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Abstract: It is necessary to conduct a safety assessment for pipelines which are regarded as important
lifeline projects after an earthquake. Since the random process of loading in earthquake engineering
requires a large amount of samples, this paper establishes a non-random vibration method based on
convex model theory and applies it to small sample engineering. Moreover, a space–time analytical
model of buried pipeline and a finite element model are established to solve the dynamic response of
pipelines with non-random process seismic excitation. Furthermore, the randomness of the stress
values of the pipeline subjected to earthquake and the fuzziness of the degree of damage to pipelines
are considered. Therefore, a novel method for assessing damage to pipelines is proposed based
on cloud model. The results indicate that an analysis of non-random vibration combined with the
cloud inference method can solve the fuzziness and randomness of the quantitative description and
qualitative concept conversion for damage evaluation of pipelines. The method is also an adaptive
and effective assessment method for pipelines exposed to earthquake and is able to promote safety
management of pipeline engineering.
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1. Introduction

Recently, pipelines have become regarded as important lifeline projects for transporting energy [1,2].
As the dependence of global energy demand on oil/gas grows steadily, pipelines have become the primary
transportation infrastructure [3]. Many methods for monitoring the condition of pipelines and for leak
detection/pinpointing through proper sensors have been developed [4–7]. However, the 21st century is
an era of frequent earthquakes [8,9]. The Hyogo-Ken Nanbu earthquake of 1995 in Japan was a recent
example of an earthquake which caused damage to pipelines; it not only led to gas leakage, but also
caused fires [10]. Furthermore, the Chi-Chi earthquake of 1999 in Taiwan caused serious damage to
pipelines along with serious economic losses and environmental damage [11].

In order to analyze the response of pipelines to seismic loads, numerous research methods have
been presented. Wave theory is a classic analysis applied to the response of pipelines to earthquakes.
However, this method can only be used for simply static analysis, without considering the dynamic
behavior of a pipeline in seismic analysis [12,13]. It is well known that seismic loading is described
by a random process. Random seismic response analysis of buried pipelines has been presented,
considering the random spatial influence [14,15]. In some areas, it is impossible to obtain sufficient
seismic data samples, and therefore the convex model theory is proposed [16]. A structural dynamic
response method based on interval analysis has been put forward, which involves only the boundary
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of uncertain parameters [17]. Subsequently, many interval analysis techniques were used to calculate
the static response and dynamic response of uncertain structures with the loads [18,19]. Therefore,
the establishment of a non-random process model for seismic loads based on small amounts of
data is an effective complement to the random vibration method for investigating the response of
pipelines with earthquakes. The application of fuzzy comprehensive evaluation model focuses on
management science, safety assessment, risk assessment, and other fields [20]. In a fuzzy set, the degree
of membership is used to describe the degree of comparison, which is better than the certain evaluation.
However, the determination of precise membership is subjective and usually relies on expert experience
or statistical methods. Meanwhile, evaluation itself has characteristics of randomness and fuzziness.
Therefore, the cloud model is proposed to transform between qualitative knowledge description and
qualitative concept, which has quantitative value to reflect the uncertainty of the concept. In the
meantime, the cloud inference can interpret not only classical random theory and fuzzy set theory,
but also define the randomness and fuzziness of data [21]. Thus, the cloud inference is more applicable
and universal in the representation of uncertain conceptions when referring to the evaluation of
practical engineering [22,23].

In this paper, a model of buried pressure pipelines with seismic excitation of non-random
processes is proposed to solve the seismic response with a small sample. After obtaining the interval
response results, the fuzziness and randomness of the membership relationship are both considered.
A corresponding analysis method of pipeline damage degree based on cloud model is additionally
obtained to make the evaluation result more objective and accurate.

2. Non-random Process

2.1. Basic Theory of Non-random Process

A traditional random process means a corresponding random variable defined at each point
of a parameter set, and the magnitude of the value constantly changes with time t. Thus, the result
of an observation for the whole process of change is a function of time t [24]. The non-probabilistic
convex model process is used to describe the uncertainty excitation. Therefore, the convex model
process is used to describe the non-random process. Two boundary curves are used to define the
time-varying uncertainty of the parameters, which greatly reduces the dependence of the sample.
Thus, this provides an effective mathematical tool for the analysis of structural time-variation and
dynamic uncertainty with insufficient parameter information.

