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Abstract: To ease the installation of perforating rebars through multi-holes, an alternative notched
perfobond shear connector was proposed by cutting out the hole edge. This paper presents the
test results of six pull-out specimens with conventional and notched perfobond shear connectors.
The objective was to compare the failure modes and pull-out behaviors of perfobond shear connectors
using circular holes and notched holes. Furthermore, the explicit finite element method was
introduced and validated to generate parametric results for pull-out tests of notched perfobond
shear connectors. A total of 33 parametric simulations were performed to further study the
influences of several variables, including the hole diameter, the cut width, the perfobond thickness,
the concrete strength, the diameter and strength of the rebar, and the strength of the structural steel.
The experimental and numerical results were used to evaluate the previous equations for perfobond
shear connectors. Finally, an alternative equation was proposed to estimate the pull-out resistance of
notched perfobond shear connectors.

Keywords: composite structures; perfobond connector; pull-out test; finite element analysis;
notched hole

1. Introduction

In recent decades, steel and concrete composite structures have been increasingly used in bridge
engineering due to their great structural performance and favorable construction cost. The shear
connection between steel and concrete is critical for the design of composite structures. Among the
various types of shear connectors in the literature [1–8], the perfobond shear connector is one of
the most competitive shear connectors in practice, having a great shear resistance, shear stiffness,
and fatigue strength [9,10]. The conventional perfobond shear connector is a flat steel plate which
makes circular holes. Concrete dowels will form in these circular holes to resist shear forces and
prevent separation between steel and concrete. With the merits of easier installation, no obvious
fatigue problems, higher stiffness, and greater shear resistance, the perfobond shear connectors have
been increasingly used in many types of innovative composite structures [11,12].

When perfobond shear connectors were installed with multi-ribs, it was time-consuming to
perforate the reinforcing bars through many holes on these ribs. To increase the construction efficiency,
a new type of notched perfobond shear connector was developed by cutting out the hole edge of
the perfobond rib, which enabled the reinforcing bars to be directly put into many holes at the same
time, as shown in Figure 1. Extensive research has been performed to study the shear behavior of
the conventional perfobond shear connectors [13–17]. The influences of the specimen dimension,
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the number and size of the hole, the configuration of the rebar in the hole, and the material properties
were investigated. Based on experimental and numerical analysis results, several equations were
proposed to estimate the shear resistance of perfobond shear connectors [13–17]. In comparison, little
research has been done to reveal the shear behavior of notched-type perfobond shear connectors.
The reference was made to the analysis work by Kraus and Wurzer [18].
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Figure 1. Application of notched perfobond shear connector.

Shear connectors are usually used to transfer the shear forces between the concrete slab and
steel beams when composite beams are subjected to longitudinal bending moments. In recent years,
some newly built steel and concrete composite bridges have been designed to bear more lanes by
using steel beams of wide distances and a concrete slab with long cantilevers. In this circumstance,
local transverse bending moments are induced by the wheel load and balanced by contact with
the steel top flange and the pull-out force of shear connectors. A large pull-out force may cause
vertical separation between the steel beam and the concrete slab, which should be prevented to ensure
the structural performance of composite bridges, referring to the study of Lin et al. [19]. However,
little research has been reported on the pull-out behaviors of conventional and notched perfobond
shear connectors [20,21].

In this study, a total of six pull-out tests were performed to compare the failure modes and
the load–separation behaviors of conventional and notched perfobond shear connectors. Moreover,
33 nonlinear finite element models of notched perfobond shear connectors were built to further study
the effects of several parameters, including the hole diameter, the cut width, the perfobond thickness,
the concrete strength, the rebar diameter, the rebar strength, and the steel strength. The parametric
results were generated to evaluate the pull-out behavior of perfobond shear connectors. Finally,
an analytical model was proposed to predict the pull-out resistance of notched perfobond shear
connectors in steel and concrete composite structures.

2. Pull-Out Test

2.1. Test Program

As listed in Table 1, six pull-out tests on specimens with conventional perfobond and
notched perfobond shear connectors were conducted, referring to the previous research in the
literature [20,21] and Eurocode 4 [22]. The aim was to obtain the failure modes, pull-out resistance,
and load–separation behaviors of perfobond shear connectors and to verify the reliability of finite
element analysis. These specimens could be equally divided into two groups in terms of the connector
type. The CPT specimens installed a conventional perfobond rib with a circular hole. The NPT
specimens used a notched perfobond rib with a cut on the hole edge. The main parameters of the
pull-out test specimens were the hole diameter dp, the cut width cw, the cut ratio cw/dp, the diameter of
the rebar dr, the rib length lp, the rib height hp, and the rib thickness tp.
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Table 1. Pull-out test specimens.

