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Abstract: Recently, automatic modulation recognition has been an important research topic in wireless
communication. Due to the application of deep learning, it is prospective of using convolution neural
networks on raw in-phase and quadrature signals in developing automatic modulation recognition
methods. However, the errors introduced during signal reception and processing will greatly
deteriorate the classification performance, which affects the practical application of such methods.
Therefore, we first analyze and quantify the errors introduced by signal detection and isolation
in noncooperative communication through a baseline convolution neural network. In response to
these errors, we then design a signal spatial transformer module based on the attention model to
eliminate errors by a priori learning of signal structure. By cascading a signal spatial transformer
module in front of the baseline classification network, we propose a method that can adaptively
resample the signal capture to adjust time drift, symbol rate, and clock recovery. Besides, it can
also automatically add a perturbation on the signal carrier to correct frequency offset. By applying
this improved model to automatic modulation recognition, we obtain a significant improvement
in classification performance compared with several existing methods. Our method significantly
improves the prospect of the application of automatic modulation recognition based on deep learning
under nonideal synchronization.

Keywords: deep learning; automatic modulation recognition; spatial transformer networks;
signal processing

1. Introduction

Automatic modulation recognition (AMR) has been an important topic in wireless communication.
AMR is essential in radio fault detection, spectrum interference monitoring, and a wide variety
of military and civilian applications. Traditional AMR methods, as explored in [1–3], employed
decision theory and statistical pattern recognition. Most of the maximum likelihood methods based on
hypothesis testing have higher computational complexity and are more sensitive to model mismatch
problems, which greatly limits their application in wild communication environments. Other methods
used manual feature extraction combined with machine learning (ML) to apply classification, as
explored in [4–6]. These methods based on feature extraction and likelihood are effective in certain
scenarios. Under certain conditions, the feature-based method can achieve the best recognition
performance close to the theoretical limit, and it has strong robustness, so it is more widely used.
A feature of these methods is dependence on expert knowledge and signal preprocessing. In many
cognitive radio (CR) [7–9] and spectrum detection applications, fewer expert design and knowledge of
signal captures mean improving real-time response and automatic processing capabilities. Improving
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of these capabilities is one of the optimization directions of the AMR system. With the application of
deep learning, classification directly on the raw IQ signals has achieved some encouraging results.

Recently, deep learning (DL) has achieved outstanding results in the domains of natural language
processing (NLP) [10], knowledge mapping, computer vision (CV) [11], speech signal processing [12],
and intelligent medical diagnostics [13,14]. The concept of deep learning originated from the study of
artificial neural networks. Deep learning (DL) simulates the deep structure of the human brain, and the
cognitive process is carried out layer by layer, and gradually realizes the hierarchical expression of the
input information. Given the result of deep learning in other fields, DL can be combined with hardware
to improve the upper performance limit of traditional algorithms, and can reduce the over-fitting
to improve the robustness of the model through specific regularization methods. Therefore, DL has
recently become a research hotspot in the communication domain, and its application in the field
of AMR has also received widespread attention. The use of deep learning methods greatly reduces
the reliance on expert knowledge. Through the powerful feature extraction ability of the DL model,
the intrinsic connection and law of the sample data can be adaptively found, which can improve the
performance of traditional modulation recognition methods. Thanks to the huge parameters of the
deep learning model, the algorithm has strong fault tolerance and can achieve better generalization
ability when dealing with distortion and noise-contaminated data, which is beneficial for coping with
the challenges of complex nonlinear distortion, such as channel effects, receiver hardware noise, etc.
Besides, the deep learning model has excellent inductive migration capabilities, and this ability can be
applied to the field of modulation recognition to improve the cognitive recognition systems’ ability to
recognize new and more complex signals.