The convex model process is defined as [25]:

∀ti ∈ T, i = 1, 2, 3 · · · n
X(ti) = [XL, XU]

(1)

where X(ti) is an interval at any time; XL is the lower boundary of the interval; and XU is the upper
boundary of the interval.

All possible types and shapes of the indeterminate process X(ti) would be included in the area
consisting of the upper and lower boundaries, as shown in Figure 1. When the convex model is
one-dimensional, it is an interval model.

The convex model consists of three numerical characteristics: interval midpoint XC, interval
radius XR, and coefficient of variation ηx, which have the following expressions:

XC(t) =
XL(t) + XU(t)

2
(2)

XR(t) =
XU(t)− XL(t)

2
(3)

ηx =
XC(t)
XR(t)

(4)
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where XC is the interval midpoint, described the magnitude relating to time; XR is the interval radius,
represented the change of the amplitude; and ηx is the coefficient of variation function, indicating the
uncertainty level.Appl. Sci. 2019, 9, x 3 of 17 
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Figure 1. Stationary non-random process.

2.2. Non-stationary Non-random Process Model for Seismic Loads

From a statistical point of view, the random process of earthquakes is divided into stationary
random process and non-stationary random process [24]. The non-random process is divided into
stationary non-random process and non-stationary non-random process [26]. The random process
relies on a large sample, however the non-random process only focuses on the boundary of the
vibration process, which provides an effective solution to the vibration analysis with insufficient
information. Indeed, compared to the huge computational complexity of random processes,
the analysis of non-random processes involves less computational work, and therefore also has
lower computational costs.

In stationary random process, the median function and the radius function are constant and the
autocorrelation function and the autocorrelation coefficient function are only related to time interval
τ and are independent of time t. The stationary non-random process is shown in Figure 2, and its
definition can be expressed as follows:

XC(t) = K1 (5)

Xr(t) = K1 (6)

cov(x1, x2) = K(τ) (7)

ρx1x2 = ρ(τ) (8)

where K1 and K2 are constants; τ is the gap time; and C(τ) and ρ(τ) are functions of τ.
However, the practical earthquake load has irregular movement and is a non-stationary process

in statistics. Non-stationary non-random process refers to all possible types and shapes in the interval
of the upper and lower boundary envelopes, as shown in Figure 2. Hence, the non-random process
can be defined as:

If ∀X I
i ∈ ψ

Then X I(t) =
(
X I

1(t), X I
2(t), · · · , X I

n(t)
) (9)

where ψ is a convex process model.
According to the random characteristics of non-stationarity in practical earthquake,

the non-stationary model of the uniform modulation process can be expressed as:

y(t) = g(t)X(t) (10)
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where X(t) is the stationary interval process of ground motion; and g(t) is the three-stage
non-stationary envelope function, which has the following expression [27]:

g(t) =


(t/t1)

2, 0 ≤ t < t1

1, t1 ≤ t < t2

e−c(t−t2), t2 ≤ t
(11)

where c is a constant; and t1 and t2 are the rise time and fall time of the peak, respectively.Appl. Sci. 2019, 9, x 4 of 17 
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Figure 2. Non-stationary non-random process.

3. Dynamic Analysis of Buried Pressure Pipelines

3.1. Seismic Response of Buried Pipelines

Research and seismic damage records show that the axial influence of buried pipelines subjected
to seismic loading is much greater than the lateral impact [27–29]. Therefore, this paper only considers
the axial seismic behavior of the pipeline. When the random process is processed as an interval
process based on the analysis of the non-random vibration, the response of the structure should have
forms of intervals with upper and lower bounds [25]. With limited sample information of excitation,
the non-random vibration method can reduce the dependence on the sample and provide feasible
guidance for seismic research of pipelines with lack of information.

The interaction between soil and pipeline is modeled by using a nonlinear Winkler Foundation
model, in which the interaction behavior is represented by nonlinear discrete soil springs and dampers.
The basic assumption for the interaction of soil and pipeline can be summarized as follows:

(1) It is assumed that the site conditions and the soil parameters are unchanged along the pipelines;
(2) The pipe damping is extremely small compared to the soil damping of the foundation.

