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Abstract: Achieving the fast oxygen reduction reaction (ORR) kinetics at the cathode of solid
oxide fuel cells (SOFCs) is indispensable to enhance the efficiency of SOFCs at intermediate
temperatures. Mixed ionic and electronic conducting (MIEC) oxides such as ABO3 perovskites
and Ruddlesden-Popper (RP) oxides (A2BO4) have been widely used as promising cathode materials
owing to their attractive physicochemical properties. In particular, oxides in forms of thin films and
heterostructures have enabled significant enhancement in the ORR activity. Therefore, we aim to give
a comprehensive overview on the recent development of thin film cathodes of SOFCs. We discuss
important advances in ABO3 and RP oxide thin film cathodes for SOFCs. Our attention is also paid
to the influence of oxide heterostructure interfaces on the ORR activity of SOFC cathodes.

Keywords: solid oxide fuel cells; cathodes; oxygen reductions reaction; oxygen surface exchange
kinetics; oxide thin films; ABO3 oxides; Ruddlesden-Popper oxides; heterostructure oxide thin films;
strain engineering; oxide interfaces

1. Introduction

Solid oxide fuel cells (SOFCs) have shown great promise to contribute to the ultimate aim of
environmentally friendly, efficient energy production and conversion [1–4]. However, overcoming the
slow kinetics of the oxygen reduction reaction (ORR) at the cathode is essential to fulfill the increasing
demand for developing intermediate temperature SOFCs [5]. At high temperatures such as 1000 ◦C,
La1−xSrxMnO3 (LSM113) is commonly used as a cathode for SOFCs owing to their good stability and
high electronic conductivity, but simultaneously has low ionic conductivity and a narrow triple-phase
boundary (TPB) region for the cathode reaction [1]. Therefore, new cathode materials with faster ORR
kinetics are required to facilitate the development of intermediate temperature SOFCs.

Cubic perovskite based mixed ionic and electronic conductors (MIECs) such as ABO3 oxides [6–9]
and layered perovskite based MIECs such as Ruddlesden-Popper (RP) oxides [10–14] have been
extensively studied to promote oxygen electrocatalysis at intermediate temperatures such as 600 ◦C.
Compared to LSM113, these MIECs possess considerably higher oxygen surface exchange kinetics,
which enables to extend the electrochemically active region to the entire oxide surface from the
electrode/electrolyte interface. In addition, they also have higher ionic conductivity than LSM113, and
thus are promising cathode materials for intermediate temperature SOFCs. The oxygen diffusion and
surface exchange coefficients for ABO3 and RP oxides are summarized in Table 1.

In ABO3 and RP oxides, the oxygen ion diffusion and oxygen surface exchange kinetics can
be significantly influenced by cation substitution as substitutions on the A or B sites of MIECs are
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known to affect the oxygen stoichiometry. For example, substituting Sr for lanthanum on the A-site of
La1−xSrxCoO3−δ (LSC113) results in an increase in oxygen vacancies, enhancing the oxygen transport
and surface exchange kinetics [9,15–19]. In addition, doping with different-size cations in ABO3

perovskites can also facilitate oxygen migration owing to a reduction in the ion migration energy [20].
The effect of Sr substitution on the activation energy for oxygen ion diffusion and oxygen surface
exchange kinetics in LSC113, reviewed by Berenov et al. [21], is that the activation energies for oxygen
diffusion and surface exchange kinetics decrease with increasing Sr content owing to the reduced
vacancy formation energy. Cater et al. [22] compared the oxygen diffusivity between Sr-doped
cobaltites and Sr-doped manganites, concluding that B-site cations with a lower valence state increase
in oxygen diffusivity. In the case of RP oxides, however, the effect of cation substitutions on the
ORR kinetics is poorly understood due to difficulties in synthesizing RP oxides with a wide range of
cation substitutions.

Table 1. Oxygen self-diffusion (D*) and surface exchange coefficients (k*) for solid oxide fuel cells
(SOFC) cathode materials.

Material D*/cm2·s−1 @ 600 ◦C k*/cm·s−1 @ 600 ◦C Reference

La0.8Sr0.2MnO3−δ 10−17 1.12 × 10−10 [8]
La0.5Sr0.5MnO3−δ 4.22 × 10−18 10−10 [8]
La0.8Sr0.2CoO3−δ 1.69 × 10−13 1.38 × 10−8 [8]
La0.6Sr0.4CoO3−δ 2.86 × 10−9 9.09 × 10−8 [21]
La0.5Sr0.5CoO3−δ 2.51 × 10−10 3.29 × 10−7 [8]

La0.6Sr0.4Co0.2Fe0.8O3−δ 5.83 × 10−10 2.35 × 10−7 [23]
Ba0.5Sr0.5Co0.8Fe0.2O3−δ 1.28 × 10−7 5.21 × 10−5 [24]

La2NiO4+δ 1.35 × 10−8 1.02 × 10−6 [13]
La1.9Sr0.1NiO4+δ 4.66 × 10−9 3.56 × 10−8 [13]
La1.8Sr0.2NiO4+δ 2.02 × 10−10 3.51 × 10−9 [13]

La2CuO4+δ 2.76 × 10−9 5.79 × 10−7 [11]
La2Ni0.9Co0.1O4+δ 1.07 × 10−8 6.52 × 10−7 [14]
La2Ni0.9Co0.1O4+δ 1.34 × 10−8 7.89 × 10−7 [14]

La2CoO4+δ 2.98 × 10−8 3.91 × 10−6 [25]

All materials are polycrystalline.

