixel points of each pre-processed sequence image are extracted in order to construct a full-focus 

image. Then, the proposed adaptive method is used to select the focus evaluation window of any 

pixel in the full-focus image. The focus factor of each pixel in the pre-processed sequence image is 

calculated and the sequence image number corresponding to the maximum focus factor of all pixels 

in the full-focus image is obtained. The sequence image number is taken as the depth value of the 

corresponding pixels to form the initial depth map of the full-focus image. Next, a full-focus image is 

obtained with the help of image binarization, inversion, filling and contour recognition, and the 

object contour is extracted. The extracted object contour is applied to the initial depth map and the 

region outside the object contour is hollowed out to obtain a three-dimensional shape recovery map 

of the object. Lastly, the wear volume is calculated. The pixel equivalent and actual depth value of 

each pixel in the complete 3D topography is calculated, the tooth volume is determined using the 

limit method and the volume difference and wear volume between the recovered tooth model and 

the actual tooth model are calculated using the difference method. 

 

Figure 5. Flow chart of the focused morphology restoration algorithm. 

3. Improved SFF 

Acquire sequence 
images 

Recover and 
optimize

surface topography 

Extract 
tooth area 

Import images

Filter image 
Choose 

evaluation 
window

Calculate focus 
factor

Locate peak 

Obtain  initial 
topographic map

Segment tooth 
image

Remove 
background area 

Calculate wear volume

Calculate pixel 
equivalent 

Calculate the actual 
height of each pixel

Use the limit 
method to calculate 

the teeth volume 

 Optimize

Extract tooth edge 

Obtain 3D 
topography 

recovery map

Calculate the wear 
volume of sprocket 
teeth by difference 

method

Sequence images 
acquisition 

system

Save images

Transform view 
field  

Transform 
resolution 

Crop image 

Preprocess 
image 

Obtain 3D topography recovery map 

Figure 5. Flow chart of the focused morphology restoration algorithm.



Appl. Sci. 2019, 9, 1084 7 of 24

3. Improved SFF

3.1. Principle of SFF

SFF is a method to recover a 3D topography from 2D sequence images [31]. SFF collects a
series of partially-focused sequence images and obtains the depth information of each pixel based on
focus information. Figure 6 shows a schematic diagram of an ideal optical system imaging principle.
The object distance u, focal length f and distance v satisfy the relationship 1/ f = 1/u + 1/v in an
ideal optical imaging system. For a fixed-focus lens, the object point P forms a clear image point Pf
on the focus plane through the optical system when the image sensor coincides with the focus plane.
The object point P forms a blur circle of radius R on the image sensor when the image sensor does
not coincide with the focus plane. Moreover, a greater distance between the image sensor and focus
plane is results in greater R and the image points become more blurred. SFF must collect K-frame
partial focus images Ik (k = 1, 2, . . . , K) of the measured surface along the optical axis, and these images
contain the depth information of the entire measured surface.
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To increase the robustness of the focus measure, the neighbourhood window U(x, y) of the
pixel (x, y) is usually selected, rather than the pixel as the calculation object, and its size is w × w,
this variable is expressed as follows.

U(x, y)k = {(ξ, η)||ξ − x| ≤ w ∧ |η − y| ≤ w} (1)

where (ξ, η) represents the pixels in the neighbourhood U(x, y), and k is the image sequence number.
Focused images have more high-frequency components than blurred images. Therefore,

the focusing degree is usually characterized by the sharpness of the pixel points and quantified
using the focus measure in SFF.

When an evaluation function is selected, the evaluation function value sequence Ik(i, j) of pixel (i, j)
can be obtained.

