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Abstract: This paper presents a biologically-inspired learning and adaptation method for
self-evolving control of networked mobile robots. A Kalman filter (KF) algorithm is employed
to develop a self-learning RBFNN (Radial Basis Function Neural Network), called the KF-RBFNN.
The structure of the KF-RBFNN is optimally initialized by means of a modified genetic algorithm
(GA) in which a Lévy flight strategy is applied. By using the derived mathematical kinematic model
of the mobile robots, the proposed GA-KF-RBFNN is utilized to design a self-evolving motion control
law. The control parameters of the mobile robots are self-learned and adapted via the proposed
GA-KF-RBFNN. This approach is extended to address the formation control problem of networked
mobile robots by using a broadcast leader-follower control strategy. The proposed pragmatic approach
circumvents the communication delay problem found in traditional networked mobile robot systems
where consensus graph theory and directed topology are applied. The simulation results and
numerical analysis are provided to demonstrate the merits and effectiveness of the developed
GA-KF-RBFNN to achieve self-evolving formation control of networked mobile robots.
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1. Introduction

Networked mobile robots that are capable of self-learning have received growing attention in the
mobile robotics research community [1–3]. This emerging technology has surpassed the conventional
robotic system by taking advantage of robot collaboration, system robustness, scalability, and greater
flexibility. This modern robotic system has been commonly applied in manufacturing, military
applications, surveillance, etc. to perform complex tasks [4–6]. Some self-learning strategies have
been proposed to develop motion controllers for networked mobile robots [6,7]. Among them, an
RBFNN incorporating the gradient descent method is regarded as a powerful tool for designing the
self-learning controllers of networked mobile robots [7,8].

The RBFNN introduced by Broomhead and Lowe is a three-layer feedforward artificial neural
network in which radial basis functions are used as activation functions [9,10]. This methodology
takes advantage of fast learning capability and universal approximation. To date, it is a useful
neural network architecture for addressing many engineering problems [11,12]. However, traditional
RBFNNs adopt a gradient descent approach for training the neural network that is not capable of noise
reduction [10–12]. In other words, these studies did not consider the uncertainty and noise induced
in the process and measurement phases. This paper presents a Kalman filter based RBFNN and its
application to self-learning control of networked mobile robots.
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The Kalman filter is a state estimation technique introduced by R.E. Kalman [13]. It is a classic
state estimation technique used widely in engineering applications, including spacecraft navigation,
motion planning in robotics, signal processing and wireless sensor networks [14–16] because of its
ability to extract useful information from noisy data. It is an optimal estimator for evaluating the
internal state of a dynamic system under certain process patterns and/or measurement disturbances
in the physical environment [13,17,18]. The objective of the Kalman filter is to minimize the mean
squared error between the actual and estimated data. Although the proposed KF-RBFNN is useful for
designing learning control schemes with noise reduction, the initial network parameters influences the
system performance, namely that the selection of centers, widths and output weights for the Gaussian
functions is an important consideration.

Parameter-tuning of an RBFNN is challenging when using this neural network to solve
multidimensional optimization problems. Over the years, several methods have been developed
for addressing this RBFNN optimization problem [19–21]. However, these traditional RBFNN
methods may cause the output to converge to local optimum when the dimensionality of the problem
increases [22]. Since RBFNN optimization can be formulated as a search problem, biologically,
algorithms are new paths for optimizing RBFNNs. This is a successful hybridization of RBFNNs
and evolutionary algorithms. Although there are some metaheuristic algorithms used to develop
evolutionary RBFNNs [23–26], there has been no attempt to present an evolutionary KF-RBFNN using
a GA to achieve learning control of networked mobile robotic systems.

The GA is one of the most popular evolutionary algorithms for solving optimization
problems [27–29]. Although GAs have been widely applied to various optimization problems, these
biologically inspired algorithms suffer from premature convergence. In other words, these traditional
computing paradigms may converge to local optimum. This paper contributes to the development of
a modified GA to improve the search diversity by including the Lévy flight approach. An adaptive
determination of crossover and mutation probabilities in the GA is proposed via the Lévy flights.
This random walk is very efficient in exploring the search space of the optimization problem. The
proposed modified GA metaheuristics is then applied to the design of an optimal GA-KF-RBFNN for
self-tuning motion control of networked mobile robots.