In the field of signal processing, researchers are enthusiastically to apply deep learning methods
to AMR. Shi et al. [15] evaluate the classification performance of fractal dimension extraction methods
combined with pattern recognition algorithm. The effects of random forests, back-propagation (BP),
etc. applying to AMR were evaluated in experiments. O’Shea et al. [16–18] introduced Convolutional
Neural Network (CNN) to AMR domain, by directly applying classification with the time domain
in-phase and quadrature (IQ) signal captures. He has also done extensive research on network
design and optimization for AMR. Convolution neural network (CNN) is a kind of feedforward
neural network with convolution transformation and deep structure. It is one of the representative
algorithms of deep learning. CNN extracts translation-invariant features of input data by layer-by-layer
convolution and pooling operations in the architecture. For digital communication signals, there are
features that can distinguish signals of different modulation modes. For example, different order
quadrature amplitude modulation (QAM) signals have amplitude and phase hopping points that occur
between different symbols. CNN can effectively extract such features. Besides, the convolution kernel
parameter sharing and the sparseness of the inter-layer connection in the CNN architecture enable the
convolutional neural network to have a grid-like topology with a small amount of computation, which
is advantageous for processing a large amount of RF data. In fact, CNN has achieved excellent results
in processing audio data, and this advantage is consistent when dealing with complex baseband signals.
Therefore, we believe that CNN, a mature deep learning model, has great potential for application in
AMR tasks. Hauser et al. [19] discussed the impact of deep neural network design on communication
receivers. Besides, the effects of certain errors bound in detection and isolation are analyzed. It was
shown that for the frequency offset and sample rate offset not covered in the training samples, there
is a significant decline in the test samples. Summarizing the existing research on the application of
classification on raw baseband signals, there is less consideration of the errors introduced in signal
detection and isolation and the robustness of the algorithm performance in such offsets. However, in
blind wide-band signal processing, these offsets caused by parameter estimation or hardware defects
are difficult to avoid. In the AMR system, a technique that can reduce the influence of signal isolation
and detection error needs to be proposed. In this article, we study the AMR method based on the raw
IQ signals under parameter estimation errors. Firstly, the influence of parameter estimation errors on
the performance of the CNN classifier is analyzed. Then, an AMR method based on a spatial transform
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network (STN) is proposed. By applying this improved model, the robustness of the AMR method
under parameter estimation errors has been significantly improved.

The remainder of this paper is presented as follows: In Section 2, we provide an overview of flow
for blind wideband signal capture model. Section 3 introduces the classification method based on STN.
Section 4 introduces the evaluation setup for AMR. Section 4 presents simulations and results. Finally,
Section 5 concludes the paper.

2. Wireless Signal Modulation Recognition Model

In digital communications in real radio frequency (RF) environments, the transmitter forms a
binary bit stream of information. After that, the bits stream is encoded and modulated, and finally
transmitted via the wireless channel. During the modulation process, the baseband signal is moved to
the shifted by the carrier frequency to produce the wireless signal.

A typical flow of modulation recognition signal processing is presented in Figure 1. At the
receiving end, we consider a typical communication receiver in the noncooperative mode. In general,
there is only a partial or even minimal prior knowledge of communication. The receiver monitors
the activity of the radio frequency (RF) signal in the electromagnetic spectrum of interest through a
spectrum analyzer and gives an estimated value of the centre frequency, the bandwidth of the signal.
Based on these parameters, the receiver through the bandpass filtering and downconverts to flit the
signal capture to appropriate intermediate frequency (IF). For the digital communication signal, the
phase-locked loop is used to further accurately extract the carrier frequency and phase parameters
of the intermediate frequency signal. Then, using the orthogonal downconversion technique, the
baseband signal of the unknown modulation mode is outputted at the output end of the matched
filter. Then, parameters such as baud rate and symbol timing are obtained by symbol synchronization
technology, matched filtering, and synchronous sampling are performed to obtain a symbol sequence
of an unknown modulation mode. The signal is then subjected to subsequent demodulation. Our
approach focuses on AMR on complex baseband signals, which is a coherent, asynchronous AMR
method. During signal reception and processing, due to imperfections in the detection and isolation
stages, carrier frequency estimation errors, bandwidth estimation errors, etc. are introduced during the
RF signal to the IF signal acquisition process. In the processing of the intermediate frequency signal to
the complex baseband signal, carrier frequency and phase synchronization errors are also introduced.
Then, given the channel impairments and hardware defects of the receiver, the baseband signal we
obtained is the corrupted version of the originally transmitted signal. In the AMR application for
the original baseband signal, the definition and evaluation of these impairments is very important.
We define typical signal impairments:

• Frequency Offset: Frequency offset is introduced during the RF signal isolation phase and IF
signal parameter estimation. The receiver local oscillator (LO) introduces frequency deviation
due to hardware impairments.