Fk(x, y) = ∑
(ξ,η)∈(x,y)k

Fk(ξ, η) (2)

Since the clearest pixel can provide depth information of the corresponding surface element of
the pixel, the depth of each pixel corresponding to the surface element can be obtained by obtaining
each pixel in the image corresponding to the maximum focus volume. In this manner, the initial depth
map of the measured surface is obtained. The formula is as follows:

D(x, y) = argkmax[Fk(x, y)] (3)

Then, an approximation technique method is applied to refine the initial depth map.
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3.2. Normal Distribution Operator Image Filtering

The influence of many factors like the image capturing hardware, surface texture and light
inevitably introduces noise during data acquisition and transmission. Image noise greatly affects the
accuracy of the value of the focus measure; it is necessary to use filtering techniques to eliminate them.
During image acquisition, two main types of noise are produced: Gaussian noise and salt-and-pepper
noise. Salt-and-pepper noise has a greater impact on the accuracy of the value of the focus measure [32].
The most prominent feature of salt-and-pepper noise is that the grey value of the noise pixels is different
from those of its neighbourhood pixels. Therefore, the median filter is the best filtering method for
this type of application. Median filtering is the most common filtering method; however, median
filtering will change the grey value of all pixels in the image. To maintain the grey value of non-noise
pixels in the image, the normal distribution operator is used to detect noise points. Then, median
filtering is employed for the noise pixels, thereby retaining more of the original information contained
in the image.

3.2.1. Principle of Normal Distribution

The normal distribution operator is a filtering algorithm based on normal distribution, which is
defined as the probability distribution of random variable X obeying position parameter µ and scale
parameter σ. The probability density formula is given as follows:

f (x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
(4)

This random variable is referred to as a normal random variable, and the distribution it obeys is
called a normal distribution, expressed as X ∼ N

(
µ, σ2).

Figure 7 plots the normal distribution. According to the principle that salt-and-pepper noise is
distant from the mean value, in the normal distribution with a mean of 5 and variance of 2, there are
nine pixels in the 3 × 3 evaluation window, of which seven normal points are concentrated near the
mean while the other noise points are distant from the mean. Use the median filter to replace the two
abnormal points under the help of (µ− Kσ, µ + Kσ).
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3.2.2. Noise Point Detection

In the 3 × 3 filter evaluation window, the grey value of pixel centre point (x, y) is f (x, y),and the
pixel points in the centre pixel and its neighbourhood are represented as f 11, f 12, f 13, f 21, f 22, f 23, f 31,
f 32 and f 33, as shown in Figure 8.
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According to the normal distribution principle and the Figure 8, the maximum and minimum
of the nine points in the 3 × 3 filter evaluation window are removed. The mean and variance of the
remaining seven points are taken as µ and σ, which are expressed as follows.

F1 = max ( f11 + f12 + f13 + f21 + f22 + f23 + f31 + f32 + f33) (5)

F2 = min ( f11 + f12 + f13 + f21 + f22 + f23 + f31 + f32 + f33) (6)

µ = ( f11 + f12 + f13 + f21 + f22 + f23 + f31 + f32 + f33 − F1 − F2) (7)

σ2 =

(
( f11 − µ)2 + ( f12 − µ)2 + ( f13 − µ)2 + ( f21 − µ)2 + ( f22 − µ)2 + ( f23 − µ)2

+( f31 − µ)2 + ( f32 − µ)2 + ( f33 − µ)2 − (F1 − µ)2 − (F2 − µ)2

)
/7 (8)

From the above formula, the average of the seven points is calculated as the mean and variance as
the variance of the normal distribution, where K is the threshold. The centre pixel is a non-noise point
when the absolute value of the difference between the centre pixel and the mean is in the Kσ range
and do not change its grey value. By taking the centre pixel as a non-noise point, the absolute value of
the difference between the centre pixel and the mean is not in the Kσ range. After median filtering,
the original grey value is replaced with Med. The grey value obtained after filtering is F(x, y), and the
formula is given as follows.

F(x, y) =

{
f (x, y) | f (x, y)− µ| < Kσ

Med | f (x, y)− µ| ≥ Kσ
(9)

An experiment proved that the filtering effect was best when threshold K was set to 2.2.

3.2.3. Algorithm Verification and Evaluation Analyzes

To verify the feasibility of the operator filtering, three images of a vegetable, a ball and a human,
respectively, were selected as test objects. (These images, shown in Figure 9, were chosen from a book
named Detailed Explanation of Image Processing Example in MATLAB.) Salt-and-pepper noise with a
density of 0.01 was added to the images, and we performed median filtering and normal distribution
operator filtering on the noise images (threshold value K: 2.2).
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Figure 9. Test objects: (a) Vegetable; (b) Ball; (c) Human.