Of the increasing demands on networked mobile robot systems, formation using a leader-follower
control strategy is one of the most important and is becoming increasing crucial [30–32]. It is a
coordinated control in which the leader robot follows a desired trajectory while the follower robots
maintain a specified geometrical pattern [32]. Although some studies have addressed this control
problem by considering graph theory and consensus control approaches [33–35], these networked
mobile robot systems suffer from communication delay problem. This paper presents a pragmatic
self-learning optimal GA-KF-RBFNN formation control method for networked mobile robot systems
that avoids the communication delay problem.

This paper is structured as follows: a biologically-inspired Kalman filter based RBFNN control
technique, called GA-FA-RBFNN control is introduced in Section 2. Section 3 employs the proposed
GA-FA-RBFNN to develop a networked mobile robot system to achieve self-evolving formation control.
In Section 4, several simulation results are reported to demonstrate the effectiveness of the proposed
methods. Finally, Section 5 concludes this paper.

2. Biologically-Inspired Kalman Filter Based RBFNN Control

2.1. Kalman Filter Algorithm

This section aims to describe the Kalman filter algorithm by which measurements are taken,
and the state is estimated at discrete time points. The Kalman filter deals with the general problems
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encountered in estimating the state of a discrete-time controlled process, which is governed by the
following state-space Equation (1) at time index k:

x(k) = Ax(k− 1) + BU(k− 1) + w(k)
y(k) = Cx(k)
z(k) = Hy(k) + v(k)

(1)

where A, B, and C are matrices in the state-space Equation (2). w(k) is the process noise and v(k) is
the measurement noise. z(k) is the measured signal and H is the sensor matrix. The probability of the
process noise w(k) is p(w) and the probability of measurement noise v(k) is p(v). The process noise
covariance of p(w) is Q and the measured noise covariance of p(v) is R. In Kalman filtering, p(w) and
p(v) are independent white noises with normal probability distributions, expressed by:

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R)
(2)

Figure 1 presents the structure of Kalman filter algorithm in which the estimated state x̂(k− 1)
and the error covariance P(k − 1) are included [13]. As shown in Figure 1, The Kalman filter algorithm
consists of two phases: time update phase (predictor) and measurement update phase (corrector). The
following summarizes the two important phases in classical Kalman filter algorithm.

1. Time update phase:

a. At time step k − 1, calculate x̂(k− 1) and P(k− 1).
b. Update the estimation of state vector x̂−(k) and the estimation of error covariance matrix

P̂−(k).

2. Measurement update phase:

a. Update the optimal gain K(k) of Kalman filter.
b. Update the estimation of state vector x̂(k) using z(k), x̂−(k) and K(k).
c. Update the estimation of error covariance matrix p(k) by utilizing K(k) and P−(k) for next

iteration in the Kalman filter algorithm process.
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2.2. Classical RBFNN

Figure 2 presents the structure of a classical RBFNN. This feed forward multilayer neural network
has three layers, comprising the input layer, hidden layer and output layer. As shown in Figure 2,
the inputs of the hidden layer in the RBFNN structure are the linear combinations of the weights and
the input vector [x1 x2, x3, . . . . . . , xn]

T . These vectors are then mapped by means of a radial basis
functions in each node. Finally, the output layer of RBFNN generates a vector yp for m outputs by
linear combination of the outputs of the hidden nodes. This kind of artificial neural network has
been regarded as a powerful tool that can approximate any continuous function with satisfactory
accuracy [11]. In Figure 2, the output of the RBFNN is expressed by:

ym =
m

∑
j=1

wjhj (3)

where hj is the radial basis vector. This vector is described by using the following Gaussian function:

hj = exp(
−‖X− Cj‖2

2b2
j

), j = 1, 2, . . . , m (4)

where ‖•‖ is the Euclidean norm operation, Cj = [cj1, cj2, . . . , cjm]
T is the center vector of the jth

node, B = [b1, b2, . . . , bm]
T is the basis width vector. W = [w1, w2, . . . , wm]

T is the weight vector
in the RBFNN. Typically, this neural network is initialized with a randomly determined of RBFNN
parameters, including Cj, B, and W.
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Figure 2. Structure of the classical RBFNN (Radial Basis Function Neural Network).