Specimen dp (mm) cw (mm) cw/dp dr (mm) lp (mm) hp (mm) tp (mm) Notch

CPT–1 75 0 0 20 250 150 20 No
CPT–2 75 0 0 20 250 150 20 No
CPT–3 75 0 0 20 250 150 20 No
NPT–1 75 37.5 0.5 20 250 150 20 Yes
NPT–2 75 37.5 0.5 20 250 150 20 Yes
NPT–3 75 37.5 0.5 20 250 150 20 Yes

2.2. Specimen Layout

Figure 2 shows the typical layout of a pull-out test specimen. All the test specimens had the same
dimensions. The difference was that the CPT and NPT specimens used perfobond ribs with circular
holes and notched holes, respectively. Each pull-out specimen was composed of one steel H-beam and
one concrete slab. The conventional perfobond ribs with circular holes and the new type of notched
perfobond ribs were both welded upright to one side of the steel beam flange. A perforating rebar was
installed at the center of the hole for each perfobond rib. The steel surface in contact with concrete was
greased to minimize the bonding before concrete casting.
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Figure 1. Layout of push-out test specimen. (a) Front view; (b) side view; (c) top view; (d) 3D view. 

2.3. Details of Perfobond Ribs 

The details of the conventional perfobond rib and the notched perfobond rib were illustrated in 
Figure 3. Both types of perfobond ribs were identical in terms of the hole diameter (dp = 75 mm), the 
rib length (lp = 250 mm), the rib height (hp = 150 mm), and the rib thickness (tp = 20 mm). The 
conventional perfobond rib of CPT specimens made a closed circular hole on the steel plate, while 
the notched perfobond rib of NPT specimens made an open hole with a cut on the hole edge. In this 
pull-out test program, the cut width cw was designed as 37.5 mm, representing half of the hole 
diameter dp. Thus, the cut ratio cw/dp of the notched perfobond rib was equal to 0.5. 
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Figure 2. Layout of push-out test specimen. (a) Front view; (b) side view; (c) top view; (d) 3D view.

2.3. Details of Perfobond Ribs

The details of the conventional perfobond rib and the notched perfobond rib were illustrated in
Figure 3. Both types of perfobond ribs were identical in terms of the hole diameter (dp = 75 mm), the rib
length (lp = 250 mm), the rib height (hp = 150 mm), and the rib thickness (tp = 20 mm). The conventional
perfobond rib of CPT specimens made a closed circular hole on the steel plate, while the notched
perfobond rib of NPT specimens made an open hole with a cut on the hole edge. In this pull-out test
program, the cut width cw was designed as 37.5 mm, representing half of the hole diameter dp. Thus,
the cut ratio cw/dp of the notched perfobond rib was equal to 0.5.
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Figure 3. Details of perfobond ribs. (a) Conventional perfobond rib; (b) notched perfobond rib.
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2.4. Material Properties

The concrete cube strength fcu was 63.4 MPa, obtained from 150 mm × 150 mm × 150 mm concrete
cube tests after a 28-day air curing period. The uniaxial compressive strength of concrete fc was taken
as 50.7 MPa, equal to 0.8fcu. The yield strength fry and tensile strength fru of the reinforcing steel were
382.0 MPa and 547.0 MPa, respectively. The yield strength fsy and tensile strength fsu of the structural
steel were 410.0 MPa and 545.0 MPa, respectively.

2.5. Test Setup and Instrumentation

As shown in Figure 4, the pull-out specimens of perfobond shear connectors were loaded to
failure by using twin hydraulic jacks. The pull-out force between steel and concrete was applied by
pushing up the steel H-beam. As a result, the perfobond shear connector embedded in concrete would
be pulled out. The specimens CPT–1 and NPT–1 were tested under monotonic loading, while the other
specimens were tested under uniaxial cyclic loading. Two displacement gauges were installed at the
front and back of the specimens to measure the separation between steel and concrete. The applied
pull-out load and the relative separations were continuously and automatically recorded. Therefore,
the failure modes, pull-out resistance, and load–separation behaviors of perfobond shear connectors
could be obtained, and the reliability of finite element analysis could be verified by comparison with
the pull-out test results.
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3. Test Results and Analysis

3.1. Failure Mode

The pull-out failure modes of conventional and notched perfobond shear connectors were
characterized by cracks in the concrete slab, shear of the concrete dowel, and deformation of the
perforating rebar. With the increase of the load, the perfobond ribs were pulled out from concrete,
which induced great tension forces near the top surface of the concrete slab. As a result, great cracks
were observed in the concrete slab at specimen failure. The concrete dowels in the hole failed in shear.
For specimens with a circular hole, the rebar was retained in the hole and yielded with large bending
deformation. In comparison, the rebar in the notched hole was not pulled out with the perfobond ribs
since there was a cut on the hole edge. There was no obvious deformation observed in the conventional
and notched perfobond ribs.