Recently, a remarkable enhancement of the ORR kinetics has been achieved by using epitaxial
oxide thin films, which have yielded many intriguing physical and chemical properties that cannot be
achieved in bulk counterparts. Epitaxial thin films can also allow the understanding of the fundamental
physicochemical properties of oxide materials, and thus have been used as model systems to develop
design principles for enhancing the ORR kinetics [26–28]. In particular, the use of oxide thin films
has the following advantages for manipulating and evaluating electrocatalytic properties [29]. First,
epitaxial thin films can be grown with different orientations, which can allow evaluating anisotropic
behaviors (appropriate selection of the single crystal substrates and optimization of the deposition
conditions). Second, the termination plane of each surface structure can be controlled using epitaxial
thin films, and thus the different surface exchange kinetics can be elucidated. Third, dense thin
films can allow studying oxygen transport kinetics with no influence of non-kinetic issues, such
as particle morphology and connectivity, and porosity and tortuosity typical in porous electrodes.
Lastly, the influence of the strain induced by the substrate on the electrocatalytic properties can
be investigated. Furthermore, the use of oxide multilayer heterostructures has opened attractive
opportunities in the design of new cathode material systems as oxide interfaces can drastically facilitate
the ORR kinetics. So far, oxide heterostructure interfaces have been utilized to achieve unique
physical and chemical properties such as phase transition [30], electronic reconstruction [31], magnetic
domain rearrangement [32], and anomalous oxygen electrocatalysis [33], which are unattainable in the
bulk oxides.
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This review aims to provide a synopsis of the major developments and achievements in thin
film MIEC cathodes of SOFCs, which can help facilitate the development of intermediate temperature
SOFCs. We first discuss the ORR mechanisms on the cathode of SOFCs. We then cover in detail
recent advances in ABO3 and RP oxide thin film cathodes focusing on cobaltites, ferrites, nickelates,
and cuprates. The effect of oxide heterostructure interfaces on the ORR kinetics and electrochemical
stability is also overviewed. Finally, we present conclusions, perspectives and future developments.
As this review deals with mostly epitaxial thin films, we do not focus on the kinetics of oxygen
transport. Readers can be referred to relevant comprehensive reviews of oxygen transport in ABO3

and RP oxide [12,34,35].

2. Oxygen Reduction in SOFCs

2.1. Oxygen Reduction Reaction Steps and Pathways in SOFC Cathodes

Among the entity of charge transport and transfer processes in an operating SOFC, the activation
loss η associated with the ORR at the cathode is a main contribution to the overall voltage drop [36].
In MIEC cathodes, ABO3 oxides are generally known as oxygen-deficient perovskites because
oxygen vacancies are their dominant anion defect while RP oxides can be both oxygen-deficient
and oxygen-excess, depending upon their majority oxygen defects. In the case of oxygen-deficient
RP oxides, oxygen nonstoichiometry (δ) arises from oxygen vacancies, whereas oxygen interstitials
result in oxygen hyperstochiometric RP oxides. Therefore, two ORR reactions may occur in MIEC
cathodes depending on majority oxygen defects [13,37,38]. The overall ORR kinetics for oxygen-excess
RP oxides can be expressed as:

O2(g) + 4e− → 2Oi” (1)

where e− is an electron and Oi” is an oxygen interstitial. Unlike oxygen-excess RP oxides, the following
ORR reaction can occur in ABO3 and oxygen deficient RP oxides.

O2(g) + 4e− + 2Vo
·· → 2Oo

x (2)

where Vo
·· is an oxygen vacancy and Oo

x represents an oxygen ion in the cathode or electrolyte lattice.
However, ORR reaction is composed of numerous elementary reaction steps. These steps can

be surface or bulk related reactions such as adsorption, dissociation, electronation, and diffusion
(Figure 1). As shown in Figure 1, pure electronic conductors such as Pt and LSM113 have the surface
pathway for the possible ORR reaction steps, which are adsorption and dissociation of molecular
oxygen on the cathode surface, surface diffusion of adsorbed oxygen atoms to the TPB, formation
of oxide ions by electron transfer and incorporation into the electrolyte. Previous studies [39–44]
identified using polycrystalline LSM113 samples that the ORR occurs only at the one-dimensional TPB,
where cathode, electrolyte, and gas phase are in contact in pure electronic conductors.
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Figure 1. Schematic of possible elementary reaction steps during oxygen reduction reaction (ORR) and 
possible pathways for two different classes of cathode materials; (a) pure electronic conductor and (b) mixed 
ionic and electronic conducting (MIEC) cathodes. 
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Figure 1. Schematic of possible elementary reaction steps during oxygen reduction reaction (ORR) and
possible pathways for two different classes of cathode materials; (a) pure electronic conductor and (b)
mixed ionic and electronic conducting (MIEC) cathodes.
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In contrast, the surface pathway is complemented by a bulk pathway in MIEC cathodes, where
adsorbed oxygen species are reduced at the cathode surface and transported to the electrolyte
by solid-state diffusion through the cathode interior regardless of the dominant oxygen defects.
Consequently, the active area for the ORR on MIEC cathodes spans over the entire cathode surface.
The overall rate of the multitude of reaction steps in MIEC cathodes is determined by a single rate
determining step. Then, all remaining steps can be considered to be close to equilibrium so that the
voltage loss associated with the rate-determining step constitutes the cathodic activation loss η.

2.2. Oxygen Diffusion and Surface Exchange Kinetics in MIEC Cathodes

The total electrical conductivity σtot of perovskite oxides can be expressed as:

σtot = σel + σion (3)

where σel and σion are electronic conductivity and ionic conductivity, respectively. Depending on
the relative amount of σel and σion, perovskite oxides are classified into pure electronic conductors
or MIECs.

Oxide cathode materials are typically extrinsic semiconductors, where σel results from the
movement of holes or excited electrons through the surrounding lattice. In addition, MIEC cathodes
conduct O2- ions via oxygen vacancies or interstitials at a significant rate. The mobility of O2− ions
in MIEC cathodes is correlated with the diffusion coefficient (D*) for O2−. In addition, the oxygen
surface exchange coefficient (k*) is also a key parameter for determining the rate of oxygen transport
through a MIEC cathode material. Therefore, D* and k* play a determining role in the ORR kinetics on
MIEC cathodes.