• Phase offset: Phase offset is caused by the frequency offset of LO, which causes an instantaneous
phase drift of signal captures.

• Timing drift: Timing drift is caused by unmatched sampling rates. It is introduced due to the
estimated bandwidth deviation of the RF signal isolation phase. Besides, the sampling rate error
is introduced due to hardware impairment of the receiver LO.

• Noise: Noise introduced by components such as the antennas and receivers. We usually model
this noise as additive white Gaussian noise (AWGN).
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Signal capture and processing flow of the receiver includes: amplifying, mixing, low-pass filtering,
and analog-to-digital conversion. Then, the raw baseband IQ signal is obtained. N-th point sampling
are performed on the baseband IQ signal. We present the values as rraw ∈ CN . This matrix is the
input sequence of the AMR, which contains information if signal captures such as the type of wireless
technology, the type of modulation method, interferer, etc. The task of AMR is to obtain the type of
modulation through this segment of the signal capture. Therefore, the output of the end-to-end system
can be expressed as l. The output of the system output is the judgment of AMR, which is the highest
confidence of modulation type in the result set. Then, the observed data consists of k pairs of input
and output. For AMR tasks, these pairs can be organized into datasets S, which can be denoted as:

S = {(rraw1, l1), (rraw2, l2), . . . (rrawk, lk)} (1)

3. Proposed Method

To effectively perform the raw complex baseband signal AMR, we further clarify the four typical
errors defined in Section 2. This definition helps us to generate simulation offsets and propose
corresponding methods for generating mechanisms. Among these four kinds of errors defined in
Section 2, the frequency offset and phase offset are caused by frequency offset, and the time drift is
caused by the sample rate. Therefore, the method we propose mainly focuses on frequency offset,
sample rate offset and noise. Our basic idea is to adaptively correct the above offset by designing a
parameters transformer module. We introduce the attention model in the field of computer vision into
AMR to solve this problem.

Spatial transformer networks (STN) [20] is the deep learning attention model proposed in 2015.
It is an end to end feedforward network. The basic structure of STN includes localization net,
grid generator, and sampler. The localization net provides parameter regression, the grid generator
implements pixel coordinates, and the sampler implements microscopic coordinate transformation.
In the field of computer vision, STN is widely used to implement image translation, scaling, rotation
etc. through 2D affine transformation [21], superior performance in image alignment tasks is shown
in the paper. In the geometric corrections of image synthesis, STN also has good results [22], robust
normalization is performed by application of the 3D morphable model. O’shea [23] made an initial
attempt to introduce STN into the field of radio signals. He designed an attention model based on CNN.
The classification accuracy test was carried out on the RadioML 2016.04C [24] dataset, but the results did
not reflect the role of the proposed method in signal synchronization and regularization representation.

We propose a new signal classification network based on STN architecture, which introduces
the parameter transformation of the radio domain. This architecture normalizes the signal before
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classification, automatically reducing the impact of sample rate offset and frequency offset on
classification. Through the introduction of this attention model, our classification results exceed
our nonattention model, the classifier discriminant task is reduced, and the network performance is
improved. The framework we propose consists of two parts, one is the signal classifier and the other
one is signal spatial transformer module (SSTM). The proposed AMR system is shown in Figure 2.
To establish an AMR system under the parameter estimation error. We must develop a transform
that adaptively corrects the estimation errors described above. Therefore, we designed the STN-based
signal spatial transformer module (SSTM). This module is cascaded before the signal classifier. SSTM
includes automatic transformation and the signal parameter estimation network, grid generator, and
signal sampler. After SSTM, we implement a CNN network for signal classification. We evaluated
various network structures with variation between activation functions, connections, and loss function.
The structure and hyperparameters of the network have been experimentally adjusted to optimize
performance, and detailed parameter setting is listed in Section 4. We regard this CNN classifier as
the baseline for AMR. We design the structure of the proposed method through a lot of experiment.
An important principle is to design the SSTM separately after using the optimal baseline classifier as
the evaluation criteria. In this section, we mainly introduce the implementation of SSTM.
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3.1. Automatic Signal Transformation