3.2. Load–Separation Behavior

The separation between the steel beam and the concrete slab occurred as the applied pull-out
load increased. The average separation from two LVDTs versus the pull-out load is shown in
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Figure 5. The envelopes of load–separation curves under uniaxial cyclic loading resembled those
under monotonic loading. Three stages were observed in the typical load–separation curves of both
conventional and notched perfobond shear connectors. At the first stage, these curves were steep
without obvious separations, showing elastic behavior and great stiffness. The following stage was a
parabolic curve where the load increased and the stiffness reduced slowly with the separation. Beyond
the ultimate load, the separation continued to increase as the pull-out load decreased.
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The pull-out test results are summarized in Table 2, including the pull-out resistance, stiffness,
and separation deformation of the perfobond shear connectors. The pull-out resistance (Tu) is defined
as the maximum load during the tests. The pull-out stiffness (kt) represents the secant slope at the
separation of 0.2 mm [9]. The separation deformation is evaluated by the peak separation (sp), which is
the separation corresponding to the pull-out resistance (Tu).
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Table 2. Pull-out test results.

Specimen Pull-out Resistance Pull-out Stiffness Separation Deformation

Tu,i (kN) Tu,avg (kN) kt,i (kN) kt,avg (kN) sp,i (kN) sp,avg (kN)

CPT–1 279.8 631.3 1.00
CPT–2 245.3 262.6 609.5 621.9 0.98 1.14
CPT–3 262.7 625.0 1.43

NPT–1 294.2 662.5 1.15
NPT–2 279.8 282.7 674.0 658.0 1.06 1.19
NPT–3 274.1 637.5 1.35

3.3. Pull-Out Mechanism

The pull-out failure mechanisms of the conventional and notched perfobond shear connectors are
depicted in Figure 6. At first, the load was applied on the top of the steel beam flange and transmitted
to the perfobond rib. Then, the load was transferred to the concrete dowel and the perforating rebar in
the hole by contact at the hole edge. The composite section of the concrete dowel and the perforating
rebar could be assumed as an elastic beam on the foundation. The surrounding concrete could be taken
as the foundation, which provided the reaction forces for the composite elastic beam. At specimen
failure, a pyramid wedge of the concrete slab near the surface was pulled out for excessive tension
forces. The concrete dowel and the perforating rebar in the hole failed in shear. Stress concentration
occurred at the hole edge of the perfobond rib, whose failure mechanism was similar to that of cutout
elements in previous studies [23,24]. Therefore, the pull-out resistance of the notched perfobond shear
connector was determined by the interactions among the concrete dowel, the perforating rebar, and the
perfobond rib.
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4. Finite Element Analysis

4.1. General

The pull-out tests of conventional and notched perfobond shear connectors were simulated by
using the finite element method, as shown in Figure 7. The aim of this numerical analysis was to study
the failure mechanism and the pull-out resistance of perfobond shear connectors. The general analysis
package ABAQUS [25] was adopted to generate validated finite element models instead of expensive
and time-consuming pull-out tests. The material and geometric nonlinearities were considered by
using the dynamic explicit method. The loading rate of the pull-out tests was slow enough to be taken
as a quasi-static loading procedure.
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As shown in Figure 8, the pull-out tests of perfobond shear connectors were meshed by using
solid elements, rigid elements, and truss elements. The concrete slab, the steel beam, the perfobond
rib, and the perforating rebar were modeled with eight-node reduced integration elements (C3D8R).
The other reinforcing bars embedded in concrete were represented with three-dimensional two-node
truss elements (T3D2). The jacking header and the base plate were meshed by using discrete rigid
elements (R3D4). A global coarse mesh with an average size of 10 mm was applied to save the analysis
time. A locally refined mesh with the smallest size of about 5 mm was applied near the hole of
perfobond ribs to increase the accuracy.

Figure 8. Finite element type and mesh.

4.3. Interaction and Boundary Conditions

The reference point of the base plate was fixed in all translational and rotational directions,
as shown in Figure 9. An upward enforced displacement was applied to the reference point of the jack
plate. The perforating rebar was tied to the surrounding concrete in the hole. The other reinforcing
bars were embedded inside the whole concrete slab. Contact interactions were applied at the interfaces
of the concrete and shear connectors. A “hard” contact was used in the normal direction to prevent
penetration. The penalty frictional formulation was applied in the tangential direction. The contact
interactions were assumed to be frictionless since greasing was applied to the steel surface in contact
with concrete.
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4.4. Material Constitution of Concrete

The nonlinear behavior of the concrete material in compression and tension was characterized by
a uniaxial compressive stress–strain curve and a tensile stress-crack width relationship, as shown in
Figure 10.
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The concrete material constitutions in compression are described by Equation (1) [26,27].
As shown in Figure 10a, the initial branch of the stress-strain curve is assumed to be elastic. The next
two branches are a nonlinear parabolic portion and a descending branch, respectively.
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where σc is the compressive stress (MPa); εc is the compressive strain; Ec is the Young’s modulus (MPa);
fc is the compressive strength of concrete (MPa); k is the plasticity number, k = Ec·εcp/fc; η is the ratio of
strain to peak strain, where η = εc/εcp; εcp = 0.002; and εcu = 0.0033.