To evaluate the quality of median filtering and normal distribution operator filtering quantitatively,
we selected correlation and the peak signal-to-noise ratio (PSNR) as quantitative assessment criteria.
Correlation was used to evaluate the similarity between the reference and real data, where a greater
correlation value indicates that the reference data are more consistent with the real data. PSNR
was used to measure image quality after filtering, where a greater PSNR value indicates less image
distortion. The formulas for correlation and PSNR are given follows.

Cor =

M
∑

i=1

N
∑

j=1

{[
I′(x, y)− I′(x, y)

]
×
[

I(x, y)− I(x, y)
]}

√√√√ M
∑

i=1

N
∑

j=1

[
I′(x, y)− I′(x, y)

]2
×

M
∑

i=1

N
∑

j=1

[
I(x, y)− I(x, y)

]2
(10)

PSNR = 10× log
(

2552

MSE

)
(11)

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

[
I′(x, y)− I(x, y)

]
(12)

In Equations (10)–(12), M represents the width of the image, N denotes the height of the image,
I’(x, y) stands for the actual grey value of the pixel point (x, y), and I′(i, j) represents the estimated
average grey value for all pixels in the image. While I(x, y) denotes the grey value of the pixels (x, y)
after filtering, and I(i, j) stands for the estimated average grey value for all pixels after filtering in the
image, MSE represents the mean square error.

Figure 10 shows the noise and filter processing results with a density of 0.01. Here, the first, second
and third columns show images with density of 0.01, images processed using median filtering and
images processed using normal distribution operator filtering, respectively. As shown in Figure 10a,
the images contain large number of errors. Note that these errors are reduced significantly by filtering
the noise image. In addition, the median filtered images (Figure 10b) are more blurred than the original
image and the filtering effect is poor. However, images obtained via normal operator filter processing
are closer in appearance to the corresponding original images.
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Figure 10. Noise images (density: 0.01) and filtered images: (a) Noise Image with density of 0.01; (b)  
Figure 10. Noise images (density: 0.01) and filtered images: (a) Noise Image with density of 0.01;
(b) Image processed by median filtering; (c) Image processed by normal distribution operator filtering

Table 1 shows the correlation and root mean squared error (RMSE) data for three sequence images
processed by adding noise and by applying median filtering and normal distribution operator filtering.
As can be seen, the correlation and RMSE values obtained by the two filtering methods are greater
than those obtained with the noisy image sequence. Furthermore, the increase to these values is more
obvious with normal distribution operator filtering. Both filtering methods improve the accuracy of
image filtering; however, the results demonstrate that normal distribution operator filtering is better.

Table 1. Correlation and RMSE values of filtering effects of different filtering methods.

Test
Object Vegetable Ball Human

Type Noise
Image

Median
Filter

Normal
Distribution

Operator
Filtering

Noise
Image

Median
Filter

Normal
Distribution

Operator
Filtering

Noise
Image

Median
Filter

Normal
Distribution

Operator
Filtering

Correlation 0.9669 0.9977 0.9997 0.9440 0.9854 0.9956 0.9223 0.9842 0.9970
RMSE 58.9862 84.9033 104.6258 60.6358 74.1619 86.1075 46.8312 62.4062 79.2773

3.3. Proposed Adaptive Window Selection Method

3.3.1. Grey-Level Co-Occurrence Matrix and Its Correlation Features

The grey-level co-occurrence matrix [33] is a matrix function of the distance and angle between
pixels. This measure reflects the comprehensive information on the direction, interval, amplitude and
speed of the image through the correlation between a certain distance of the image and the two-pixel
grey of a certain direction.
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The galactic co-occurrence matrix [34–36] is defined as the probability from grey-level i to a
fixed position d = (Dx, Dy) to the grey-level j. The grey-level co-occurrence matrix is denoted by
Pd(i, j)(i, j = 0, 1, 2, . . . , L − 1), where i and j represent the grey scale values of two pixels, respectively,
and L denotes the grey level of the image. The spatial relationship d between two pixels is shown in
Figure 11, where θ is the direction of generation of the grey-level co-occurrence matrix.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 24 
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When d is selected, the grey-level co-occurrence matrix Pd under a certain relation d is generated.