In this paper, automatic signal transformation involves two signal processing methods, one is the
real-value equivalent representation of the raw complex baseband signal, and the other is based on the
original signal amplitude and phase extraction representation. These two transformations are based
on signal modulation characteristics. We apply these two transformations to the raw baseband signal
rraw ∈ CN for better extraction of features. The transformations are as follows:

Transformation (IQ vector): the k-th point raw signal data rraw ∈ CN can be translated to the k-th
feature vector xk ∈ RN . Then, the in-phase and quadrature component parts of the complex baseband
signal rraw ∈ CN are represented as two real-valued matrices xI , xQ, that is:

xk
IQ =

[
xI

T

xQ
T

]T

(2)

For xk
IQ ∈ R2×N , mathematically, the transformation can be written as

fTran1 : CN → RN×2

rraw → xk
IQ (3)
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Transformation (A / φ vector): the k point raw signal data rraw is mapped into the k-th feature

vector xk
IQ. We use the phase vector xA and magnitude vector x

φ
to represents xk

IQ, that is:

xk
A/ φ

=

[
xA

T

x
φ

T

]T

(4)

where, the xA and x
φ

is calculated with

x
φ
(n) = (xI(n))

xA(n) = arctan2
(

xI(n)
xQ(n)

)
, n = 0, 1, . . . , N − 1

(5)

In this transformation, we use the atan2 function to obtain continuous phase changes.
The ordinary atan function causes the sign of the phase to change, losing the phase information
of the second and third quadrants. Then, a real-valued convolution layer is used to augment the

feature map. For xk
A/ φ

, we use M convolution kernels with 2× 8 receptive fields to convolve and get
the transformed output as

fTran2 : RN×2 → RN×2 → RN×M×2

xk
IQ → xk

A/ φ → xk
Tran2

(6)

3.2. Signal Parameterized Estimation Network

The signal parameterized estimation network takes the input feature map U ∈ RM×N×2, outputs
a set of signal estimation parameters θ. θ is a set of parameters used for signal transformation.
In this paper, we consider the variation caused by time drift, symbol rate conversion, sample rate
offset, and centre frequency offset. Time drift involves shifting the signal with the correct initial
amount. The symbol rate conversion and sample rate offset can be corrected using the correct sample
increment resampling and interpolation. We implement these two changes to approximate the 2D
affine transformation in the image. (

θ11 θ12 θ13

θ21 θ22 θ23

)
(7)

For centre frequency offset correction, we estimate the phase offset for each sample point to
compensate with

nθ3, n = 0, 1, . . . , N − 1 (8)

The phase noise caused by the CFO is compensated by the phase offset of a constant term θ4.
θ = fest(U) is used to represent the signal parameterized estimation function. Within the scope of

this paper, θ has eight parameters, including six parameters of the 2D affine transformation and two
parameters of phase and carrier frequency recovery.

We use a deep neural network model to implement θ. Long short-term memory (LSTM) [25]
network is a recurrent neural network suitable for processing and predicting important events with
relatively long intervals and delays in time series. LSTM is an effective technique for solving long-order
dependency problems. Because of the specificity of radio data, the sampling points are highly in
temporal correlation. Different modulation signals have trip points in phase and amplitude. The range
of signal contextual information is large, and this problem causes the influence of the input of the
hidden layer on the network output to decline as the network loop continues to recurse. Therefore, we
use Bi-directional LSTM [26] to extract radio signal modulation features, which is an extended model
of LSTM. The Bi-LSTM contains two input sequences, one is the positive sequence and the other is the
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inverted sample of the input sequence. The two-way cyclic network structure can perform well on
sequence classification problems. The architecture of Bi-LSTM presents in Figure 3.
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In the signal parameterized estimation network model, we implemented two Bi-LSTMs, then two
fully connected layers. Finally, θ is obtained by the linear activation function. We use the appropriate
weight initialization, dropout, and regularization tricks to achieve optimal performance under this
network model.