A linear stress–strain relationship was adopted to depict the uncracked concrete in tension. For a
cracked section, as shown in Figure 10b, a nonlinear approach for the stress-crack width relationship
can be determined by using Equation (2) [28].
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where σt is the tensile stress (MPa); ft is the tensile strength of concrete (MPa); w is the crack width
(mm); wc is the crack width at the complete release of stress, wc = 5.14 GF/ft (mm); GF is the fracture
energy required to create a unit area of stress-free crack, GF = 0.073 fc0.18 (N/mm); and the constants
are c1 = 3 and c2 = 6.93.

The concrete damaged plasticity model was adopted to describe the degraded response of the
concrete material. Two independent uniaxial damage variables, dc and dt, were used to evaluate the
damage of concrete due to compressive crushing and tensile cracking [25].

For concrete in compression, the evolution of dc is related to the plastic strain εc
pl, determined to be

proportional to the inelastic strain εc
in = εc–σc/Ec, using a constant factor bc (0 < bc < 1) in Equation (3) [29].

dc = 1 − σc

Ec · ε
pl
c · (1/bc − 1) + σc

(3)

where dc is the concrete compressive damage component; and bc is the ratio of plastic strain to inelastic
strain, bc = εc

pl/εc
in, where bc is taken as 0.7 [29].

For concrete in tension, the damage evolution component dt is associated with the “plastic”
crack width wpl, which is proportional to the crack width w, using a constant factor bt (0 < bt < 1) in
Equation (4), referring to [29].

dt = 1 − σt · l0
Ec · wpl · (1/bt − 1) + σt · l0

(4)

where dt is the tensile damage variable of concrete; l0 is assumed to be unit length; and bt is the ratio of
the “plastic” crack width to the crack width, bt = wpl/w, where bt is set as 0.1 [29].

4.5. Material Constitution of Steel

Figure 11 shows the stress-strain relationship of the structural and reinforcing steel modeled by
tri-linear curves. The first stage is assumed to be elastic with Young’s modulus Es, followed by a stage
of yielding, and finally a regime of strain hardening. The stress-strain relationships for steel in tension
and compression were assumed to be the same.
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4.6. Verification of Finite Element Model

The numerical results resembled the pull-out failures of conventional and notched perfobond
shear connectors reasonably well, as shown in Figure 12. The concrete crack initially occurred near the
perfobond shear connectors and spread out across the concrete slab as the load increased. The rebar
in the hole of conventional perfobond shear connectors yielded at the locations of perforation due to
interlock effects. In comparison, smaller deformation was observed in the analyzed failure mode of
notched perfobond shear connectors. The concrete dowels in the hole failed in shear.
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Figure 12. Tested and analyzed failure modes. (a) Crack in concrete slab; (b) deformation of perforating
rebar; (c) shear of concrete dowel.

As shown in Figure 13, the load–separation curves obtained from finite element analysis were
compared with pull-out test results. Three stages were identified in the typical load–separation curves
of both conventional and notched perfobond shear connectors, including an elastic stage, a nonlinear
parabolic regime, and a descending branch. When the dilation angles of concrete were changed among
30◦, 37◦, and 40◦, the analyzed pull-out resistance of conventional perfobond shear connectors was
188.1 kN, 259.5 kN, and 292.1 kN, respectively, accounting for 71.6%, 98.8%, and 111.2% of the mean
test result, which equaled 262.6 kN. For notched perfobond shear connectors with the dilation angles of
30◦, 37◦, and 40◦, the analyzed pull-out resistances were 179.6 kN, 264.1 kN, and 295.8 kN, respectively,
taking up 63.5%, 93.4%, and 104.6% of the mean test result, which equaled 282.7 kN. Variations of the
viscosity among 0, 0.1, and 0.01 showed no influences on the load–separation curves. It was indicated
that the calibrated finite element model could be used to generate reasonable analysis results for
both conventional and notched perfobond shear connectors. In this study, the dilation angle could be
preferably set as 37◦ and the viscosity could be taken as zero.
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Figure 13. Tested and analyzed load–slip curves. (a) Conventional perfobond shear connector;
(b) notched perfobond shear connector.

5. Parametric Study

As shown in Table 3, a total of 33 simulations were performed to study the further influences of
connector dimension and material properties on the pull-out resistance of notched perfobond shear
connectors. The parameters included the hole diameter dp, the cut width cw, the perfobond thickness
tp, the concrete strength fcu, the rebar diameter dr, the yield strength fry of the rebar, and the yield
strength fsy of the structural steel.

Table 3. Generalization of parametric models.