In the case of thin film MIEC cathodes, the ORR kinetics can be limited by either oxygen diffusion
or oxygen surface exchange kinetics depending on the critical film thickness, tcrit, which can be defined
as D*/k* [45]. The ORR kinetics of thick film cathodes are mainly governed by the bulk transport
oxygen whereas in thin film cathodes the ORR kinetics can be governed by the surface exchange
of oxygen. In general, tcrit is in the range of 100 µm for many perovskite oxides [46]. Therefore,
the ORR kinetics of thin film MIEC cathodes can be enhanced by an increase in the oxygen surface
exchange kinetics.

Electrochemical impedance spectroscopy (EIS) measurements are commonly used to analyze the
kinetics of oxygen surface exchange on thin film cathodes [6,26,28,47]. Typical EIS tests are conducted
in the frequency range from ~10 MHz to ~100 µHz using an AC voltage amplitude with zero DC
bias in a wide range of temperatures and oxygen partial pressures. Without dc bias, the Nyquist plot
represents three well-separated features analyzed by an equivalent circuit [48], which are denoted
as high frequency (HF), medium frequency (MF) and low frequency (LF) feature. The HF feature
(104–105 Hz) is associated with the transport of O2− ions through an electrolyte, while the MF features
(103–104 Hz) is associated with the ionic transfer resistance at the electrode/electrolyte interface.
In addition, the magnitude of the capacitance at the MF feature is relatively small (~10−6 F) compared
to the LF feature (~10−3 F), which is the main resistive process representing the surface exchange
reaction [6,49–52]. In the case of thin film cathodes, the magnitude of capacitance is due to the
oxygen content change in the films, and therefore the oxygen surface reaction on thin film electrodes
generally corresponds with the LF feature. The electrical oxygen surface exchange coefficient (kq) can
be determined using the expression [53,54],

kq = R·T/4F2·RORR·Aelectrode·co (4)

where R is the universal gas constant (8.314 J·mol−1·K−1), T is the absolute temperature, F is the
Faraday’s constant (96,500 C·mol−1), RORR is the resistance obtained from the LF feature, Aelectrode is
the area of the electrode, and co is the lattice oxygen concentration in thin film cathodes.
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3. Thin Film Cathodes

As discussed earlier, the use of epitaxial thin films offers many advantages for controlling the
ORR kinetics in SOFC cathodes. Strain engineering is one of the most effective ways to tailor the
ORR kinetics of perovskite and layered oxide thin films. Many studies have reported that epitaxial
strain strongly influences bulk and surface properties of oxide materials including the electronic
structure [55], oxygen transport [56–59], oxygen defect formation [60], and oxygen surface exchange
kinetics [61,62], ultimately enhancing the high temperature oxygen electrocatalysis in ABO3 and RP
oxides [63,64]. In addition, the viability of controlling the crystallographic orientation of epitaxial thin
films has enabled investigation of the anisotropic nature of oxygen transport and kinetic properties
in RP oxides [61,65]. Furthermore, oxide interface engineering has brought a new concept to design
highly active and stable cathode materials for intermediate SOFCs [66–68]. The growth of high quality
epitaxial thin films is made possible using several deposition methods such as pulsed laser deposition
(PLD), molecular beam epitaxy (MBE), atomic layer deposition (ALD), and sputtering. However, it is
not the aim of this review to describe in detail those techniques; an extended review on the different
techniques can be found elsewhere [69–72], In the following subsections, we focus on how these factors
have brought advances in the oxygen surface exchange kinetics in ABO3 and RP oxide thin films.

3.1. ABO3 Oxide Thin Films

ABO3 perovskite oxides are conventional materials for electrochemical applications, in particular,
SOFCs owing to their good reactivity, flexibility in terms of oxygen stoichiometry, and viability of A-
and B-site cation substitutions. In most cases, the A-site cation is a combination of rare and alkaline
earths for SOFC cathodes. However, the B-site cation is generally a transition metal, such as Mn, Fe,
and Co. The atomic structure of perovskites consists in a 3D network of BO6 octahedra connected
by apex, which are maintained by a cubic lattice of A atoms of coordination 12, as shown in Figure 2.
The symmetries of ABO3 perovskites can theoretically be directly determined from the ionic radii of A
and B cations, which govern strains inside the materials, since the size mismatch is responsible for the
distinct stacking.
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Figure 2. Schematic crystal structure of ABO3 perovskite oxides, where A and B are a rare earth and
transition metal atom.

In the early stage, LaCoO3 (LCO113) [36,73] and LaMnO3 (LMO113) [36,74] based ABO3 perovskite
oxides were utilized as a cathode material for SOFCs. These stoichiometric compositions, however,
were found unsuitable in terms of electrochemical performance for a cathode. Usually, the increase
of ionic conductivities is more influenced by Sr concentration at the A-site while the increase of the
electronic conductivities is more influenced by Fe and Co concentration at the B-site. The substitution
of Sr2+ for La3+ can enhance the oxygen ion transport kinetics due to an increase in the oxygen
vacancy concentration in the perovskite structure [17]. Therefore, high electrochemical performance
at the cathode could be achieved relative to undoped ABO3 perovskite oxides. In this sense,
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LSC113 [17,21,27,28,46,64,73,75,76] and La1−xSrxCo1−yFyO3−δ (LSCF113) [22,45,47,66,77–86] perovskite
oxides are commonly used as these oxides are known to show oxygen deficiency and the oxygen
nonstoichiometry (δ) affects the electrochemical properties, conductivity and lattice expansion of
the materials.