Pd =



Pd(0, 0) Pd(0, 1) ... Pd(0, j) ... Pd(0, L− 1)
Pd(1, 0) Pd(1, 1) ... Pd(1, j) ... Pd(1, L− 1)

... ... ... ... ... ...
Pd(i, 0) Pd(i, 1) ... Pd(i, j) ... Pd(i, L− 1)

... ... ... ... ... ...
Pd(L− 1, 0) Pd(L− 1, 1) ... Pd(L− 1, j) ... Pd(L− 1, L− 1)


(13)

Usually, scalars can be used to describe the characteristics of the grey-level co-occurrence matrix.
The correlation features are used to measure the degree of similarity in the horizontal or vertical
direction of the grey level of the image, and the magnitude of the value reflects the approximate degree
of the local grey level correlation. The larger the correlation value is, the larger the correlation of the
local grey level as shown in Equation (14).

Cor =

L−1
∑

i=0

L−1
∑

j=0
(i, j)Pd(i, j)− µ1µ2

σ2
1 σ2

2
(14)

Here, µ1, µ2, σ1, and σ2 are respectively defined as follows:

µ1 =
L−1

∑
i=0

L−1

∑
j=0

iPd(i, j) (15)

µ2 =
L−1

∑
i=0

L−1

∑
j=0

jPd(i, j) (16)

σ2
1 =

L−1

∑
i=0

L−1

∑
j=0

(i− µ1)
2Pd(i, j) (17)

σ2
2 =

L−1

∑
i=0

L−1

∑
j=0

(j− µ2)
2Pd(i, j) (18)
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where i and j represent the grey values of two pixels, L is the grey level of the image, and d represents
the spatial position relationship of two pixels.

3.3.2. Calculation of the Shape and Size of the Evaluation Window

For any pixel (x, y) in the image, the horizontal left neighbourhood N h1 (x, y), the horizontal right
neighbourhood N h2 (x, y), the vertical neighbourhood N v1 (x, y) and the vertical lower neighbourhood
N v2 (x, y) are respectively in Equations (19)–(22).

Nh1
(x,y) = {xk1|xk1 = R(x + (k1− (m + 1)), y), 1 ≤ k1 < m + 1} (19)

Nh2
(x,y) = {xk2|xk2 = R(x + (k2− (m + 1)), y), 1 ≤ k2 < m + 1} (20)

Nv1
(x,y) = {xk3|xk3 = R(x + (k3− (m + 1)), y), 1 ≤ k3 < m + 1} (21)

Nv2
(x,y) = {xk4|xk4 = R(x + (k4− (m + 1)), y), 1 ≤ k4 < m + 1} (22)

For an overly large m, the neighbourhood of the pixel exceeds the range of the acceptable
evaluation window. Taking m = 3, the corresponding maximum evaluation window size is
7 × 7 pixels. In the horizontal direction, a grey-level co-occurrence matrix Pd1(k1) with a distance
D1 = (m + 1)− k1 from the centre pixel point (x, y) and an angle of 180◦ is generated with the pixel
horizontal left neighbourhood N h1 (x, y), and the correlation eigenvalue Cor(k1) corresponding to the
grey-level co-occurrence matrix is obtained. A grey-level co-occurrence matrix Pd2(k2) with a distance
D2 = k2− (m + 1) from the centre pixel point (x, y) and an angle of 0◦ is generated with the pixel
horizontal right neighbourhood N h2 (x, y), and the correlation eigenvalue Cor(k2) corresponding to the
grey-level co-occurrence matrix is obtained. Similarly, a grey-level co-occurrence matrix Pd3(k3) with a
distance from the centre pixel point (x, y) and an angle of 270◦ is generated with the pixel vertical upper
neighbourhood N v1 (x, y), and the correlation eigenvalue Cor(k3) corresponding to the grey-level
co-occurrence matrix is obtained. A grey-level co-occurrence matrix Pd4(k4) with a distance from the
centre pixel point (x, y) and an angle of 90◦ is generated with the pixel vertical lower neighbourhood N
v2 (x, y), and the correlation eigenvalue Cor(k4) corresponding to the grey-level co-occurrence matrix
is obtained.