Model dp (mm) cw (mm) tp (mm) fcu (MPa) dr (mm) fry (MPa) fsy (MPa) Tu (kN)

DP–40 40 30 20 50 20 400 390 181.0
DP–50 50 30 20 50 20 400 390 190.4
DP–60 60 30 20 50 20 400 390 212.9
DP–70 70 30 20 50 20 400 390 233.5
DP–80 80 30 20 50 20 400 390 213.2

CW–00 60 10 20 50 20 400 390 220.1
CW–15 60 20 20 50 20 400 390 203.2
CW–30 60 30 20 50 20 400 390 212.9
CW–45 60 40 20 50 20 400 390 195.2
CW–60 60 50 20 50 20 400 390 25.3

TP–12 60 30 12 50 20 400 390 188.7
TP–16 60 30 16 50 20 400 390 186.0
TP–20 60 30 20 50 20 400 390 212.9
TP–25 60 30 25 50 20 400 390 220.5
TP–30 60 30 30 50 20 400 390 234.5

CU–30 60 30 20 30 20 400 390 152.5
CU–40 60 30 20 40 20 400 390 183.3
CU–50 60 30 20 50 20 400 390 212.9
CU–60 60 30 20 60 20 400 390 238.0
CU–70 60 30 20 70 20 400 390 236.3

DR–16 60 30 20 50 16 400 390 181.5
DR–18 60 30 20 50 18 400 390 194.0
DR–20 60 30 20 50 20 400 390 212.9
DR–22 60 30 20 50 22 400 390 203.2
DR–25 60 30 20 50 25 400 390 203.1

RY–335 60 30 20 50 20 335 390 188.0
RY–400 60 30 20 50 20 400 390 212.9
RY–500 60 30 20 50 20 500 390 204.9

SY–235 60 30 20 50 20 400 235 205.5
SY–345 60 30 20 50 20 400 345 206.4
SY–390 60 30 20 50 20 400 390 212.9
SY–420 60 30 20 50 20 400 420 209.3
SY–460 60 30 20 50 20 400 460 199.2
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5.1. Influence of Hole Diameter

The influence of the hole diameter on the pull-out behavior of notched perfobond shear connectors
is shown in Figure 14. In this group of specimens, the cut ratio cw/dp was kept as 0.5. When the hole
diameter was increased from 40 mm to 50 mm, 60 mm, 70 mm, and 80 mm, the pull-out resistance of
the notched perfobond shear connector was increased by 5%, 18%, 29%, and 18%, respectively. It was
revealed that the increase of the hole diameter between 40 mm and 70 mm led to an increase in the
pull-out behavior of the notched perfobond shear connector. The main reason was that the pull-out
failure mode was directly related to the shear of the concrete dowel in the hole, whose resistance
was increased by increasing the hole diameter. When the hole diameter was greater than 70 mm,
the pull-out resistance tended to increase more slowly. This was possibly because the restraint
effect of the perforating rebar reduced with a large concrete dowel in the hole of notched perfobond
shear connectors.

Appl. Sci. 2019, 1, x FOR PEER REVIEW  12 of 20 

 

SY–345 60 30 20 50 20 400 345 206.4 
SY–390 60 30 20 50 20 400 390 212.9 
SY–420 60 30 20 50 20 400 420 209.3 
SY–460 60 30 20 50 20 400 460 199.2 

5.1. Influence of Hole Diameter 

The influence of the hole diameter on the pull-out behavior of notched perfobond shear 
connectors is shown in Figure 14. In this group of specimens, the cut ratio cw/dp was kept as 0.5. 
When the hole diameter was increased from 40 mm to 50 mm, 60 mm, 70 mm, and 80 mm, the 
pull-out resistance of the notched perfobond shear connector was increased by 5%, 18%, 29%, and 
18%, respectively. It was revealed that the increase of the hole diameter between 40 mm and 70 mm 
led to an increase in the pull-out behavior of the notched perfobond shear connector. The main 
reason was that the pull-out failure mode was directly related to the shear of the concrete dowel in 
the hole, whose resistance was increased by increasing the hole diameter. When the hole diameter 
was greater than 70 mm, the pull-out resistance tended to increase more slowly. This was possibly 
because the restraint effect of the perforating rebar reduced with a large concrete dowel in the hole 
of notched perfobond shear connectors. 

0 5 10 15 20
0

50

100

150

200

250

Lo
ad

 (k
N

)

Separation (mm)

 dp=80mm
 dp=70mm
 dp=60mm
 dp=50mm
 dp=40mm

30 45 60 75 90
160

180

200

220

240

Pu
ll-

ou
t r

es
ist

an
ce

 (k
N

)

Hole diameter dp (mm)

 Test data
 Trend line

(a) (b) 

dp=40mm dp=50mm dp=60mm dp=70mm dp=80mm

+ 9.900×10-1

+ 9.075×10-1

+ 8.250×10-1

+ 7.425×10-1

+ 6.600×10-1

+ 5.775×10-1

+ 4.950×10-1

+ 4.125×10-1

+ 3.300×10-1

+ 2.475×10-1

+ 1.650×10-1

+ 8.250×10-2

+ 0.000  
(c) 

Figure 14. Influence of hole diameter. (a) Load–separation curves; (b) influence analysis; (c) failure 
mode. 