Gradient descent is an effective method for training RBFNN networks compared with other
conventional training approaches [9,10]. In gradient descent training with one neuron in the output
layer, the weights are updated at each time step by using the following rules:

wj(k + 1) = wj(k) + ηe(k)hj(k), (5)

Cji(k + 1) = Cji(k) + ηe(k)wjhj
xi(k)− Cji(k)

b2
j (k)

, (6)
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bj(k + 1) = bj(k) + ηe(k)wjhj
‖X(k)− Cj(k)‖2

b3
j (k)

, (7)

where e(k) represents the error at the kth time step and η denotes the learning rate. Since the initial
parameters for an RBFNN using the gradient descent method are determined either by a trial-and-error
approach or randomly set, convergence to a local optimum solution is inevitable [10]. To improve the
learning performance of the RBFNN, this paper has developed a Kalman filter to train the RBFNN
network structure based on a gradient descent approach. The proposed KF-RBFNN is applied to the
self-learning control of networked mobile robots.

2.3. Kalman Filter Based RBFNN Control

Figure 3 depicts the block diagram of the RBFNN-based control. In Figure 3, the error between
the real output y(k) and the estimated output of the neural network ym(k) are considered to
develop a self-learning RBFNN. The cost function or performance index is defined by the squared
estimation error:

J(k) =
1
2
[y(k)− ym(k)]

2. (8)
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Considering the gradient descent method in Equations (5)–(7), the structure parameters: wj, Cji,
and bj are updated online at every sampling point, expressed by:

∆wj = [y(k)− ym(k)]hj
wj(k) = wj(k− 1) + η∆wj + ς

[
wj(k− 1)− wj(k− 2)

]
∆bj = [y(k)− ym(k)]wjhj

‖X−Cj‖2

b3
j

bj(k) = bj(k− 1) + η∆bj + ς
[
bj(k− 1)− bj(k− 2)

]
∆cji = [y(k)− ym(k)]wj

xj−cji

b2
j

cji(k) = cji(k− 1) + η∆cji + ς
[
cji(k− 1)− cji(k− 2)

]
, (9)

where ς denotes the momentum factor and η is the learning rate of the neural network.
Based on Figure 3, the proposed KF-RBFNN control scheme depicted in Figure 4 considers the

process noise w(k) and measurement noise v(k). In the proposed intelligent KF-RBFNN control scheme,
the KF-RBFNN serves as an on-line learning and adapting mechanism in the intelligent controller.
As shown in Figure 4, the effects of the process uncertainty w(k) and the measurement noise v(k) in the
control scheme can be reduced via the implementation of the Kalman filter. To retrain the uncertainty
and noise, the measured output z(k) is employed to derive an estimation ŷ(k) of the output y(k) in the
proposed KF-RBFNN. Both the control signal u(k) and output ym(k) of the RBFNN are fed into the
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neural network for on-line learning. Moreover, the estimated output value ym(k) of the RBFNN is then
utilized to update the control parameters to achieve self-learning control using the Kalman filter.
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2.4. Evolutionary KF-RBFNN Control