To find the maximum correlation pixels of the four neighbourhoods of the centre pixels (x, y),
the pixels corresponding to the maximum correlation eigenvalues of the grey-level co-occurrence
matrix in each direction are taken as the maximum relevant pixel, and the maximum correlation
distances D1, D2, D3 and D4 of the centre pixel in the four squares’ directions are calculated by
Equations (23)–(26).

D1 = (m + 1)− argmax(Cor(k1)) (23)

D2 = argmax(Cor(k2))− (m + 1) (24)

D3 = (m + 1)− argmax(Cor(k3)) (25)

D4 = argmax(Cor(k4))− (m + 1) (26)

The maximum correlation distances D1, D2, D3 and D4 of the centre pixels in four directions
can be used to determine the shape of the rectangular evaluation window of the pixel, and the width
Lx = D1 + D2 + 1 and height Ly = D3 + D4 + 1 of the neighbourhood window are obtained. A diagram
of the neighbourhood window is shown in Figure 12.
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3.4. Main Procedures of the Improved SFF Algorithm

According to the above stated method, the process of the improved SFF algorithm is shown in
Figure 13. The improved SFF algorithm has three main steps, consisting of the original sequence image
de-noising, the initial depth map calculation, and the initial depth map refining. First, the image
sequence Ik is detected by using the normal distribution operator, and a new grey value is assigned to
a pixel determined as noise by using the median filtering method. Otherwise, the original pixel grey
level is kept unchanged, and the preprocessed image sequence I’

k is obtained (the threshold value K
is 2.2.) Then, the Laplacian operator is used to extract the clear pixels in the preprocessed sequence
image I’

k of each frame to construct an all-focus image If. The adaptive evaluation window selection
method is used to determine the evaluation window W(i, j) of each pixel (i, j) in the fully focused
image; then, it calculates the focus measure value of each pixel of the image sequence I’

k, and find the
image number corresponding to the maximum focus measure value of each pixel (i, j) to obtain the
initial depth map. Lastly, using the depth valued of all pixels, the 3D topography is reconstructed via
interpolation. The pixel equivalent is calculated according to the width and height of the pixel and the
tooth size of the 3D topography. The limit method is employed to obtain the 3D volume of the worn
sprocket teeth and is combined with difference method to obtain the tooth wear volume.
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3.5. Test Results and Analysis

To verify the effectiveness of the algorithm, three synthetic objects, i.e., spherical surface, a complex
surface and a simple surface, were used as test virtual objects, as shown in Figure 14. In addition,
an analogue camera imaging mathematical model was used to create differently focused image
sequences of 100 frames, corresponding to the three virtual models, which are 360 × 360 [37].
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Figure 14. Test virtual objects: (a) Spherical surface; (b) Complex surface; (c) Simple surface.

Salt-and-pepper noise with a density of 0.01 was added to the images of the 10th, 20th, 30th,
40th, 50th, 60th, 70th, 80th, 90th, and 100th frames of the spherical, complex, and simple surface
models. The three focus measures FSML, FTEN [38], and FGLV [39] were selected as the test measures.
Windows with a size of 3 × 3, 5 × 5, 7 × 7, and the adaptive evaluation window proposed in this
paper were used to conduct a 3D morphological recovery test for the image sequences generated using
the three models.

Figures 15–17 show the initial depth maps of the three models when FSML, FTEN, and FGLV were
chosen as the focus evaluation functions, and different evaluation windows were applied. Columns
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one to four in the figure are the three models of the 3D morphologies that were recovered and generated
by using 3 × 3, 5 × 5, and 7 × 7 windows and the adaptive evaluation window proposed in this
paper. Figures show that when the evaluation window is 3 × 3, the 3D surface topography of all
three recovered models appears to have more error values. In comparing the recovery results of
the three models, when the surface of the recovery object is smooth and we appropriately increase
the evaluation window, the three types of evaluation functions can obtain accurate 3D topographic
images. As the surface geometry tends to be complex, increasing the evaluation window does not
obviously reduce the error effect. As can be seen from the recovery results of the spherical surfaces in
figures, the error of the adaptive evaluation window is obviously less than that of the other evaluation
windows, which indicates that the adaptive evaluation window in this algorithm is also effective for
noisy image sequences.
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Figure 17. Initial depth map of the three models reconstructed using different evaluation windows
of FGLV.