5.2. Influence of Cut Width 

Figure 15 shows the influence of the cut width on the pull-out behavior of notched perfobond 
shear connectors. The cut ratio cw/dp in this group of specimens changed between 0 and 1. The 
conventional perfobond shear connector had a cut width of 0 mm and a cut ratio as 0. The notched 
perfobond shear connector had cut widths of 15 mm, 30 mm, 45 mm, and 60 mm, with the 
corresponding cut ratios as 0.25, 0.50, 0.75, and 1.00. It was shown that the increase of the cut width 
had a significant influence on the pull-out resistance of the notched perfobond shear connector. 
When the cut width was smaller than 45 mm, the corresponding cut ratio was smaller than 0.75, and 
the variations in the pull-out resistance of the notched perfobond shear connector were no greater 
than 11%. However, the notched perfobond shear connector with a cut width of 60 mm and a cut 
ratio of 0 had only 11% of the pull-out resistance in comparison with other specimens in this group. 
The reason for this might be that the U-shaped hole could hardly bear the dowel forces of the 
concrete and the perforating rebar in the hole. 

Figure 14. Influence of hole diameter. (a) Load–separation curves; (b) influence analysis; (c) failure mode.

5.2. Influence of Cut Width

Figure 15 shows the influence of the cut width on the pull-out behavior of notched perfobond shear
connectors. The cut ratio cw/dp in this group of specimens changed between 0 and 1. The conventional
perfobond shear connector had a cut width of 0 mm and a cut ratio as 0. The notched perfobond shear
connector had cut widths of 15 mm, 30 mm, 45 mm, and 60 mm, with the corresponding cut ratios as
0.25, 0.50, 0.75, and 1.00. It was shown that the increase of the cut width had a significant influence on
the pull-out resistance of the notched perfobond shear connector. When the cut width was smaller than
45 mm, the corresponding cut ratio was smaller than 0.75, and the variations in the pull-out resistance
of the notched perfobond shear connector were no greater than 11%. However, the notched perfobond
shear connector with a cut width of 60 mm and a cut ratio of 0 had only 11% of the pull-out resistance
in comparison with other specimens in this group. The reason for this might be that the U-shaped hole
could hardly bear the dowel forces of the concrete and the perforating rebar in the hole.
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5.3. Influence of Perfobond Thickness

As shown in Figure 16, the perfobond thickness had a great influence on the pull-out behavior of
notched perfobond shear connectors. When the thickness of the perfobond rib was increased from
12 mm to 16 mm, 20 mm, 25 mm, and 30 mm, the pull-out resistance of notched perfobond shear
connectors varied by −1%, 13%, 17%, and 24%, respectively. It was revealed that the increase of the
perfobond thickness would lead to an increase in the pull-out resistance of the notched perfobond
shear connector. The main reason for this was that increasing the thickness of the perfobond rib
increased the contact area of the hole edge, which reduced the contact stress between the perfobond
rib and the concrete dowel in the hole. As a result, the pull-out resistance of the notched perfobond
shear connector could be increased by using a thicker perfobond rib.
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5.3. Influence of Perfobond Thickness 

As shown in Figure 16, the perfobond thickness had a great influence on the pull-out behavior 
of notched perfobond shear connectors. When the thickness of the perfobond rib was increased from 
12 mm to 16 mm, 20 mm, 25 mm, and 30 mm, the pull-out resistance of notched perfobond shear 
connectors varied by –1%, 13%, 17%, and 24%, respectively. It was revealed that the increase of the 
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(c) failure mode.

5.4. Influence of Concrete Strength

Figure 17 shows the influence of the concrete strength on the pull-out behavior of notched
perfobond shear connectors. When the concrete strength was increased from 30 MPa to 40 MPa,
50 MPa, 60 MPa, and 70 MPa, the pull-out resistance increased by 20%, 40%, 56%, and 55%, respectively.
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It was indicated that the increase of the concrete strength would lead to a great increase in the pull-out
resistance of the notched perfobond shear connector. It was possibly because higher strength concrete
resulted in a smaller damaged region of concrete dowels at the pull-out failure. Therefore, the pull-out
resistance of the notched perfobond shear connector could be increased by using higher strength
concrete. However, when the concrete strength was greater than 60 MPa, the pull-out resistance tended
to stop increasing. The reason for this might be that higher strength rebar that matched the higher
strength concrete was required to achieve full resistance of the concrete dowel in the hole.
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5.5. Influence of Rebar Diameter

The influence of the rebar diameter on the pull-out behavior of notched perfobond shear
connectors is illustrated in Figure 18. When the rebar diameter was increased from 16 mm to 18 mm,
20 mm, 22 mm, and 25 mm, the pull-out resistance increased by 7%, 17%, 12%, and 12%, respectively.
It was indicated that the increase of the rebar diameter between 16 mm and 20 mm would lead to an
increase in the pull-out resistance of the notched perfobond shear connector. The reason for this might
be that increasing the rebar diameter increased the cross-sectional area of the rebar, which was directly
related to the contributions of the rebar to the pull-out resistance of the notched perfobond shear
connector. When the rebar diameter was greater than 20 mm, the cross-sectional area of the concrete
dowel around the rebar was decreased to a certain extent, which stopped the pull-out resistance
from increasing.
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5.6. Influence of Rebar Strength