2.4.1. Modified GA with Lévy Flight

The GA developed by John Holland is a search algorithm that is inspired by Charles Darwin’s
theory of natural evolution. This evolutionary algorithm reflects the process of natural selection where
the fittest individuals are selected for reproduction, thereby producing offspring of the next generation.
This stochastic optimization technique starts with a set of solutions (chromosomes), called a population.
This paradigm employs probabilistic rules to evolve a population from one generation to the next via
the genetic operators: reproduction, crossover, and mutation. This paradigm is widely used to solve
multidimensional optimization problems. When applying a GA to deal with optimization problems, an
initial population of feasible solutions is generated. Each feasible solution is encoded as a chromosome
string. These chromosomes are evaluated using a predefined fitness function or objective function
based on the optimization problems. Figure 5 presents the flowchart of a GA. The initial population is
randomly generated and the fitness function is defined before the GA evolutionary process begins.
This study employs tournament selection, single-point crossover and single-point mutation strategies
to develop a modified GA paradigm.Appl. Sci. 2019, 9, 1034 7 of 18 
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Crossover and mutation are important operations for generating new individuals in the GAs.
The performance of a GA is sensitive to the control parameter setting. The probabilities of crossover
and mutation are significant parameters that influence the convergence performance of a GA. The
use of unsuitable probability for crossover and mutation can result in poor convergence performance.
More precisely, choosing suitable parameter values is a problem dependent task and requires previous
experiences. Most studies adopt fixed crossover and mutation probabilities; this paper employs the
Lévy flight which is a specialized random walk to increase the search diversity, expressed by:

Levy(β) =

∣∣∣∣∣∣
Γ(β + 1)× sin

(
πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

∣∣∣∣∣∣
1
β

, (10)

where Γ denotes the gamma function and β is a constant (1 < β ≤ 3). The proposed modified GA is
then applied to optimally set the initial parameters of the KF-RBFNN.

2.4.2. GA-Based KF-RBFNN

In the proposed KF-RBFNN, the accuracy and performance are influenced by the selections of the
radial functions that are defined by a center vector B, width vector Cj, and weight vector W. In other
words, proper tuning of these parameters is an important part of the optimal KF-RBFNN designs. This
study employs the modified GA to develop a parameter tuning process that optimizes the KF-RBFNN.
When applying the GA to address this issue, a chromosome is defined by the RBFNN parameter
sequence Chromosome =

{
Cj,B, W

}
and the optimal RBFNN structure can be evolved via the GA

process with Lévy flight. The following fitness function (root mean square error, RMSE) for the Ns

sample is used to evaluate the GA chromosomes.

Fitness =

√√√√ 1
Ns

Ns

∑
k=1

(
yp∗(k)− yp(k)

)2 (11)

where yp(k) is the output and yp
∗(k) is the predicted output at the kth sampling time. The following

describes the GA process for KF-RBFNN optimization.

Step 1: Initialize the GA computing with Lévy flight.
Step 2: Each GA chromosome in the population contains genes to represent the KF-RBFNN parameters,

meaning that Chromosome =
{

Cj,B, W
}

.

Step 3: Construct the KF-RBFNN using Chromosome =
{

Cj,B, W
}

and evaluate the performance using
the fitness function (11).

Step 4: Perform GA crossover and mutation with the probabilities set by Lévy flight.
Step 5: Update the GA population.
Step 6: Check the termination criterion. Go to Step 3 or output the optimized GA individual

Chromosome∗ =
{

C∗j , B∗, W∗
}

for the proposed GA-KF-RBFNN.

3. Application to Self-Evolving Control of Networked Mobile Robots

3.1. Modeling and Lyapunov-Based Control

Figure 6 depicts the geometrical structure of a mobile robot with four Swedish wheels for
the proposed networked mobile robot system. Compared to the conventional differential-drive
(non-holonomic) mobile robots, this kind of mobile robot with omnidirectional capability has superior
mobility. The kinematic model of the four-wheeled Swedish mobile robot is expressed by:



Appl. Sci. 2019, 9, 1034 8 of 17


v1(t)
v2(t)
v3(t)
v4(t)

 =


rω1(t)
rω2(t)
rω3(t)
rω4(t)

 = T(θ(t))


.
x(t)
.
y(t)
.
θ(t)

, (12)

where:

T(θ(t)) =


− sin(δ + θ)

− cos(δ + θ)

sin(δ + θ)

cos(δ + θ)

cos(δ + θ)

− sin(δ + θ)

− cos(δ + θ)

sin(δ + θ)

L
L
L
L

,

δ is π/4; r represents the radius of the Swedish wheel; L denotes the distance from the Swedish wheel’s
center to the geometric center of the mobile robot; vi(t) and ωi(t), i = 1, 2, 3, 4 respectively denote the
linear and angular velocities of each omnidirectional wheel. [x(t) y(t) θ(t)]T is the pose vector that
includes the position and orientation of the mobile robot measured at time t.