3.3. Signal Grid Sampling

We normalize signal by transformation models, which are widely used in CV. The transformation
model is capable of fitting geometric distortions between the source image and the background image
by geometric transformation. The transformation models that can be used are as follows: rigid
transformation, affine transformation, perspective transformation, and non-linear transformation.
To perform the deformation of the input feature map, we apply resampling and transformation
by sample point T(θ). In our method, the resampled pixels

(
xi

t, yi
t) form the output feature map

V ∈ RM×N×2. Based on the analysis of the radio signal characteristics in the previous part, we consider
the variation caused by time drift, symbol rate conversion, sample rate offset, and centre frequency
offset. Time drift involves shifting the signal with the correct initial amount. This task is similar to
translation in the 1D affine transformation. Translation in the time dimension provides correction for
time drift. The symbol rate conversion and sample rate offset can be corrected using the correct sample
increment resampling and interpolation. This task is similar to scaling in the 2D affine transform.
We implement these two changes to approximate the 2D affine transformation in the image. We define
the transformation T(θ), consisting of two parts. One is the 2D affine transform Aθ , then there is the
frequency and phase compensations Rθ . In this affine case, the pointwise transformation is

(
xi

s

yi
s

)
= Aθ ·Rθ ·

 xi
t

yi
t

1

 =

(
θ11 θ12 θ13

θ21 θ22 θ23

)
· (nθ3 + θ4) ·

 xi
t

yi
t

1

,
i = 0, 1, . . . , M× N − 1

n = ceil(i/M)

(9)
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where (xi
s, yi

s) are the target coordinates of the grid in the output feature map. The resampling
application applies the parameters we estimated by signal parameterized to the signal transformation.

4. Evaluation Setup

To mitigate the impact of estimation errors in the detection and isolation stage of a receiver
on AMR, we introduce the attention model of the computer field to AMR. Synthetic radio datasets
containing different estimation errors are used to verify the validity of our proposed method.

4.1. Dataset Description

To evaluate the classification performance of our proposed method, we use datasets that simulate
the centre frequency offset and sample rate offset to train and test the method. In addition to the two
major errors in the datasets, we also consider the damage in a variety of signal transmissions, including
signal arrival times, nonimpulsive delay spread, Doppler offsets, and Gaussian thermal noise. Since
these common time-varying random channel effects exist in most wireless systems, we include these
effects in the datasets as much as possible.

The dataset includes eight digital modulation methods, namely CPFSK, 4-PAM, GFSK, BPSK,
QPSK, 8-PSK, 16-QAM, and 64-QAM. We extract the baseband signal of 128 sample points in the
signal stream generated by the combination of each modulation mode, estimation error, and channel
impairment. We divide signal captures into IQ two-way storage as with the signal representation
described above. With each frequency offset, sample rate offset, and SNR combination, we get 500
test signal captures and 500 training signal captures. Each sample includes 3–20 symbols. The signal
captures are generated at various SNRs between −10 and 20 dB. To simulate different degrees of
frequency offset and sample rate offset, we use the datasets listed in Table 1, ideal detectors without
frequency and sample rate offsets (ideal), Dataset with various sample rate offsets (SRO 1 and SRO 2),
detector with varying carrier frequency offset (CFO 1 and CFO 2). It is worth noting that the datasets
listed in Table 1 are training sets. We train on training sets with different frequency and sample rate
offsets to evaluate the models’ tolerance to parameters estimation error.

Table 1. Considered neural network training scenarios.