Figure 19 shows the influence of the rebar strength on the pull-out behavior of notched perfobond
shear connectors with the other parameters kept constant. When the yield strength of the rebar was
increased from 335 MPa to 400 MPa and to 500 MPa, the pull-out resistance of notched perfobond
shear connectors increased by 13% and 9%, respectively. It was revealed that the increase of the rebar
strength would lead to an increase in the pull-out resistance of the notched perfobond shear connector.
This was possibly because when a higher strength rebar was used in the hole, the dowel effects of the
rebar and the concrete in the hole were both increased. However, when the yield strength of the rebar
was greater than 400 MPa, the pull-out resistance tended to stop increasing. The reason for this might
be that higher strength concrete that matched the higher strength rebar was required to achieve full
resistance of the perforating rebar in the hole.
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concrete dowel and the perforating rebar in the hole. No obvious deformation of the notched 
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5.7. Influence of Steel Strength

As shown in Figure 20, the steel strength had little influence on the pull-out behavior of notched
perfobond shear connectors. When the yield strength of the perfobond rib was increased from 235 MPa
to 345 MPa, 390 MPa, 420 MPa, and 460 MPa, the variation of the pull-out resistance of the notched
perfobond shear connector was no greater than 4%. The possible reason for this was that the pull-out
failure of the notched perfobond shear connector was characterized by the shear of the concrete dowel
and the perforating rebar in the hole. No obvious deformation of the notched perfobond rib was
observed at the specimen failure. The shear failure of the concrete dowel and the perforating rebar
in the hole occurred before the yield of the perfobond rib could happen. As a result, the pull-out
resistance of the notched perfobond shear connector was hardly influenced by changing the strength
of the structural steel.
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6. Analytical Work 

6.1. Equations for Shear Resistance 

The pull-out and shear failure of perfobond shear connectors were both related to the shear of 
the concrete dowel, shear of the perforating rebar, and yield of the perfobond rib, but with different 
sequences and contributions. Since no existing equations have been reported in the literature for 
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6. Analytical Work

6.1. Equations for Shear Resistance

The pull-out and shear failure of perfobond shear connectors were both related to the shear
of the concrete dowel, shear of the perforating rebar, and yield of the perfobond rib, but with
different sequences and contributions. Since no existing equations have been reported in the literature
for estimating the pull-out resistance of perfobond shear connectors, the available shear resistance
equations were introduced to evaluate the tested and analyzed pull-out resistance of notched perfobond
shear connectors in this study.

Leonhardt et al. [13] suggested Equation (5) to predict the shear resistance of conventional
perfobond shear connectors with circular holes. This equation was developed based on push-out test
results without considering the contribution of the rebar in the hole.

Vu = 1.4d2
p fcu (5)

where Vu is the shear resistance per hole (N); dp is the hole diameter (mm); and fcu is the concrete cube
strength (MPa).

Hosaka et al. [15] proposed Equation (6) to evaluate the shear resistance of circular-hole perfobond
shear connectors. The influence of the perforating rebar in the hole was considered by using two
formulas with different variables.

Vu =

{
3.38

√
tp/dp · d2

p fc − 39.0 × 103 no rebar in hole

1.45
[(

d2
p − d2

r

)
fc + d2

r fru

]
− 26.1 × 103 rebar in hole

(6)

where tp is the thickness of the perfobond rib; fc is the concrete compressive strength (MPa); dr is the
diameter of the rebar in the hole (mm); and fru is the ultimate tensile strength of rebar (MPa).

6.2. Proposal for Pull-Out Resistance

According to the experimental and numerical results, the pull-out resistance of the notched
perfobond shear connector was contributed by shear of the concrete dowel, shear of the perforating
rebar, and yield of the perfobond rib. Therefore, an alternative equation, Equation (7), was proposed
for estimating the pull-out resistance of the notched perfobond shear connector by combining
these contributions.

Tu = γw

[
C1

(
d2

p − d2
r

)
fc + C2d2

r fry + C3dptp fsy

]
(7)
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where Tu is the pull-out resistance per hole (N); dp is the hole diameter (mm); dr is the diameter of the
rebar in the hole (mm); fc is the concrete compressive strength (MPa); fry is the yield strength of the
rebar (MPa); tp is the thickness of the perfobond rib (mm); fsy is the yield strength of the structural steel
(MPa); γw is the influence factor of the notch; and C1, C2, and C3 are fitting coefficients.

Nonlinear regression analysis was performed on a total of 39 experimental and numerical results.
The best fittings of the coefficients in Equation (7) were derived as C1 = 0.95, C2 = 0.45, and C3 = 0.18.
Therefore, the pull-out resistance of notched perfobond shear connectors could be evaluated by using
the final proposal as Equation (8).