Therefore, the material damping of the pipeline itself can be ignored;
(3) The soil around a pipeline is simplified as a continuously uniform distributed damper and

spring as shown in Figure 3.
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Since a pipeline is a long-span structure, it is necessary to consider the temporal and spatial
changes of the ground motion. Combined with the previous analysis, the axial dynamic equation for
establishing a pipeline suffered from earthquake has the following form:

m
..
u(x, t) + c

.
u(x, t) + ku(x, t)− K

∂u(x, t)
∂x2 = kug(x, t) + c

.
ug(x, t) (12)

where m is the weight of the pipeline; c is the damping coefficient of the medium around the pipeline;
k is the stiffness coefficient around the pipeline; K is the axial stiffness of the pipeline; x is the
axial coordinate of the pipeline; ug(x, t) is the axial displacement of the site subjected to earthquake;
and u(x, t) is the axial displacement of the pipeline.

Research has shown that the axial displacement of a pipeline is the sum of the static displacement
caused by the site and the dynamic displacement caused by the inertia and damping of the pipeline [30,31].
Based on the series solution of buried pipeline with multipoint excitation, dynamic displacement can be
represented as:

uD(x, t) =
∞

∑
i=0

qi(t) cos
iπx

l
, i = 0, 1, 2, 3 · · ·∞ (13)

where uD(x, t) is the dynamic displacement changing with time; l is the length of the pipeline; and qi(t)
is the generalized coordinate, which can be obtained according to the decomposition of vibration mode.

The analytical solution of generalized coordinates has the following expression:{
q0(t) = 1

2ω0

∫ l
0 exp[ξ0ω0(t− τ)]

..
a0(t) sin ω0(t− τ)dτ

qi(t) = 1
ωi

∫ l
0 exp[ξiωi(t− τ)]

..
ai(τ) sin ωi(t− τ)dτ, i = 1, 2, 3 · · · n

(14)

where ξi is the damping ratio corresponding to the i-th mode of vibration; and ωi is the damped

vibration frequency of the pipeline, which can be expressed as
√(

i2π2K
l2m + k

m

)(
1− ξ2

i
)
.

As mentioned before, in the response of the pipeline, static displacement is caused by site
displacement. By taking static analysis into consideration, its equation can be constructed and has the
following form:

kuS(x, t)− K
∂uS(x, t)

∂x2 = kug(x, t) (15)

where uS(x, t) is the static displacement.
Based on the theory of series solution, the equation of static displacement is given by [30,31]:

uS(x, t) =
1
l

∫ l

0
ug(x, t)xdx +

∞

∑
i=0

2k
l

∫ l
0 ug(x, t) cos iπx

l dx

k + K i2π2

l2

cos
iπx

l
(16)

To obtain the more actual stress response, the axial displacement of the pipeline subjected to
earthquake can be expressed as:

u(x, t) = uS(x, t) + uD(x, t)

= 1
l

∫ l
0 ug(x, t)xdx +

∞
∑

i=0

2k
l
∫ l

0 ug(x,t) cos iπx
l dx

k+K i2π2
l2

cos iπx
l +

∞
∑

i=0
qi(t) cos iπx

l , i = 0, 1, 2, · · · , ∞ (17)

where u(x, t) is the total axial displacement of the pipeline.
The strain of the pipeline can be obtained by using the relationship between stress and

deformation, which is given by:

ε =
1
l2

∫ l

0
ug(x, t)dx +

∞

∑
i=0

2k
l2

∫ l
0 ug(x, t) cos iπx

l dx

k + K i2π2

l2

cos
iπx

l
+

1
l

∞

∑
i=0

qi(t) cos
iπx

l
, i = 0, 1, 2, · · · , ∞ (18)
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where ε is the strain of the pipeline.
Therefore, the stress on a pipeline subjected to earthquake can be obtained by establishing the

following equation:

σ =
E
l2

∫ l

0
ug(x, t)dx +

∞

∑
i=0

2kE
l2

∫ l
0 ug(x, t) cos iπx

l dx

k + K i2π2

l2

cos
iπx

l
+

E
l

∞

∑
i=0

qi(t) cos
iπx

l
, i = 0, 1, 2, · · · , ∞

(19)
where E is the elastic modulus.