The test compares the actual morphology with the morphology obtained through the test using
qualitative observation. Then, the recovery is quantitatively evaluated using the assessment criteria,
RMSE and correlation [40]. RMSE and correlation are used to evaluate the error and similarity between
the reference data and the real data, respectively. The smaller the RMSE value, the smaller the error
between the reference data and the real data. The greater the correlation value, the more consistent the
reference data is with the real data. The calculation methods of RMSE and correlation are addressed in
Equations (27) and (28).
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In Equations (27) and (28), M represents the number of rows of the image, N denotes the columns
of the image, D′ (i, j) stands for the actual depth of the pixel point (i, j), and D′(i, j)represents the
average depth value for all pixels in the image. While D (i, j) stands for the estimated depth of the
pixel point (i, j), and D(i, j) represents the estimated average depth value for all pixels in the image.

It can be seen from the 3D morphology diagram of the three models reconstructed by the three
evaluation functions in the Figures 15–17, Tables 2–4 show the RMSE and correlation data of the
models’ morphological recovery results of the spherical surface, complex surface and simple surface
when FSML, FTEN, and FGLV are chosen as evaluation functions.
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Table 2. Evaluation result of the recovery effect of the three models reconstructed using different
evaluation windows of FSML.

Size
Cor RMSE

Spherical
Surface

Complex
Surface

Simple
Surface

Spherical
Surface

Complex
Surface

Simple
Surface

3 × 3 0.9823 0.9897 0.9972 0.0129 0.0323 0.0167
5 × 5 0.9899 0.9927 0.9978 0.0100 0.0302 0.0157
7 × 7 0.9942 0.9930 0.9979 0.0074 0.0286 0.0149

Adaptive window 0.9985 0.9936 0.9981 0.0036 0.0256 0.0121

Table 3. Evaluation result of the recovery effect of the three models reconstructed using different
evaluation windows of FTEN.

Size
Cor RMSE

Spherical
Surface

Complex
Surface

Simple
Surface

Spherical
Surface

Complex
Surface

Simple
Surface

3 × 3 0.9983 0.9947 0.9985 0.0075 0.0315 0.0165
5 × 5 0.9989 0.9954 0.9987 0.0058 0.0296 0.0156
7 × 7 0.9990 0.9954 0.9988 0.0045 0.0280 0.0148

Adaptive window 0.9994 0.9981 0.9991 0.0023 0.0209 0.0131

Table 4. Evaluation result of the recovery effect of the three models reconstructed using different
evaluation windows of FGLV.

Size
Cor RMSE

Spherical
Surface

Complex
Surface

Simple
Surface

Spherical
Surface

Complex
Surface

Simple
Surface

3 × 3 0.9940 0.9934 0.9803 0.0095 0.0337 0.0198
5 × 5 0.9990 0.9972 0.9859 0.0073 0.0312 0.0171
7 × 7 0.9990 0.9976 0.9933 0.0059 0.0295 0.0158

Adaptive window 0.9992 0.9981 0.9966 0.0028 0.0280 0.0128

According to the RMSE data in the table, when the evaluation window is 3 × 3, the RMSE values
restored by the three evaluation functions are the largest, and the larger the evaluation window,
the smaller the RMSE value. For example, in the surface morphology recovery using the FSML

evaluation function, the RMSE values of the conical surface, simple surface and complex surface
obtained by the adaptive window are 0.0036, 0.0256 and 0.0121, in contrast of 3 × 3, 5 × 5, 7 × 7,
window, the RMSE value of the adaptive window is minimal. This finding shows that, when the
evaluation window is smaller, there are more error values in the recovery results. Furthermore, as the
evaluation window increases, the error values gradually decrease, and the effect of the adaptive
window is better when the image tends to be smooth. When the evaluation window is 3 × 3,
the correlation values restored by the three evaluation functions are significantly smaller than those of
other evaluation windows. In addition, the correlation value of the adaptive evaluation window in this
algorithm is larger compared to a fixed-size evaluation window. This phenomenon is more obvious
when surface geometry is spherical. For instance, in the surface topography recovery of spherical
surfaces using the FSML evaluation function, the Cor values of 3 × 3, 5 × 5, 7 × 7 and adaptive
windows are 0.9823, 0.9899, 0.9942 and 0.9985 respectively. The Cor value of adaptive windows is at
least 0.4% higher. This finding shows that the 3D topographic map reconstructed with the adaptive
evaluation window of this algorithm is closer to the original surface. The more complex the surface
topography, the greater the advantage of an adaptive evaluation window.