Dataset Name Frequency Offset Range Sample Rate Range (Multiple of Bandwidth)

Ideal No offset 2
CFO 1 0.05% of sample rate 2
CFO 2 0.1% of sample rate 2
SRO 1 No offset 1–1.5
SRO 2 No offset 1–4

4.2. Implement Details

We use Keras [27] and Tensorflow [28] mixed programming. Keras is used for definitions of
standard layers, such as pooling, convolution, dense, and Softmax. Tensorflow is mixed with defining
custom layers in SSTM. We use a deep learning workstation with the high-performance central
processing unit (CPU) and NVIDIA 1080Ti graphics card. The neural networks parameters are
optimized by the ADAM [29] algorithm. We train 500 epochs on the networks with an optimized
learning rate. The learning rate is estimated based on Bayesian optimization [30] with the open source
Hyperopt [31] library. Hyperparameters used for training are listed in Table 2. The structure of the
baseline network is shown in Table 3.
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Table 2. Hyperparameters in signal spatial transformer module (SSTM)-based method training.

Hyperparameters Value

Loss Function Categorical Crossentropy
Optimizer ADAM

Dropout Rate 0.4
Initializer Lecun Normal [18]

Learning Rate 0.0024 (baseline), 0.00081(SSTM)
Batch Size 256

Epochs 500

Table 3. Structure of baseline classifier.

Layer Type Input Size Parameters Activation Function

Convolution Layer 128 × 128 6 × 6 filter kerne
l64 feature maps Leaky ReLU

Pooling Layer 128 × 128 × 64 2 × 2 max pooling None

Convolution Layer 64 × 64 × 64 3 × 3 filter kernel
32 feature maps Leaky ReLU

Pooling Layer 64 × 64 × 32 2 × 2 max pooling None
Flatten 32 × 32 × 32 Flatten feature map None
Dense 32,768 64 neurons ReLU
Dense 64 8 neurons Softmax

5. Simulations

To mitigate the impact of estimation errors in the detection and isolation stage of a receiver
on AMR, we introduce the attention model of the computer field to AMR. Synthetic radio datasets
containing different estimation errors are used to verify the validity of our proposed method.

5.1. Baseline Convolution Networks

To evaluate the impact of CFO on classification performance, we use CNN as a baseline.
The baseline network uses training and optimizing methods described in [16], which can
representatively evaluate classification performance under different degrees of offset. We train the
baseline networks on the CFO1 and CFO2 datasets. For test scenarios, the CFO is shifted from −6% to
6% of the sample rate. Figure 4 shows the classification accuracy in the CFO1 and CFO2 scenarios.
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For frequency offset outside the training range, the classification performance of CNN classifiers
declines rapidly. The consistent decline in performance occurred in both training datasets. This shows



Appl. Sci. 2019, 9, 1010 10 of 15

that the baseline classifier is sensitive to frequency offsets. Besides, at all frequency offsets, as the SNR
is shifted from −10 to 10 dB, the classification accuracy continues to increase significantly. However,
when SNR exceeds 10 dB, the classification accuracy cannot be further improved. We believe this is
because as the SNR increases, higher SNR does not provide more useful information to help optimize
network parameters.

We test on signal captures with sample rate range from 1 to 8 multiples of the bandwidth to verify
the effect of sample rate offset on modulation recognition performance. We train the baseline networks
on the SRO1 and SRO2 datasets. As presented in Figure 5, for sample rate offsets outside the training
range, the classification accuracy decreases rapidly, and this reduction occurs in both test set scenarios.
Besides, this reduction in classification performance shows consistency across all SNR scenarios. At the
same sample rate offset, the classification accuracy versus SNR is similar to frequency offset scenario.
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In Figure 6, we present a sectional view of overall accuracy versus the frequency offset and sample
rate when SNR is fixed at 20 dB. These simulations help to show the trends observed in Figures 4
and 5. Numerical analysis for all training scenarios in typical SNRs and offsets is shown in Table 4.
In all offsets and training set scenarios, as the SNR increase, the classification performance can be
significantly improved. For low frequency and sample rate offsets, the classifiers on all training sets
have similar performance. For medium frequency and sample rate offsets, the classifiers obtained on
the SRO2 and CFO2 training sets perform significantly better than the classifiers obtained on the SRO1
and CFO1 training sets. As frequency and sample rate offsets increase, the classification performance
decreases consistently across all SNR and training set scenarios.
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Table 4. Performance comparison for different training scenarios in typical SNR.