3.1.1. Cobaltites

Epitaxial strain induced by lattice mismatch between a thin film and a substrate can effectively
control the oxygen migration and oxygen defect formation in ABO3 perovskite oxides [64,87–93].
Using density functional theory (DFT) calculations, Han et al. [94] demonstrated that tensile strain
increased the one-dimensional mobility of oxygen vacancy and adsorbed atomic oxygens migrations
on the LCO113 surface, which can enhance the ORR kinetics. According to the authors, the maximum
tensile strain for the enhanced ORR kinetics is 3%, which has a lower oxygen vacancy formation
energy by 0.32 eV compared to the strain-free surface. Later, Mayeshiba and Morgan [90] predicted
the oxygen migration barriers in LaMO3 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Ga) perovskite oxides
under tensile strain via DFT calculations. They showed that tensile strain can significantly reduce the
oxygen migration barriers, resulting in enhanced oxygen diffusion (one order of magnitude) at 500 ◦C
compared with the diffusion under unstrained conditions. laO’ et al. [28] experimentally showed
that tensile strained epitaxial La0.8Sr0.2CoO3−δ (LSC82) films exhibit significantly increased ORR
activity compared to LSC82 bulk. According to the authors, the oxygen surface exchange coefficients
(kq) of epitaxial LSC82 films are about two orders of magnitude higher than those of LSC82 bulk,
which is attributed to the increased oxygen vacancy concentration in LSC82 thin film relative to
LSC bulk. Using secondary ion mass spectroscopy (SIMS) measurements, Kubicek et al. [64] also
investigated the effect of strain on the oxygen surface exchange kinetics of epitaxial LSC82 films. In this
work, the epitaxial LSC82 films were synthesized on SrTiO3 (STO) and LaAlO3 (LAO) substrates
to introduce tensile and compressive strain, respectively, into the LSC82 films, where the oxygen
surface exchange kinetics was found to be faster in tensile strained films. The authors postulated
that the lower formation energy of oxygen vacancy by tensile strain leads to the enhanced ORR
kinetics. However, Crumlin et al. [27] did not observe the strong dependency of the oxygen surface
exchange kinetics of epitaxial La0.6Sr0.4CoO3−δ (LSC64) films on strain. The authors attempted to
control the degree of tensile strain in LSC64 films with various film thicknesses but the kq values
of LSC64 films were thickness-independent and comparable with those of bulk LSC64 (kq can be
approximated as k*). Similarly, epitaxial LCO thin films also showed little dependence of their surface
exchange kinetics as a function of film thickness although the films exhibited higher ORR kinetics
than LCO bulk [95]. In contrast, a clear trend of the thickness-dependent ORR activity in epitaxial
LSC64 thin films was recently demonstrated by Lee et al. [96] (Figure 3a). According to this work, the
oxygen surface exchange kinetics of LSC64 films can be enhanced as decreasing the film thickness
until 50 nm, where strain relaxation occurs. The authors proposed that the increased ORR activity
results from the increased oxygen vacancies in epitaxial LSC64 films due to the large tensile strain of
high-quality films. Employing in situ impedance spectroscopy during thin film growth, Rupp et al. [97]
also showed an enhancement in the oxygen surface exchange kinetics of tensile-strained epitaxial
LSC64 films on (001)-oriented La0.95Sr0.05Ga0.95Mg0.05O3−δ substrates compared to unstrained films
on yttria-stabilized zirconia (YSZ) substrates. Similar to the results by Lee et al. [96], the authors also
found the same trend of enhanced oxygen surface exchange kinetics as film thickness decreases in
epitaxial LSC64 films but they interpreted that this trend may be attributed to the capability of in-situ
measurement as the films never exposed to any thermal cycling such as cooling from PLD preparation
temperature or heating for impedance measurements. However, regardless of strain, epitaxial LSC113

thin films were found to have higher kq values compared to their bulk counterpart (Figure 3b).
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It is known that lattice strain can tune the electronic structure and charge transfer in ABO3

oxides [98,99]. Using scanning tunneling spectroscopy and density functional theory calculations,
Cai et al. [55] showed that the surface electronic state depends on the strain state of the epitaxial LSC82
thin films. In this work, STO and LAO substrates were utilized to induce tensile and compressive
strains, respectively, into the LSC82 films, where tensile-strained LSC films exhibited a more increased
electronic density of states (DOS) near the Fermi level compared to compressive strained LSC films.
It was hypothesized that the increased DOS and the transition to the metal-like state are attributed
to the easier formation of oxygen vacancies on tensile strained LSC films, which was supported by
DFT calculations.

A recent study for a wide range of bulk perovskites demonstrated that the position of the oxygen
2p-band center with respect to the Fermi level is linearly correlated with the activation barrier of oxygen
surface exchange, acting as a descriptor for the oxygen surface exchange kinetics [100]. According to
this work, the formation energy of bulk oxygen vacancies decreases with increasing the oxygen 2p band
center relative to the Fermi level, indicating the enhanced oxygen reduction reaction (Figure 4a). Later,
Lee et al. [96] demonstrated that the oxygen 2p-band center relative to the Fermi level can be linearly
correlated with strain state, where tensile strain results in the upshift of the oxygen 2p-band center
(Figure 4b). According to the authors, As the oxygen 2p-band center also has a linear relationship
with the vacancy formation energy in perovskite oxides [100], and thus the tensile strain is expected to
lower the energy of vacancy formation due to an increase in the oxygen 2p-band center in the LSC113

films. Hong et al. [95] showed that in epitaxial LCO113 films, strain can be used to reduce the spin
transition temperature and promote the occupation of higher spin states that weaken the Co-O bond,
which results in an increase in the oxygen surface exchange kinetics. The authors also pointed out
that the decreased Co-O bond strength due to the increased fractional occupancy of high-spin states
can lead to the oxygen 2p-band center upshift relative to the Fermi energy. Recently, Zhu et al. [101]
measured the ORR activities of polycrystalline LSC113 thin films with a wide range of Sr concentration
(0 ≤ Sr ≤0.8). The authors found that with increasing the Sr content, the O 2p-band center can be
close to the Fermi level, which favors the oxygen vacancy formation. However, they claimed that at
Sr > 0.4, Co2+ becomes optimal for the surface instead of Co3+/Co4+ and may act as electron traps,
which may decrease the electronic conductivity, leading to an overall poor ORR activity of LSC113
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films. These results showed a different trend with the previously reported data [95,96] which showed
enhanced ORR kinetics due to an upshift of the oxygen 2p-band center to the Fermi level.
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3.1.2. Ferrites

Iron-based perovskites (LaFeO3, LFO113) are typically oxygen deficient materials [102,103].
Therefore, LFO113 has high oxygen mobility within the material [104] and is suitable for catalytic
applications such as oxygen reduction and ion transport in SOFCs [105,106]. Substituting Sr for
La on the A-site of LFO113 is widely used to promote oxygen defects, enhancing oxygen diffusion
and surface exchange processes due to the charge neutrality [107]. However, the ORR activity of
La1−xSrxFeO3 (LSF113) thin films is still insufficient for the use of oxygen electrocatalysis. For example,
using electrochemical impedance spectroscopy (EIS) measurements, la O et al. [108] found that the
oxygen surface exchange coefficients (kq) of La0.8Sr0.2FeO3 (LSF82) thin films are comparable to those
of La0.8Sr0.2MnO3 (LSM82) thin films.