In mobile robotic research, robots with over three degrees-of-freedom (DOFs) are classified as
redundant robots because they provide redundancy. Note that T(θ(t)) in Equation (12) is singular for
any θ in this redundant mobile robot system. This study adopts the pseudo inverse matrix approach to
address the redundant control problem of mobile robots. Considering the left pseudo-inverse matrix
T#(θ(t)) of T(θ(t)) by using T#(θ(t))P(θ(t)) = I, the matrix T#(θ(t)) is expressed by:

T#(θ(t)) =


− sin(δ+θ)

2
cos(δ+θ)

2
1

4L

− cos(δ+θ)
2

− sin(δ+θ)
2
1

4L

sin(δ+θ)
2

− cos(δ+θ)
2
1

4L

cos(δ+θ)
2

sin(δ+θ)
2
1

4L

. (13)
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Combining Equations (12) and (13), the kinematics of the four-wheeled omnidirectional mobile
robot is derived as follows: 

.
x(t)
.
y(t)
.
θ(t)

 = T#(θ(t))


v1(t)
v2(t)
v3(t)
v4(t)

. (14)
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After the kinematics analysis of the Swedish mobile robots, the next step is to design a motion
control law and prove its stability using Lyapunov theory. The current pose of the omnidirectional

Swedish mobile robot at time t is defined as S =
[

x(t) y(t) θ(t)
]T

, and the desired reference

trajectory of the Swedish mobile robot is expressed as Sr =
[

xr(t) yr(t) θr(t)
]T

. With the two
pre-defined vectors, the tracking error of the mobile robot is given by:

Se =

 xe(t)
ye(t)
θe(t)

 =

 x(t)
y(t)
θ(t)

−
 xr(t)

yr(t)
θr(t)

 = S− Sr, (15)

which gives:

.
Se =


.
xe(t)
.
ye(t).
θe(t)

 =


.
x(t)
.
y(t)
.
θ(t)

−


.
xr(t)
.
yr(t).
θr(t)

 = T#(θ(t))


rω1(t)
rω2(t)
rω3(t)
rω4(t)

−


.
xr(t)
.
yr(t).
θr(t)

. (16)

The goal of control law design is to derive the angular velocity vector[
ω1(t) ω2(t) ω3(t) ω4(t)

]T
for tracking the desired differentiable trajectory[

xr(t) yr(t) θr(t)
]T

with asymptotical stability. Based on the PID (Proportional-Integral-Derivative)
control strategy, the following redundant control law is proposed:

v1(t)
v2(t)
v3(t)
v4(t)

 = T(θ(t))

−KP

 xe(t)
ye(t)
θe(t)

− KI


∫ t

0 xe(τ)dτ∫ t
0 ye(τ)dτ∫ t
0 θe(τ)dτ

− KD


.
xe(t)
.
ye(t).
θe(t)

+


.
xr(t)
.
yr(t).
θr(t)


, (17)

where KP, KI and KD are the control matrices. They are diagonal and positive, thus KP =

diag[kxp kyp kθp], KI = diag[kxi kyi kθi], and KD = diag[kxd kyd kθd]. By substituting Equations (17) into
(16), the closed-loop error system is obtained:

.
Se =


.
xe(t)
.
ye(t).
θe(t)

 =

−KP

 xe(t)
ye(t)
θe(t)

− KI


∫ t

0 xe(τ)dτ∫ t
0 ye(τ)dτ∫ t
0 θe(τ)dτ

− KD


.
xe(t)
.
ye(t).
θe(t)