Scenarios SNR Low Offset Medium Offset High Offset

SRO1
High 0.89 0.29 0.18

Medium 0.80 0.24 0.17
Low 0.25 0.18 0.15

SRO2
High 0.88 0.71 0.34

Medium 0.80 0.62 0.31
Low 0.32 0.27 0.17

CFO1
High 0.85 0.41 0.31

Medium 0.79 0.39 0.28
Low 0.52 0.25 0.17

CFO2
High 0.82 0.53 0.37

Medium 0.78 0.48 0.30
Low 0.47 0.28 0.20

5.2. Convolution Networks with SSTM

We apply the module proposed in Section 2 to the baseline CNN network. Using the same training
and test scenarios as the baseline, we get typical results shown in Figure 7 for the CFO1 and SRO1
datasets. In Figure 7a, it is shown that our method achieves a classification accuracy improvement of
5% to 30% over the absolute value of the frequency offset from 0.1% to 0.4%. For smaller frequency
offsets, the classification performance is improved more. The proposed method achieves a broader
performance gain over a larger range of training offsets. The increase in classification accuracy arises
within the entire test dataset. For the performance decline caused by sample rate offset, our method
shows better results. In Figure 7b, the optimization of classification performance is demonstrated
in two aspects: Firstly, due to the introduction of SSTM, higher classification accuracy is obtained
in the sample rate within the range of training datasets. Then, a consistent classification accuracy
improvement is produced at sample rates outside the range of the training dataset. When the test
sample rate range exceeds the training dataset, the classification accuracy of our method will not
drop drastically.
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In Figure 8, we plot a cross-sectional view of overall accuracy versus frequency offset or symbol
rate at a fixed 20 dB SNR. According to the different processing steps of the received signals, the signal
models can be divided into the following three types: model of radio frequency signals (MRF), model
of baseband signals (MBB), and model of the output of the matched filter at receiver (MMF). According
to the preprocessing requirement, the AMR method can be divided into three types: environment of
ideal synchronization (EIS) algorithm, environment of nonideal synchronization (ENIS) algorithm,
and environment of no synchronization (ENS) algorithm. Our method is an ENS method under
the MBB signal model. Therefore, we compare our method with the DL-based method of different
synchronization requirements under MBB model. For ENS and ENIS methods, we compare the
methods with RTN, which is proposed by O’shea [23]. For EIS methods, we compare with the
CNN method with the best performance in the DL-based method, namely the baseline method in
this article. Besides, the effects of different signal parameterized estimation network structures on
classification performance are evaluated, including multilayer perceptrons and CNN. We represent
these frameworks as SSTM_Dense and SSTM_CNN. The compared networks have undergone the
same optimal hyperparametric search to achieve optimal performance.

Appl. Sci. 2019, 9, 1010 12 of 15 

  
(a) (b) 

Figure 7. Overall classification accuracy of the classifier with SSTM for various training scenarios vs. 
frequency offset and SNR. (a) CFO1; (b) SRO1. 

In Figure 8, we plot a cross-sectional view of overall accuracy versus frequency offset or symbol 
rate at a fixed 20 dB SNR. According to the different processing steps of the received signals, the 
signal models can be divided into the following three types: model of radio frequency signals (MRF), 
model of baseband signals (MBB), and model of the output of the matched filter at receiver (MMF). 
According to the preprocessing requirement, the AMR method can be divided into three types: 
environment of ideal synchronization (EIS) algorithm, environment of nonideal synchronization 
(ENIS) algorithm, and environment of no synchronization (ENS) algorithm. Our method is an ENS 
method under the MBB signal model. Therefore, we compare our method with the DL-based method 
of different synchronization requirements under MBB model. For ENS and ENIS methods, we 
compare the methods with RTN, which is proposed by O’shea [23]. For EIS methods, we compare 
with the CNN method with the best performance in the DL-based method, namely the baseline 
method in this article. Besides, the effects of different signal parameterized estimation network 
structures on classification performance are evaluated, including multilayer perceptrons and CNN. 
We represent these frameworks as SSTM_Dense and SSTM_CNN. The compared networks have 
undergone the same optimal hyperparametric search to achieve optimal performance. 