3.2. Response of Buried Pressure Pipelines based on Fourth Strength Theory

When a buried pipeline is only subjected to internal pressure, the pipeline produces
circumferential stress, axial stress, and radial stress, as shown in Figure 4. However, the long-distance
buried pipeline is a thin-walled structure in this paper. Thus, the radial stress can be ignored, and the
expression of three directions can be expressed as [32,33]:

σc =
PD
2w

(20)

σa =
νPD
2w

(21)

σr = 0 (22)

where σc is the circumferential stress; σr is the radial stress; σa is the axial stress; D is the diameter; w is
the wall thickness of the pipeline; and ν is the Poisson ratio.
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Strength theory is used to determine whether a material is broken under complex stress conditions.
The fourth strength theory, also known as energy theory of the maximum shape-change, can determine
the conditions of plastic failure [34]:

σs =

√
1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

(23)

where σs is the Von Mises stress; and σ1, σ2, and σ3 are stresses in three main stresses, respectively.
Then, the axial stress on the pipeline can be expressed as the joint effect of the axial stress on the

pipeline subjected to earthquake and the axial stress with the internal pressure:

σA = σe + σa (24)

The Von Mises stress can be obtained by combining σA, σr, and σc, in the following form:

σs =
√(

σ2
c − σAσc + σ2

A
)

(25)
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4. Seismic Damage Assessment based on Cloud Model

4.1. Theory of Cloud Model

The assessment of seismic damage to pipelines has randomness and fuzziness. Since the concept
of the damage degree of pipelines is fuzzy and the stress values obtained by dynamic response are
uncertain, we introduce the concept of cloud to express the randomness and fuzziness through
graphical features. The concept of cloud realizes the mutual transformation of qualitative and
quantitative, and solves the evaluation result of boundary ambiguity and overlap.

Suppose that U is a quantitative domain of exact numerical representation, and C is a qualitative
concept on U. For a quantitative value x ∈ U, the membership degree uc(x) is a description of the
qualitative concept represented by x for C. Thus, the distribution of membership degrees on the
domain U is called the cloud. The value range of uc(x) is [0, 1] and the cloud is a mapping from the
domain U to the interval [0, 1], which can be expressed as [35]:

u : U → [0, 1], ∀x ∈ U, x → u(x) (26)

Each x is defined as a cloud drop, which is a quantitative description of a qualitative concept,
and all the cloud drops are gathered into a cloud. The deterministic levels of different clouds reflect
different ambiguities. Additionally, the cloud drop itself represents a random value. Therefore,
the accuracy of the qualitative description depends on the number of clouds. For example, each cloud
drop, as shown in Figure 5, represents the degree of certainty of the concept, indicating the quantitative
position of the qualitative concept in the numerical space. Thus, the assessment value denotes that
the value corresponding to the different evaluation of the object, and the certainty grade is the degree
of membership.Appl. Sci. 2019, 9, x 8 of 17 
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Figure 5. Cloud model chart.

The cloud model uses the "cloud" to define the fuzziness and randomness of the data, constituting
a transition between qualitative and quantitative. The three numerical characteristics of the cloud
model are expectation Ex, entropy En, and super-entropy He, which are quantitative concepts to
describe the concept of qualitative. The evaluation results of the cloud model expression give the
position of evaluated central value through the expectation, and the entropy and super-entropy
express the randomness and dispersion of the evaluation results. Therefore, the evaluation results
are more objective and accurate. The description of numerical characteristics for expectation, entropy,
and super-entropy are shown in Figures 6–8, respectively.
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drops is drawn. 

Figure 8. Comparison of cloud model with different super-entropies.

This paper establishes a cloud model-based approach to solve the uncertainty and fuzziness
of structural damage assessment, and the damage evaluations of the pipeline with non-random
earthquake are explained by the numerical characteristics of the model. Expectation is a qualitative
description of a representative sample. In this paper, expectation represents the value of pipeline
damage, which reflects the extent of damage. The entropy is used to measure the degree of uncertainty,
and represents the measurability of qualitative concepts. Moreover, the entropy represents the range
of values that can be accepted by the qualitative concept, which is a measure of the qualitative concept,
and it is the fuzzy measure and the degree of dispersion of qualitative concept, reflecting the degree of
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damage and the degree of dispersion of the stress values at each point of each pipeline relative to the
evaluation stress value in this paper. The super-entropy is a measure of uncertainty state, reflecting the
degree of aggregation of stress value. Therefore, the expectation gives the location of the evaluation
center value, and the randomness and discreteness of the evaluation results are represented by entropy
and super-entropy.

4.2. Damage Samples based on Normal Forward Cloud Generator

A normal cloud generator essentially reflects the mapping between qualitative and quantitative,
and is a specific algorithm from the random and fuzzy data. Furthermore, the membership degree is
based on the normal distribution of probability theory and the clock-row membership function in the
fuzzy set.