Tu = γw

[
0.95

(
d2

p − d2
r

)
fc + 0.45d2

r fry + 0.18dptp fsy

]
with γw =

{
1 0 ≤ cw/dp ≤ 0.75

4
(
1 − cw/dp

)
0.75 < cw/dp ≤ 1

(8)

6.3. Comparison and Validation

As shown in Figure 21, the calculated pull-out resistances were compared to the push-out tests
and parametric results to validate the previous and proposed equations. The equations suggested
by Leonhardt et al. [13] and Hosaka et al. [15] both overestimated the pull-out resistance of notched
perfobond shear connectors. This was possibly because the contributions of the concrete dowel and
the perforating rebar were overestimated, while the influence of the perfobond rib was neglected in
Equations (6),(7). The calculated pull-out resistances from the proposed equation agreed reasonably
well with the experimental and numerical results. Therefore, Equation (8) could be used to estimate the
pull-out resistance of notched perfobond shear connectors in steel and concrete composite structures.
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7. Conclusions

Based on the pull-out tests, numerical analysis, parametric study, and analytical works on the
notched perfobond shear connectors, the following conclusions can be drawn:

(1) The pull-out failure modes of notched perfobond shear connectors are characterized by cracks
in the concrete slab, shear of the concrete dowel, and deformation of the perforating rebar.
At specimen failure, the perfobond ribs are pulled out from concrete and induce great tension
forces in the concrete slab. The concrete dowels in the hole fail in shear. The rebars in the notched
hole are not pulled out, while those in the circular hole yield with large deformation. There was
no obvious deformation in the perfobond ribs.

(2) The proposed finite element method is validated by comparison with pull-out test results.
The numerical results resemble the pull-out failures of perfobond shear connectors quite well.
The analyzed pull-out resistances account for 105% and 97% of the mean test results of perfobond
shear connectors with circular holes and notched holes, respectively. It is indicated that the
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proposed finite element model can be used to generate reasonable parametric results for pull-out
tests of notched perfobond shear connectors.

(3) A total of 33 parametric simulations further indicate that the pull-out resistance of notched
perfobond shear connectors could be greatly increased by increasing the hole diameter,
the thickness of the perfobond rib, the concrete strength, and the diameter and strength of
the rebar in the hole. The strength of the structural steel has little influence on the pull-out
resistance of notched perfobond shear connectors. When the cut ratio cw/dp is greater than 0.75,
the pull-out resistance of the notched perfobond shear connector reduces sharply.

(4) An analytical model is proposed to estimate the pull-out resistance of notched perfobond shear
connectors. Compared with the existing equations for shear resistance, the calculated pull-out
resistance from the proposal in this study agrees reasonably well with the experimental and
numerical results. Therefore, the proposed equation may be used to evaluate the pull-out
resistance of notched perfobond shear connectors.

Further pull-out tests are still required to extend the scope of the proposed equation for notched
perfobond shear connectors in steel and concrete composite structures.

Author Contributions: Y.L. (Yuqing Liu) proposed the topic of this study; S.Z. designed the process and wrote
the paper; Y.L. (Yangqing Liu) performed the finite element analysis; C.Z. designed the pull-out tests.

Funding: The research described in this paper was financially supported by Grants from Natural Science
Foundation of China (51808235), Fujian Provincial Natural Science Foundation of China (2018J05083), and Huaqiao
University Scientific Research Funding (16BS804).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

dp hole diameter cw cut width
cw/dp cut ratio dr diameter of the rebar
lp perfobond rib length hp perfobond rib height
tp perfobond rib thickness fcu concrete cube strength
fc uniaxial compressive strength fry yield strength of the reinforcing bar
fru tensile strength of the reinforcing bar fsy yield strength of the structural steel
fsu tensile strength of the structural steel Tu pull-out resistance
kt pull-out stiffness sp peak separation
Tu,i tested pull-out resistance (i = 1,2,3) Tu,avg averaged pull-out resistance
kt,i tested pull-out stiffness (i = 1,2,3) kt,avg averaged pull-out stiffness
sp,i tested peak separation (i = 1,2,3) sp,avg averaged peak separation
σc compressive stress of concrete εc compressive strain of concrete
Ec Young’s modulus of concrete fc compressive strength of concrete
k plasticity number of concrete η ratio of strain to peak strain
εcp peak strain of concrete εcu ultimate strain of concrete
σt tensile stress of concrete ft tensile strength of concrete
w crack width of concrete wc crack width at the complete release

of stress
GF fracture energy required to create a unit area of

stress-free crack
ci constants (i = 1,2)

dc uniaxial damage variables of concrete due to
compressive crushing

dt uniaxial damage variables of
concrete due to tensile cracking

εc
pl plastic strain of concrete εc

in inelastic strain of concrete
bc constant factor for concrete damage in compression wpl “plastic” crack width of concrete
bt constant factor for concrete damage in tension l0 unit length
Es Young’s modulus of steel Vu shear resistance
γw influence factor of the notch Ci fitting coefficients (i = 1,2,3)
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