Compared to LSF113, LSCF113 exhibits better ionic conductivity, reasonable high-temperature
stability, and catalytic activity [109–113]. However, there was no systematic study on the strain
dependent ORR kinetics (Figure 5a). Baumann et al. [47] and Ingram et al. [85] reported the ORR
kinetics of La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF6482) thin films (Figure 5b). The authors concluded that
LSCF6428 films can enhance the ORR kinetics compared to bulk LSCF6428 due to the increased
oxygen vacancies. So far, substantial efforts have been focused on tailoring the surface microstructure
of LSCF113 thin films to enhance the ORR kinetics, based on the hypothesis that many grain
boundaries on the surface of LSCF113 films may modify the oxygen bulk diffusion and catalytic
properties to enhance the ORR kinetics. For instance, Prestat et al. [114] investigated the ORR kinetics
of La0.52Sr0.48Co0.18Fe0.82O3−δ thin films with various thicknesses (Figure 5b). In this study, the
polarization resistance of LSCF films was reduced by decreasing the film thickness, indicating that
the number of grain boundaries on the surface increases. Consequently, the oxygen surface exchange
and diffusion coefficients were significantly enhanced in LSCF thin films compared to bulk LSCF [84].
Angoua et al. [115] investigated the ORR kinetics of LSCF6428 thin films with a Ce0.8Gd0.2O1.9 (CGO)
layer. Adding CGO to LSCF6428 films reduced the polarization resistance for LSCF-CGO films, which
leads to a higher density of grain boundaries. Bagarinao et al. [116] discussed the oxygen surface
exchange and diffusion kinetics of LSCF6428 thin films by comparing a nanograined microstructure
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film. The authors found that introducing grain boundaries on LSCF6428 films can enhance the oxygen
surface exchange reactivity, which is in good agreement with previously reported data [115].

Appl. Sci. 2019, 9, 1030 9 of 23 

the film thickness, indicating that the number of grain boundaries on the surface increases. Consequently, 
the oxygen surface exchange and diffusion coefficients were significantly enhanced in LSCF thin films 
compared to bulk LSCF [84]. Angoua et al. [115] investigated the ORR kinetics of LSCF6428 thin films with 
a Ce0.8Gd0.2O1.9 (CGO) layer. Adding CGO to LSCF6428 films reduced the polarization resistance for LSCF-
CGO films, which leads to a higher density of grain boundaries. Bagarinao et al. [116] discussed the oxygen 
surface exchange and diffusion kinetics of LSCF6428 thin films by comparing a nanograined microstructure 
film. The authors found that introducing grain boundaries on LSCF6428 films can enhance the oxygen 
surface exchange reactivity, which is in good agreement with previously reported data [115]. 

 
(a) (b) 

Figure 5. Arrhenius plots of surface exchange coefficients (k*) for La1-xSrxCo1-yFeyO3-δ thin films. (a) Effect of 
strain on k* for La0.6Sr0.4Co0.2Fe0.8O3-δ [117] and La0.6Sr0.4Co0.2Fe0.8O3-δ [118] films and La0.6Sr0.4Co0.2Fe0.8O3-δ (Ref. 
[119]) polycrystalline samples. (b) Effect of Sr substitution on k* for La1-xSrxCo1-yFeyO3-δ (red [117], black [47] 
and blue [114]) films and La0.6Sr0.4Co0.2Fe0.8O3-δ [119] polycrystalline oxides. 

It was also shown that the ORR kinetics can be enhanced by using the LSCF113 thin film as an interfacial 
layer at the electrode-electrolyte interface. Dumaisnil et al. [120] investigated the ORR kinetics of adding 
LSCF6482 thin films between porous LSCF113 cathode and Gd-doped ceria (GDC) substrate. In this study, 
the addition of LSCF6482 thin films was found to result in lower polarization resistance, which may be 
attributed to the increased active area due to the enhanced adhesion between cathode/substrate. Jang et al. 
[121] also investigated the ORR kinetics by addition of porous nanoparticle network structured LSCF6428 
thin film between the cathode and electrolyte. The cell with LSCF6428 films showed higher peak power 
density and smaller polarization resistance compared to the cell without LSCF6428 film. Later, the role of 
nanoparticle network structured LSCF6428 thin film, which is called nano-web structured LSCF6428 (NW-
LSCF) was further discussed [122]. 

3.2. Ruddlesden-Popper (RP) Oxides 

The general formula of Ruddlesden-Popper (RP) phases can be written as An+1BnO3n+1 [123]. The RP 
phases are comprised of n consecutive perovskite layers (ABO3) alternating with rock-salt layers (AO) along 
the crystallographic c-axis direction. Their formula can be represented by (AO)(ABO3)n, where n represents 
the number of connected layers of vertex sharing BO6 octahedra [124]. In the case of SOFCs, the n = 1 members 
of some RP series, notably those based on La2NiO4+δ (LNO214) are of particular interest. These RP oxides were 
shown to accommodate oxygen interstitials in the AO layers [10], leading to fast ion conduction and hence 
potential application as cathodes at intermediate temperatures. Recently, lanthanum strontium cobaltites 
have attracted much attention as a cathode material for SOFCs, which exhibited interestingly fast oxygen 

Figure 5. Arrhenius plots of surface exchange coefficients (k*) for La1−xSrxCo1−yFeyO3−δ thin films.
(a) Effect of strain on k* for La0.6Sr0.4Co0.2Fe0.8O3−δ [117] and La0.6Sr0.4Co0.2Fe0.8O3−δ [118] films and
La0.6Sr0.4Co0.2Fe0.8O3−δ (Ref. [119]) polycrystalline samples. (b) Effect of Sr substitution on k* for
La1−xSrxCo1−yFeyO3−δ (red [117], black [47] and blue [114]) films and La0.6Sr0.4Co0.2Fe0.8O3−δ [119]
polycrystalline oxides.