According to the definition of a positive normal cloud, the generator can produce the required m
drops when the three quantitative features (Ex, En, and He) and the required number of cloud drops
are known. A diagram of the algorithm of the forward cloud generator is shown in Figure 9. For clarity,
the procedure of the normal cloud generator algorithm is described as follows [36,37]:Appl. Sci. 2019, 9, x 10 of 17 
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(1) Generate a normal random number, E′n = N
(
En, H2

e
)
, where En is the expected value and H2

e
is the standard deviation;

(2) Generate a normal random number, xi = N
(

Ex, H′2ni

)
, where Ex is the expected value and H′2ni

is the standard deviation;
(3) x is a specific quantitative value of qualitative concept C, which can be calculated by

Equation (27) to determine the quantitative value of the qualitative value:

u(x) = exp

(
− (x− Ex)

2

2(E′n)
2

)
(27)

(4) Repeat steps (1) to (3) to generate n cloud drops. Therefore, a cloud model through the cloud
drops is drawn.

4.3. Damage Samples based on Normal Backward Cloud Generator

In contrast to the forward cloud generator, three quantitative characteristics of the cloud model
(Ex, En, and He) can be obtained through the cloud drops, as shown in Figure 10. The steps of the
normal cloud generator algorithm are constructed as follows:
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(1) Calculate the sample mean X, the absolute central distance of the first order sample S2,
and sample variance S2 from sample point xi(i = 1, 2, 3 · · · n):

X =
1
m

m

∑
i=1

xi (28)

M =
1
m

m

∑
i=1

∣∣xi − X
∣∣ (29)

S2 =
1

m− 1

m

∑
i=1

(
xi − X

)2

(30)

(2) Obtain expressions of quantitative characteristics (Ex, En and He):

Ex = X (31)

En = n
√

π

2

n

∑
i=1
|xi − Ex| (32)

He =
√

S2 − E2
n (33)

4.4. Assessment Process

The traditional seismic analysis for pipeline takes a section of pipeline as the research object and
obtains the stress response of the pipeline. The stress value determined by the section corresponds
to the yield limit stress of the material as an evaluation of the damage. Finally, the damage of the
pipeline is evaluated by comparing the stress values determined by the section with the yield limit
stress of the material. However, when a buried pipeline is subjected to earthquake, the degree of
damage to the pipeline and its uncertainty cause randomness and fuzziness in the evaluation process.
Thus, it is necessary to establish a method for determining the seismic damage to pipelines, which is
mainly to solve the evaluation indicators of fuzziness and randomness in seismic damage assessment
of pipelines.

Referring to the classical division of damage to pipelines, the grades of damage can be expressed as:

U = [U1, U2, U3, U4, U5] (34)

where U1 represents essential integrity; U2 represents minor damage; U3 represents medium damage;
U4 represents severe damage; and U5 represents destruction.
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According to the three states of failure criteria and interval theory, this paper establishes a new
evaluation norm, as shown as Table 1. By taking cloud model into consideration, the result of assessment
is a bilateral constraint, [a, b], and the cloud parameter computation equations are given by [22]:

Ex =
a + b

2
(35)

En =
a + b

6
(36)

He = k (37)

where a is the lower boundary of the interval; b is the upper boundary of the interval; and k is a
constant adapting to fuzzy comments.

Table 1. Division of degree of damage to pipelines.

Grades of Damage Description Indices

essential integrity good condition σ < [σr]

minor damage non-destructive or appears micro-cracks locally. [σr] < σ < [σb]+2[σr]
3

medium damage joint fracture, local deformation or cracking of
weld seam, slight leakage

[σb]+2[σr]
3 < σ <

2[σb]+[σr]
3

severe damage severe deformation or fracture, cracked weld,
heavy leakage, difficult to repair

2[σb]+[σr]
3 < σ < [σb]

destruction breakage, severe damage to the interface weld,
severe leakage, no repair value [σb] < σ

1 σr is the ultimate compressive strength; σb is the ultimate tensile strength.

To assess the safety of pipelines, the procedure of the assessment method is proposed as shown
in Figure 11. First, the response of interval through non-random process can be obtained. Second,
the assessment system of pipelines depends on the material of the pipeline being established. Third,
the evaluation chart can be established based on cloud model by combining the calculated results with
cloud algorithm. Last, the integrated cloud inference results can be shown intuitively by adding the
practical response of the pipeline.
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5. Example

5.1. Calculation Based on Finite Element

As an example, this paper establishes a model of a pipeline that suffers from the seismic excitation
of a non-random process. The length of the pipeline is 200 m and the material of the pipeline
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is X60 steel. By using Abaqus (Dassault aircraft company, Vaucresson, France), a finite element
software, a three-dimensional finite element model of pipe–soil interaction is established by nonlinear
surface-to-surface contact. The outer wall of the pipeline with high rigidity is selected as the main
surface, and the soil with small rigidity is selected as the surface. The normal contact behavior adopts
“penalty”, and the friction coefficient is 0.5. The soil is simulated by a solid element with a depth of
3 m and the constitutive relation is the Drucker–Prager (D-P) model. The mechanical properties of X60
refer to literature [38], and the basic parameters of the materials are shown in Table 2.