On the basis of the qualitative observation and comparison and the quantitative data analysis,
when we restore the 3D image sequence with noise, compared to a fixed-size evaluation window,
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regardless of the evaluation function we choose, the error value of the recovery result, the coincidence
degree of the 3D image or the original surface morphology, employing the adaptive evaluation window
provides good results. Therefore, this algorithm is also feasible for the restoration of the 3D topography
of noisy images.

4. Application Example

The above is a test of three virtual models, which shows that the algorithm is effective for virtual
models. In addition, to verify the effectiveness of this algorithm in the physical 3D surface morphology
restoration of actual solids, a scraper conveyor sprocket tooth is selected as recovery objects, and image
acquisition device designed in this paper is used to sequentially collect 100 frames of 1980 × 1114
object images. Figure 18 is an actual entity of sprocket teeth and the 3D model of the sprocket teeth.
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Figure 18. Test object and 3D model: (a) an actual entity of sprocket teeth; (b) 3D model of the
sprocket teeth.

Firstly, image cropping and filtering are performed on the collected 100 frame sequential image.
Then, different evaluation windows, evaluation function and peak positioning technology are used
to acquire the initial depth map of sprocket tooth. Finally, the background area is removed by image
segmentation technology, and the 3D recovery map of sprocket tooth is obtained. Figure 19a,b are
the partial original images and pre-processed images of 100 frame sequential images respectively.
Figure 19c,d are the initial depth map and the 3D recovery map of sprocket teeth respectively.

To compare the recovery accuracy of adaptive window with other fixed-size windows,
the morphology recovery test is carried out. FSML focus measures is selected in this test, and 3 × 3,
5 × 5, and 7 × 7 windows and the adaptive evaluation window proposed in this paper are used to
reconstruct the 3D image of the sprocket tooth. The recovery effect is qualitatively evaluated based on
observations, and the actual appearance and the shape obtained are compared in the test. Figure 19
shows the initial depth map of the sprocket tooth. The row from left to right are restored by FSML focus
evaluation operator using the evaluation windows of size 3 × 3, 5 × 5 and 7 × 7 and the adaptive
window, respectively.
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Figure 19. Image processing of the test: (a) the partial original images; (b) the partial pre-processed
images; (c) the initial depth map; (d) the 3D recovery map.

We can observe form Figure 20, when the evaluation window is 3 × 3, on the surface of the
part, there are many error values in the 3D morphologies restored using FSML evaluation functions.
With the increase in the evaluation window, the overall image tends to be smooth, the error value is
gradually reduced, and the surface morphology is closer to the surface of the original part. When we
select the adaptive evaluation window, the surface profile of the part is the clearest and the surface
is smooth. In particular, the pits on the surface of the part are retained, and compared with the
other four evaluation windows, the recovery effect is the best. In summary, the evaluation window
size has a great influence on the result of the appearance recovery when the 3D surface morphology
of the sprocket tooth is restored. An undersized evaluation window is not conducive to recovery
results. Compared to the traditional fixed-size evaluation window, the adaptive evaluation window
can effectively reduce the error value and preserve the surface texture details.
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Figure 20. 3D topographic recovery map reconstructed by FSML focus evaluation operator using
different evaluation windows.