It was also shown that the ORR kinetics can be enhanced by using the LSCF113 thin film as an
interfacial layer at the electrode-electrolyte interface. Dumaisnil et al. [120] investigated the ORR
kinetics of adding LSCF6482 thin films between porous LSCF113 cathode and Gd-doped ceria (GDC)
substrate. In this study, the addition of LSCF6482 thin films was found to result in lower polarization
resistance, which may be attributed to the increased active area due to the enhanced adhesion
between cathode/substrate. Jang et al. [121] also investigated the ORR kinetics by addition of porous
nanoparticle network structured LSCF6428 thin film between the cathode and electrolyte. The cell
with LSCF6428 films showed higher peak power density and smaller polarization resistance compared
to the cell without LSCF6428 film. Later, the role of nanoparticle network structured LSCF6428 thin
film, which is called nano-web structured LSCF6428 (NW-LSCF) was further discussed [122].

3.2. Ruddlesden-Popper (RP) Oxides

The general formula of Ruddlesden-Popper (RP) phases can be written as An+1BnO3n+1 [123].
The RP phases are comprised of n consecutive perovskite layers (ABO3) alternating with rock-salt layers
(AO) along the crystallographic c-axis direction. Their formula can be represented by (AO)(ABO3)n,
where n represents the number of connected layers of vertex sharing BO6 octahedra [124]. In the case
of SOFCs, the n = 1 members of some RP series, notably those based on La2NiO4+δ (LNO214) are
of particular interest. These RP oxides were shown to accommodate oxygen interstitials in the AO
layers [10], leading to fast ion conduction and hence potential application as cathodes at intermediate
temperatures. Recently, lanthanum strontium cobaltites have attracted much attention as a cathode
material for SOFCs, which exhibited interestingly fast oxygen exchange kinetics when interfaced with
its perovskite counterpart LSC113 [67,125]. In addition, (La,Sr)2CuO4 (LSCu214) has also demonstrated
its availability as a promising cathode for SOFCs showing comparable oxygen surface exchange
kinetics to that of LSCF113 thin films at intermediate temperatures [126]. Figure 6 presents the ideal
tetragonal unit-cells for n = 1, which correspond to the stoichiometric compounds all of same space
group, I4/mmm.
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It is well-known that RP oxides exhibit strong anisotropic features as a result of the adjustment
of two different structural units, i.e., ABO3 and AO within the lattice. While the B-site cations are
coordinated by six oxygen anions, the B-O bond lengths are different due to the Jahn-Teller effect
caused by the valence state of the B-site cations [127]. This results in two types of oxygen species
in the BO6 octahedra, which are referred to as “apical” and “equatorial” oxygen. In the RP system,
interstitial sites are located in the AO layer, where RP oxides can accommodate an excess oxygen
as an interstitial oxygen defect. Oxygen vacancies can also be formed by appropriate doping in the
system. Consequently, the oxygen transport properties of RP oxides can be strongly influenced by
either oxygen interstitials or oxygen vacancies as discussed earlier.

Nickelates are interesting alternative materials to LSC113 for intermediate temperature
SOFCs owing to its high oxygen surface exchange kinetics and oxygen transport
properties [10,11,13,14,61,128–133]. However, due to difficulties in synthesizing epitaxial thin
films of nickelates, few studies have examined the ORR kinetics of nickelates in a form of epitaxial
films. Yamada et al. [134] first reported the oxygen electrocatalysis of epitaxial RP oxide thin films
using (011)-oriented epitaxial Nd2NiO4+δ (NNO214) films on (001) YSZ substrates. According to
this study, compression along the c -axis of NNO214 films reduces the oxygen surface exchange
kinetics. Later, Tsvetkov et al. [135] compared the δ values of tensile- and compressive-strained
NNO214 thin films, demonstrating that the larger δ in tensile-strained NNO214 can enhance the oxygen
surface exchange kinetics relative to those of compressive-strained NNO214 thin films (Figure 7a).
These results are in good agreement with the previous observation by Yamada et al. [134].

Among various RP oxides, LNO214 is the most widely studied member of the series.
Kim et al. [136] proposed that epitaxial LNO214 thin films with a thickness of 300 nm may possess two
different surface exchange rates as a result from the coexistence of two different film microstructures.
Later, they demonstrated that the surface exchange reaction of polycrystalline LNO214 samples
limits the electrode reaction, showing comparable kq values with those obtained previously for
LNO214 bulk [132]. However, to evaluate the effect of strain on the ORR kinetics in RP oxides,
high quality epitaxial thin films are required. Burriel and co-workers [61] synthesized (001)-oriented
epitaxial LNO214 thin films on STO and NbGaO3 (NGO) substrates, which introduce tensile and
compressive strain states, respectively, into the LNO214 films. They evaluated the oxygen diffusion
and surface exchange kinetics for tensile- and compressive-strained LNO214 films, concluding that
both compressive and tensile strain led to a reduction in the oxygen diffusivity in the first 175–200 nm
of the film, whereas neither strain affected the oxygen surface exchange. However, Lee et al. [63] later
demonstrated that tensile strain along the c-direction can lead to an increase in the driving force to
form interstitial oxygen atoms in LNO214, resulting in enhanced oxygen surface exchange kinetics of
(100)-oriented epitaxial LNO214 thin films (Figure 7b). In this study, the authors successfully controlled
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strain in LNO214 films by modulating the film thickness. The discrepancy in the effects of strain
on oxygen surface exchange kinetics in LNO214 films may be attributed to the fact that the critical
thickness required to maintain an acceptable strain state is fairly smaller than what Burriel et al. [61]
used. However, the effect of strain on the ORR kinetics in RP oxides needs further investigation.
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(Tens.) and compressive (Comp.) strained (001)-oriented La2NiO4+δ films [61] and tensile, zero,
and compressive strained (100)-oriented Nd2NiO4+δ thin films [135]; (b) (001)- and (100)-oriented
La2NiO4+δ [61,63] thin films with various thickness and substrates.