Table 2. Basic parameters of materials.

Type of
Material Density/(kg·m−3)

Elastic
Modulus/Pa

Poisson
Ratio

Expansion
Angle/◦

Friction
Angle/◦

Flow Stress
Ratio

Soil 1867.3 2 × 108 0.4 28.7 18.4 0
Pipeline 7850.0 2.07 × 1011 0.3 — — —

After applying the load, as shown in Equation (38) [39,40], the Von Mises response of the pipeline
can be obtained by using the finite element calculation, as shown in Figure 12. By combining with
theoretical analysis, the result of the interval of response is taken as: [229.63 MPa, 242.28 MPa].

g(t) =


[
−4.671(t/5)2, 3.417(t/5)2

]
, 0 ≤ t < 5

[−4.671, 3.417], 5 ≤ t < 10[
−4.671e−0.3(t−10), 3.417e−0.3(t−10)

]
, t2 ≤ 10

(38)
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5.2. Damage Assessment of a Pipeline

When the stress interval value is obtained, the cloud model map at this time can be obtained by
the forward cloud generator, and the degree of damage to the pipeline can be obtained by comparing
the standard assessment figure of the pipeline damage. According to the assessment of stress grades,
the standard assessment model for seismic damage is proposed based on cloud model, which is
shown in Figure 13a, and combined with the stress response of the pipeline with seismic excitation
of non-random process. The evaluation is shown in Figure 13b. The result indicates that the degree
of damage to the pipeline is “essentially intact”. When the stress interval is [380 MPa, 430 MPa],
the damage degree is between “essentially intact” and “minor damage”, as shown in Figure 13c.
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When the maximum stress values of the pipeline are analyzed, the assessment method is proposed
to describe the fuzziness of the damage and understand the degree of dispersion visually. Thus,
the broad abscissa demonstrates the fuzziness of the results and the advantages of the concept
randomness, making the evaluation results more abundant, and it can more accurately describe the
degree of structural damage. Hence, the degree of structural damage is a process from intact to
damaged and the randomness of concept. From the distribution of the data, the evaluation center
can be seen the location. Moreover, the discreteness and randomness of the results can be expressed
by entropy and super-entropy, which makes the results more accurate. Clearly, for the operation of
the pipeline in the future, it is necessary to improve the maintenance and assessment method of the
pipeline to avoid secondary accident.

6. Conclusion

Since pipelines are the most important transportation structures for energy generation, it is
necessary to assess their safety after an earthquake. By considering the insufficient data from seismic
records, this paper proposes to analyze the response of buried pressure pipelines based on non-random
process. As the degree of damage to a pipeline is not a definite value, but rather is ambiguous,
it is difficult to assess, and the stress values of pipelines have an indeterminate range owing to
non-random excitation. However, combined with the established standard cloud chart, cloud inference
can implement the transition between quantitative description and qualitative concept. Moreover,
this method can also solve the evaluation of interval response referring to the uncertainties and
fuzziness in the damage assessment process. The following conclusions can be obtained by the analysis
of the example in this paper:

1. The seismic excitation with small data is investigated by using non-random process, and the
response of pipeline exposed to earthquake can be obtained.

2. For the design of buried pressure pipeline, the result of dynamic response boundary is easier for
engineers to understand. Therefore, it can be used as a supplement of random process excitation.

3. Combined with the response of non-random process, the method to realize fuzziness and
randomness of interval sample is proposed, and it achieves the conversion between quantitative
and qualitative. Thus, this method can effectively reduce the impact of human factors in the
assessment process and can accurately describe the intermediate state of pipeline damage and
the uncertainty of pipeline stress.

4. The damage model of the pipeline based on cloud model established here can more reasonably
describe the damage of the structure with a certain level, and the assessment result is shown
visually using a cloud chart. This approach has laid the foundation for the safety evaluation of
seismic engineering with small sample in the future.
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