. (18)

To prove the asymptotical stability of the closed-loop error system in (18) via Lyapunov theory,
the following Lyapunov function is selected:

V(t) = 1
2

[
xe(t) ye(t) θe(t)

] xe(t)
ye(t)
θe(t)

+ 1
2

[ ∫ t
0 xe(τ)dτ

∫ t
0 ye(τ)dτ

∫ t
0 θe(τ)dτ

]
KI


∫ t

0 xe(τ)dτ∫ t
0 ye(τ)dτ∫ t
0 θe(τ)dτ

+ 1
2

[
xe(t) ye(t) θe(t)

]
KD

 xe(t)
ye(t)
θe(t)

 > 0

one obtains:

.
V(t) = −

[
xe(t) ye(t) θe(t)

]
KP

 xe(t)
ye(t)
θe(t)

 < 0.

Since
.

V is negative definite, the asymptotical stability is therefore proven. The proposed motion
control law can steer the mobile robot to achieve S→ Sr as t→ ∞ .
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3.2. GA-KF-RBFNN Self-Learning Control

Figure 7 depicts the GA-KF-RBFNN self-learning control scheme, in which the noise from the
process and measurement phases are included. As shown in Figure 7, the proposed GA-KF-RBFNN
is employed to online adjust the parameters KP = diag[kxp kyp kθp], KI = diag[kxi kyi kθi], and
KD = diag[kxd kyd kθd] of the mobile robot. It is worthy to mention that the control matrices in Equation
(17) are online adjusted at every sampling point to achieve tracking control. This GA-KF-RBFNN
evolutionary online tuning method with noise reduction outperforms the traditional off-line and
hand-tuning approaches.
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In Figure 7, the control law u(k) = [v1, v2, v3, v4]
T and the output ym(k) of the RBFNN are fed

into the network for on-line learning. Moreover, the estimated output value ym(k) of the RBFNN
is then employed to update the control matrices KP = diag[kxp kyp kθp], KI = diag[kxi kyi kθi], and
KD = diag[kxd kyd kθd] of the four-wheeled omnidirectional mobile robot to achieve the auto-tuning
control with a Kalman filter.

3.3. Leader-Follower Formation Control of Networked Mobile Robots

The leader-follower model is the main trend of networked mobile robotics, where a leader robot
and several follower robots are included in a multi-robot system [32]. For networked mobile robots,
formation control is an important topic that the leader robot tracks the desired trajectory while the
follower robots maintain the formation shape. Figure 8 depicts a leader-follower networked mobile
robotic system to achieve triangular formation control with three robots.

In this paper, all mobile robots are independently controlled by using Equation (17) to accomplish
leader-follower formation control, and the control parameters are self-tuned via the GA-KF-RBFNN
paradigm. Compared to traditional consensus multiple robot systems with directed graph topology,
the proposed broadcast leader-follower networked mobile robot system circumvents the delay problem.
The position and orientation of the robots are broadcasted via the network. To maintain the desired
formation shape, the geometrical relationship of the leader robot and follower robots in Figure 7 is
calculated. Since the data flow is broadcasted online to every robot, the communication delay issues
that occur in the consensus multiple robot system are therefore avoided. The proposed GA-KF-RBFNN
self-evolving formation control for networked mobile robots not only reduces the system noises, but
also avoids the communication delay.
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4. Simulations, Comparative Analysis, and Discussion

This section aims to conduct several simulations to examine the effectiveness of the proposed
methods. The proposed networked mobile robot system consists of three four-wheeled Swedish
omnidirectional mobile robots, including one leader and two follower mobile robots in a broadcast
communication environment. The desired formation shape is triangular as shown in Figure 8.
The system parameters in the proposed networked mobile robot system are L = 0.25 m and r = 5.08 cm.