Similar to the correlation between the oxygen 2p-band center and ORR kinetics in ABO3 oxides,
Lee et al. [126] also proposed that the oxygen 2p-band center relative to the Fermi energy can be
an effective descriptor to predict the oxygen surface exchange as well as the activation energy for
oxygen transport in RP oxides. In contrast to ABO3 oxides, the oxygen 2p-band center relative to
the Fermi level was found to be inversely proportional to the oxygen surface exchange kinetics in
RP oxides (Figure 8). According to the authors, the opposite slopes of the oxygen 2p-band center
correlations between the RP oxides and the perovskite materials are due to the intrinsic mechanistic
differences of their oxygen surface exchange kinetics and bulk anionic transport. The authors also
found that the calculated interstitial formation energies of La2BO4+δ (B = Co, Ni, and Cu) strongly
depend on the B cation in the sequence LCuO214 > LNO214 > LCO214, which corresponds to the trend
of B-cation–dependent oxygen diffusivity. Recently, Xie et al. [137] also calculated the formation energy
of oxygen interstitials in the same RP oxide systems, demonstrating that, regardless of δ, the formation
energy of oxygen interstitials decreases with decreasing the atomic number of the B cation, which is in
good agreement with the data reported by Lee et al. [126].

As discussed earlier, the anisotropy of oxygen migration is one of the intrinsic properties of RP
oxides owing to its structural feature. Therefore, different oxygen diffusion and surface exchange
kinetics along different crystallographic directions were reported as shown in Figure 9. Using NNO214

and Pr2NiO4+δ (PNO214) single crystalline oxides, Bassat et al. [128] observed a large anisotropy for
the oxygen surface exchange kinetics for both oxides, where the k* values in the a-b plane are 1.5 orders
of magnitude larger than those along the c-axis. Burriel et al. [61] reported that the oxygen diffusion
and oxygen surface exchange kinetics in the a-b plane are faster than those along the c-direction in
epitaxial LNO214 thin films. However, later the authors also evaluated the anisotropy for the oxygen
surface exchange kinetics of LNO214 single crystalline, reporting the lack of anisotropy in the oxygen
surface exchange values, which is attributed to the surface segregation process [133]. The anisotropy
of the oxygen surface exchange kinetics was also observed in Sr-doped LNO214 films. Lee et al. [65]
demonstrated that substituting Sr for lanthanum in LSNO214 thin films can result in the structural
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reorientation of the films because of the reduction in the surface energy of the (001) surface, reporting
the anisotropic oxygen surface exchange kinetics.
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La2-xSrxCuO4±δ (LSCu214) oxides are famous for their high Tc superconductivity [138–140].
Interestingly, the superconducting properties of LSCu214 depend on the Sr concentration and oxygen
stoichiometry, which also strongly influence the kinetics of oxygen exchange and oxygen diffusion.
Opila et al. reported the anisotropic oxygen transport properties and proposed the defect model for
Sr-doped curpates [38,141]. Recently, using epitaxial LSCu214 thin films, the oxygen surface exchange
kinetics were evaluated at intermediate temperatures [126]. In this study, the kq values of undoped
La2CuO4 (LCuO214) thin films were found to be higher than those of Sr-doped La2CuO4 thin films
(Figure 9a), which is attributed to that adding Sr content resulted in changes of the oxygen 2p-band
center relative to the Fermi energy. More recently, Meyer and co-workers [142] revealed that the oxygen
nonstoichiometry commonly reported for strained LSCu214 is mediated by the strain-modified surface
exchange kinetics, rather than reduced thermodynamic oxygen formation energies. The authors
also demonstrated that tensile-strained LSCu214 shows nearly an order of magnitude faster oxygen
exchange rate in tensile-strained LSCu214 films compared to a compressively strained film.

La2-xSrxCoO4±δ (LSC214) oxides are widely used as a perovskite counterpart to promote the
oxygen electrocatalysis of ABO3 perovskite such as LSC113 [33,68,125,143]. However, LSC214 showed
very attractive transport and surface exchange properties at intermediate temperatures. For instance,
La2CoO4+δ (LCO214) showed higher oxygen diffusivity and lower activation energy in the temperature
range of 450–700 ◦C as compared to nickelates and cuprates [11,13,25]. Later, Lee et al. [126] calculated
the interstitial formation energies of LCO214, LNO214, and LCuO214 and found the minimum energy
for interstitial formation in LCO214. In addition, the authors also reported that the kq values of LSC214

thin films are comparable to LSC113 thin films, indicating a promising alternative cathode material
to LSC113. Recently, Chen et al. [144] successfully fabricated LSC214 (Sr = 0.25) thin films grown in
two different crystallographic orientations, i.e., (100) and (001), using (100) LaSrAlO4 (LSAO) and
(001) SrTiO3 (STO) substrates. They demonstrated that the oxygen diffusivity along the a-b plane in
the (100)-oriented LSC214 film was three orders of magnitude lower than that in the (001)-oriented
LSC214 film (Figure 9b). Moreover, the D* value along the c-direction in the (001)-oriented LSC214 film
was found to be one order of magnitude higher than that along the a-b plane in the (100)-oriented
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LSC214 film. However, no dependence of oxygen surface exchange kinetics was observed on the crystal
orientation, which may be attributed to the strong Sr segregation at the surface overriding the effect of
the structural anisotropy.
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3.3. Oxide Heterostrcuture Interface