To further quantitatively verify the accuracy of the adaptive evaluation window, the degree of
similarity between the reconstructed 3D model and the original model was deeply analyzed, and a
further experiment was carried out. First, MATLAB (The MathWorks Inc., Natick, MA, ver.2015b)
software was used to extract the 3D surface point data in Figure 20, and the extracted point data was
saved in the txt folder; then, the IMAGEWARE software was used to read the point data under the txt
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folder to form a point cloud image, and reverse engineering was applied to restore the point cloud to a
curved surface. Finally, the surface was formed to a 3D model in the SolidWorks software, as shown in
Figure 21; from left to right, the reconstructed 3D entities of the 3 × 3, 5 × 5, 7 × 7 windows and the
adaptive evaluation window were obtained by the FSML focus evaluation operator.
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Figure 21. 3D entities using different evaluation windows reconstructed by FSML focus
evaluation operator.

The reconstructed 3D entity coincides with the centre of gravity of the original 3D model
established in Figure 18 and performs a Boolean operation to obtain a public part reconstructed
from the original 3D entity, as shown in Figure 22, from left to right; the public part of the 3 × 3,
5 × 5, 7 × 7. windows and the adaptive evaluation window are obtained from the FSML focus
evaluation operator.
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Figure 22. FSML focusing evaluation operator adopts different evaluation windows and original 3D
entities of public part.

It can be seen from the above figure that, when the evaluation window is 3 × 3, the surface of
the common part has the largest number of pits and the largest error value, and with the increase of
evaluation window, the surface of public entities tends to be smooth, while the adaptive evaluation
window has the best smoothness and the lowest error value.

The larger the volume of the public part, the greater the accuracy of recovery; therefore, the
accuracy of recovery β can be expressed by the following formula:

β = (1− (Vi −V0i) + (V0 −V0i)

V0
)× 100% (29)

i takes values from 1–4, SolidWorks software measures the volume of original model
(V0 = 32511.83 mm3), Vi represents the volume of 3D entities reconstructed by different evaluation
windows by FSML focusing evaluation operator, and V0i represents the volume of the 3D entities
reconstructed by different evaluation windows and common entities of original models by the FSML

focusing evaluation operator and calculates the volume evaluation results of metal entity reconstructed
by FSML in different evaluation windows, as shown in Table 5.
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Table 5. Volume evaluation results of metal cones reconstructed by FSML at different evaluation
windows/mm3.

Evaluation Window 3 × 3 5 × 5 7 × 7 Adaptive Window

Vi 32,021.26 32,037.06 32,089.74 32,056.08
V0i 31,468.01 31,488.91 31,550.28 31,833.45
β 95.09% 95.17% 95.38% 97.23%

It can be seen from Table 5 that the evaluation window is 5 × 5, 7 × 7 and the adaptive evaluation
window obtains an image volume, which is basically the same as the volume of the common part.
With the increase of the evaluation window, the volume of the overlapping part increases, the volume
of the common part of the adaptive evaluation window reaches the maximum, i.e., 31833.45mm3, and
the recovery accuracy of the adaptive evaluation window reaches 97.23%.

According to the 3D shape restoration test results of the scraper conveyor sprocket tooth, the focus
value obtained using the adaptive evaluation window is more accurate than the traditional fixed-size
square evaluation window when we qualitatively and quantitatively analyze the test results, and it is
also feasible to combine the normal distribution operator filtering method in this algorithm.

5. Conclusions

An SFF-based method was proposed in order to effectively measure the wear volume of sprocket
teeth in a scraper conveyor; the following conclusions were drawn:

1. A hardware device for volumetric tooth wear measurement was designed and assembled to
collect sequential images of sprocket teeth, which provides a way for images acquisition of
measuring the wear volume of sprocket teeth in a scraper conveyor.

2. A normal distribution operator image filtering method was presented, which only filters the noise
points in the image without changing the grey value of the non-noise point pixels. Therefore,
compared with the traditional filtering method, more original information of the image is retained
to a large extent.

3. An adaptive evaluation window selection method was proposed. A focused morphology
restoration algorithm based on the normal distribution operator-region pixel reconstruction
was formed, which not only effectively eliminates the error of restoration accuracy caused by
noise interference, but also satisfies the requirement of peak location. Therefore, both the accuracy
and effectiveness of morphology restoration has been improved.

4. Compared to other focused 3D restoration methods, the proposed methods can effectively
measure the wear volume of sprocket teeth with a recovery accuracy of up to 97.23%.

5. In order to further improve the accuracy of this method and expand the scope of application,
we will consider the advantages of structured light [41] for further research.
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