  
(a) (b) 

Figure 8. Overall classification accuracy with various offsets in SRO1 and CFO1 scenarios with the 
aforementioned methods. (a) CFO1; (b) SRO1. 

It is shown in Figure 8a that, for the frequency offset, the methods based on our network model 
provide a certain performance improvement. The Bi-LSTM method provides the best results, 
followed by CNN and multilayer perceptrons [32]. It is shown in Figure 8b that for the symbol rate, 
Bi-LSTM in our network model yields an increase in accuracy overall test ranges. The network 
performance improvement with the addition of the CNN-based SSTM module is gradual, with 
performance decline at higher dynamic range symbol rates. We believe this is because CNN’s limited 

Figure 8. Overall classification accuracy with various offsets in SRO1 and CFO1 scenarios with the
aforementioned methods. (a) CFO1; (b) SRO1.

It is shown in Figure 8a that, for the frequency offset, the methods based on our network model
provide a certain performance improvement. The Bi-LSTM method provides the best results, followed
by CNN and multilayer perceptrons [32]. It is shown in Figure 8b that for the symbol rate, Bi-LSTM
in our network model yields an increase in accuracy overall test ranges. The network performance
improvement with the addition of the CNN-based SSTM module is gradual, with performance decline
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at higher dynamic range symbol rates. We believe this is because CNN’s limited spatial convertibility
is unable to cope with a wide range of difference in signal captures, resulting in the inability to
effectively train at larger symbol rates. The multilayer perceptron is close to the baseline performance.
Overall classification accuracies of all methods at typical offsets are shown in Table 5, with SNR
fixed at 20 dB. With all methods increasing with frequency or sampling rate offset, the classification
accuracy is significantly reduced. The proposed method achieves optimal performance with frequency
and sample rate shifts. Our method has a promotion of 51% at high sampling rate offset, which
indicates that the application of SSTM corrected sample rate offset implicitly. Thereby, the signals of
various sample rate offset are normalized. This processing reduces the classifying difficulty of the
baseline classifier.

Table 5. Performance comparison for methods versus typical offsets in SRO1 and CFO1 scenarios.

Framework Offset SRO1 CFO1

Baseline
High 0.17 0.31

Medium 0.70 0.41
Low 0.88 0.85

RTN
High 0.29 0.31

Medium 0.64 0.44
Low 0.87 0.83

SSTM_CNN
High 0.26 0.35

Medium 0.77 0.53
Low 0.88 0.80

SSTM_Dense
High 0.17 0.44

Medium 0.70 0.57
Low 0.89 0.83

SSTM_BiLSTM
High 0.68 0.46

Medium 0.85 0.62
Low 0.91 0.84

6. Conclusions

Using deep neural networks for AMR directly on IQ signals is currently common. However,
the performance of the network in the actual scene is greatly affected by errors introduced in the
signal acquisition process. Also, automatic modulation recognition for different symbol rate signals
is also an urgent problem to be solved without considering resampling. Aiming at the dependence
of modulation identification on parameter estimation error, such as carrier frequency and symbol
rate, we proposed an integrated method of parameter estimation and modulation recognition based
on the attention model. We establish a baseline CNN network to evaluate the effect of parameter
estimation errors introduced during detection and isolation. With the idea of a spatial transformation
network in the field of deep learning, we concatenate the SSTM before convolutional neural networks.
The signal transformation network eliminates signal variations introduced in the wireless channel
and receiver hardware by adaptively applying parameter transformations. This includes resampling
to adjust the time offset, symbol rate, and clock recovery, mixing with the carrier to correct frequency
offset. Applying this improved model to AMR significantly reduces the dependence of recognition
performance on parameter estimation. The results prove that our method can bring significant
performance improvement under the influence of offset. Our method realizes the integration
of parameter estimation and signal captures classification, reduces the dependence on parameter
estimation errors, and performs well under fading channel. However, our method exhibits greater
tolerance to the offsets in symbol rate estimation than frequency offset, and this result deserves
further study. Besides, no further analysis is performed on the SSTM processed signals, which require
further research.
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In future work, we plan to explore the application of the attention model in AMR, such as channel
blind equalization, synchronization, and resampling.
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