To achieve enhanced surface exchange kinetics and stability, recent efforts have
been focused on developing advanced cathode materials based on MIECs with surface
modification [27,33,66,68,76,82,86,125,143,145–148]. Oxide heterostructure interfaces, the combination
of a Ruddlesden-Popper (RP, LSC214) layer on top of the perovskite LSC113, have shown remarkably
high oxygen surface exchange kinetics [27,33,68,86,125,143,148,149]. Yashiro et al. reported ~1 order of
magnitude enhancement in activity for the composite cathode screen-printed with the mixture of
LSC64 and LSC214 [143]. Sase et al. [33] have also reported ~3 orders of magnitude higher oxygen
surface exchange coefficient (k*) at the interfacial region between polycrystalline LSC64 and LSC214

compared to their bulk value [21]. Later, Crumlin et al. [27,148] utilized epitaxial LSC113 and LSC214

thin films, achieving higher oxygen surface exchange coefficients of LSC113. Recently, Zhao et al. [150]
also observed ~10 times higher kq values in heterostructure LSC113/LSC214 thin films than those
in LSC113, which is attributed to increased number of active oxygen vacancies that manipulate the
oxygen 2p-band center.

A recent study using Coherent Brag Rod Analysis (COBRA) revealed the atomic structure and
concentrations of the (001)-oriented LSC113 thin film on a STO substrate, which shows strontium
(Sr) segregation toward the LSC113 surface and Sr depletion near the interface between LSC113 and
STO [151]. It was also reported that heating the (001)-oriented LSC113 surface leads to the formation of
surface Sr-enriched particles upon annealing while the LSC214-decorated LSC113 surface chemistry is
stable upon heating [152]. More recently, Lee et al. [86] compared the time-dependent surface exchange
kinetics and stability of epitaxial LSCF113 and LSC113 thin films with LSC214 surface decoration. Using
density functional theory (DFT) computation, the authors revealed greater surface Sr segregation for
LSCF113, which is predicted to have an SrO termination, than LSC113, which is predicted to have a less
Sr enriched (La0.25Sr0.75)O termination. Furthermore, the authors pointed out a lower energy gain to
move Sr from LSCF113 into LSC214 relative to the LSC214-LSC113 surface (Figure 10). These observations
have suggested that the surface decoration can modulate the surface Sr segregation and the surface
phase stability, which can greatly influence the oxygen surface exchange kinetics and the surface
stability in LSC113 and LSCF113. Therefore, understanding the surface decoration effect on the surface
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chemistry of perovskites is critical and other potential surface modification materials need to be
investigated to design highly active and stable cathodes for SOFCs.
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(all relative to that of LSC113, which is set to 0). (b) The heterostructured interface model used in
the DFT simulations and the results of Sr/La substitution energies. The elements are represented as:
La/Sr (dark blue), Fe/Co (light blue, center of the octahedra), and O (red). Reprinted from [86] with
permission of The Royal Society of Chemistry.

Similar to the LSC113 surface modification with LSC214, several studies have also
reported the enhanced surface electrocatalytic activity of porous LSCF cathodes with surface
decoration [82,147,153,154]. For example, depositing thin La0.85Sr0.15MnO3−δ coatings on porous
LSCF6428 electrodes using an infiltration process, Lynch et al. [82] showed the enhanced surface
electrocatalytic activity of decorated LSCF113 cathodes upon polarization. Vast majority of research
has been performed on porous LSCF113 electrodes, which lead to ambiguous structure and geometry,
and therefore the physical origin responsible for enhanced cathodic performance associated with
surface decoration of perovskites is not yet completely understood. However, Lee et al. [66] recently
demonstrated using new forms of heterostructure oxide interfaces—(1) LSCF6428 thin films with a
single layer decoration of mixed LSC214 and LSC113 and (2) LSCF6428 thin films with a double layer
decoration of stacked LSC214 and LSC113 – significantly enhanced ORR activity of LSCF6428. More
recently, Chen et al. [155] showed the improved electrocatalytic activity and durability of LSCF6428
thin films by coating PrO2. The authors claimed that PrO2 coating facilitates the rate of oxygen
dissociation due to increased oxygen vacancies. Figure 11 shows the influence of heterointerfaces on k*
for LSC113 and LSCF113.
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Fe0.75Co0.25O3−δ/(LaSr)2CoO4±δ [86], La0.8Sr0.2CoO3−δ/La0.8Sr0.2MnO3−δ [76], La0.8Sr0.2CoO3−δ/
(LaSr)2CoO4±δ [148] and La0.6Sr0.4Fe0.8Co0.2O3−δ/La0.4Sr0.6CoO3−δ:(LaSr)2CoO4±δ [66].

4. Conclusions

Developing intermediate temperature SOFCs requires discovering new cathode materials with
faster ORR kinetics. MIEC oxides such as ABO3 oxides and RP oxides are promising alternative
cathode materials to LSM113, pure electronic conductor. Recently, introducing oxide thin films and
oxide heterostructure interfaces has been recognized as an extremely effective means to control the ORR
kinetics of MIEC oxides, opening a plethora of new possibilities useful for intermediate temperature
SOFCs. We have briefly overviewed how epitaxial strain can influence the oxygen surface exchange
kinetics in ABO3 and RP oxide thin films. It has been pointed out that strain can tune the oxygen
2p-band center relative to the Fermi energy as a result of the modulated concentration of oxygen defects.
In the case of RP oxides, epitaxial thin films offer a direct way to evaluate the intrinsic anisotropy of
oxygen diffusion and surface exchange kinetics. Lastly, oxide heterointerfaces can be used to improve
the ORR kinetics and stability of ABO3 oxides. This review has given a comprehensive overview of
the current state of research. However, a full understanding of the effect of strain and crystallographic
orientation on the ORR kinetics in ABO3 and RP oxides is still being developed for intermediate SOFCs.
In addition, understanding the surface decoration effect on the surface chemistry of perovskites and
other potential surface modification materials still need to be investigated to design highly active and
stable cathodes for SOFCs.
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