The first simulation is conducted to demonstrate the performance of the circular formation
control using the proposed GA-KF-RBFNN control approach. The number of iterations for the
modified GA is 150, and the probabilities of crossover and mutation are determined by the Lévy

flight. The circular trajectory for the leader robot is expressed as
[

xr(t) yr(t) θr(t)
]T

=[
1.75 cos(ωit) m 1.75 sin(ωit) m π/4 rad

]T
, ωi = 0.35 rad/ sec. Figure 9 depicts the simulation

result of the circular formation control. The three omnidirectional mobile robots are initially placed at
different poses in the workspace. The desired trajectory for leader robot is a circular trajectory and the
two follower robots aim to maintain a triangular formation. The tracking error of the leader mobile
robot is presented in Figure 10. As shown in Figure 10, the leader mobile robot successfully tracks
the desired circular trajectory in 4 s. Figure 11 depicts the formation error of follower robot #1 and
Figure 12 depicts the formation error of follower robot #2. These simulation results demonstrate that
the proposed GA-KF-RBFNN optimization is capable of accomplishing the self-learning formation
control of networked mobile robotic systems.
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The second simulation is provided to show the effectiveness of the proposed GA-KF-RBFNN
formation control for daisy curve tracking. The desired trajectory of the leader robot

is a special daisy curve with three petals, expressed by
[

xr(t) yr(t) θr(t)
]T

=[
1
2 + b(a + r′ cos(pωit)) cos(ωit) m 1

2 + b(a + r′ cos(pωit)) sin(ωit) m π/4 rad
]T

, b = 0.2 m,

a = 0.6 m, r′ = 0.42 m, p = 3, and ωi = 0.35 rad/ sec. To illustrate the noise reduction capability
of the proposed GA-KF-RBFNN self-learning controller, a Gaussian noise is added into the process
and measurement phases. Figure 13 presents the simulation result of daisy curve formation control
using the proposed GA-KF-RBFNN and Figure 14 depicts the tracking error of the leader robot.
Moreover, Figures 15 and 16 present the formation error of follower robot #1 and follower robot
#2, respectively, for daisy curve formation control. Both the tracking performance and formation
behavior are guaranteed. These simulation results clearly indicate that the proposed metaheuristic
GA-KF-RBFNN self-evolving control scheme with noise reduction achieves the formation control task
for networked mobile robots. This approach outperforms the traditional consensus control methods
where the uncertainty and self-adaptation are not considered.
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GA-KF-RBFNN learning and adaptation for self-evolving of networked mobile robots is superior to the
traditional formation control methods. With the modified GA metaheuristics and Kalman filter, both
the noise and delay problem are avoided. The proposed GA-KF-RBFNN formation control strategy
is applicable to all kinds of mobile robots, including different-drive [36] and three-wheeled mobile
robotic systems.

Table 1. A comparative analysis of the formation controllers for networked robots.

Evolutionary
Strategy

Noise
Reduction

Distributed
Formation

Leader-Follower
Approach

Consensus
Delayed

Formation

Omnidirectional
Capability

[1,2] No No Yes Yes Yes No
[3–6] No No Yes Yes Yes No
[7–9] No No Yes Yes Yes No

[10–13] No No Yes Yes Yes No
[31–34] No No Yes Yes Yes No

This Study Yes Yes Yes Yes No Yes

5. Conclusions

This paper has presented a biologically-inspired GA-KF-RBFNN learning and adaptation method
for the self-evolving control of networked mobile robots. The Kalman filter algorithm is employed
to develop a self-learning RBFNN by considering uncertainty and noises. Moreover, the structure
of the proposed KF-RBFNN is optimally initialized by means of the modified GA in which a Lévy
flight strategy is applied. With the derived kinematic model of a four-wheeled omnidirectional mobile
robot and broadcast leader-follower model, the GA-KF-RBFNN is utilized to design a self-evolving
motion control law for a networked mobile robotic system. This approach overcomes the problem
of communication delay found in conventional consensus networked robotic systems. Simulation
results illustrate the merits of the proposed intelligent networked mobile robot system which uses a
GA-KF-RBFNN to achieve self-learning formation control and consider the uncertainty and noise.
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