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Abstract: The conducted laboratory tests allowed determination of the efficiency of removing
ammonium nitrogen, iron, and manganese in the biofiltration process on chalcedonite beds. The
process of water purification was carried out by a single- and two-stage biofiltration method with
gravitational and anti-gravitational flow. The study examined the extent to which chemical activation
of the bed with potassium manganese (VII) affects the course of the nitrification process and the
rate of biofilm formation. The obtained test results indicate that two-stage biofiltration, with initial
chemical activation at the first stage of biofiltration, is an effective method for purifying waters with
an abnormal content of ammonium nitrogen with simultaneous removal of iron and manganese.
Activation of the bed had an effect on, among other things: biofilm formation time, efficiency of
removing manganese (II) ions, and oxygen consumption in the biofiltration process. Due to the longer
maturation time of the activated bed, the normative value of ammonium nitrogen (< 0.39 N-NH4

+)
was obtained on the 23rd day of the operation of the filters, and in the non-activated bed on the 14th
day. The method of bed preparation did not affect the efficiency of removal of iron compounds.
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1. Introduction

Groundwaters are the main source of drinking water around the world [1,2]. In many cases,
groundwater is characterized by an increased content of iron, manganese, and ammonium nitrogen
compounds and their presence may contribute to deterioration of the organoleptic quality of the water
and discoloration of sanitary facilities, as well as the formation of deposits in the water pipes [1,3–6].
Although iron and manganese are necessary for the proper functioning of the human body, their
consumption in excessive amounts, in particular manganese, may be the cause of chronic food
poisoning, pulmonary embolism, bronchitis, impotence, nerve damage, or Parkinson’s disease [7,8]. In
addition, the presence of ammonia increases the consumption of chlorine and hence the numbers of
chloramines formed [9].

Groundwater quality mainly depends on natural factors, including aquifer lithology, the quality of
water recharge, and groundwater rock interactions, as well as anthropogenic factors, e.g., agriculture,
industry, the exploitation of water resources, and urban development [10]. In water intended for
consumption, maximum concentrations of iron, manganese, and ammonium nitrogen should not
exceed 0.2, 0.05, and 0.5 g/m3, respectively [11]. However, over 50% of users of groundwater intakes
are exposed to an excessive content of iron and manganese compounds. It is rare that underground
water is suitable for direct use for water supply purposes, yet many treatment stations face the need to
intensify the water treatment process and modernize their equipment [12–14].
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Groundwater treatment and purification technologies based on biological methods are popular in
European countries and most often include combined removal of iron and manganese, and sometimes
also nitrification of ammonium nitrogen by natural or synthetic filtration deposits [10,15,16]. In
classic iron removal, the abiotic process dominates the biological one [17]. It consists of water
aeration, homogeneous oxidation of divalent iron with oxygen dissolved in water, and mechanical
separation of precipitated iron (III) hydroxide, which can be assisted by heterogeneous oxidation by
catalytic interaction of a ferric coating deposited on grains of filtration material [16]. The biological
oxidation plays a role in iron removal mainly in conditions that are unfavorable to the physical
and chemical process when they have low pH and redox potential and very low oxygen content in
water [18]. Manganese removal is a result of a chemical process of heterogeneous catalysis, which
involves fluid-formed deposits of manganese dioxide, and biological oxidation [15]. The operation
of biologically active filters consists of using the metabolic activity of microorganisms for strictly
defined transformations, giving the assumed technological effect. An integral element of underground
water purification treatment technology, based on biological processes, is the carrier, which plays an
important role in them. Depending on the structure and properties of the carrier, it may additionally
be adsorbed or ion exchanged, but it may also supply nutrients and buffer the biochemical reaction
environment, and the remaining parameters related to the type of carrier that translate into colonization
with microorganisms are granulation, surface area, porosity, and ability to produce stable connections
between the surface of the carrier and microflora [19–21].

In biosorption beds the carrier—the biofilter filler—plays a special role. Depending on its
characteristics, it may serve as an adsorbent, molecular sieve, ion exchanger, and substance for
nutrition and buffering of the biochemical reaction environment. The role of microorganisms that
cover the bed is also double:

1. Performance of biodecomposition of chemical compounds [20];
2. Cause for biodecomposition of the support material [22].

The sorption qualities of the materials was filled by the biofilter and the capability to stop the
microorganisms carried by water cause the biomass embedded on the carrier, along with the gradual
depletion of sorption capacity of the biofilter to take over its function, sorbing the substances present
in water, processing them for building material, and products of biochemical changes providing the
energy for cells.

Groundwater purification technology is not as complicated as surface water treatment technology.
However, this process is more difficult when, in addition to iron (which can usually be easily removed
in a traditional aeration and filtration system), there are also other admixtures, such as manganese (II),
ammonium nitrogen, or organic compounds [14,22–25]. The physicochemical methods used to remove
iron, manganese, and ammonium nitrogen from water include adsorption, ion exchange, membrane
processes, filtration, and chemical oxidation [9,26].

The pollution of groundwater with nitrogen compounds, especially ammonium nitrogen, which
has been observed in recent years, requires a constant search for unconventional and highly effective
purification processes. The methods used so far either do not always give satisfactory results or they
require a significant financial investment. The biofiltration process executed in devices involving
biofilm formation on a solid substrate is the most popular method for purifying groundwater from
excessive amounts of ammonium nitrogen [27]. Filtration through biosorbent beds is considered to be
a highly effective process but at the same time, its effectiveness depends on many factors. In addition
to appropriate selection of the carrier, they include the appropriate selection of process parameters and
treatment technology adapted to the properties and composition of the treated water. The methodology
of testing the technological suitability of filtration materials for the execution of a specific groundwater
treatment task requires a series of studies to measure its potential effectiveness [28,29].

Using a continuous sorption system allows a better approach to real industrial applications. A
few models that can describe these processes have been reported in the literature [22,30]. However,
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only a limited number of references exist on the modelling of the combined and simultaneous removal
of the above pollutants [6,9]. Stembal et al. attempted to estimate the optimal dimensions of a
biofilter for the simultaneous removal of iron, manganese, and ammonia in a groundwater treatment
plant [15]. Consequently, in packed bed bioreactors, such as trickling filters, bio-sand filters, etc., a
more general equation is frequently used. Katsoyiannis and Zouboulis also attempted to model the
process of simultaneous iron and manganese removal. They state that removal kinetics of contaminants
during water treatment is an important issue, as it could provide information about the time required
for efficient removal of a specific contaminant, which is necessary when designing treatment units.
Furthermore, reaction rates can be estimated from the results of kinetic analysis and compared to those
for abiotic removal. They found that biologically mediated manganese and iron removal followed a
first-order reaction rate, presenting half-lives of 3.98 and 0.9 min, respectively. Their kinetic results
also indicated that rates of manganese and iron oxidation were several orders of magnitude higher
than those for abiotic oxidation [31].

Among the materials that can be used as biosorbent beds, chalcedonites deserve particular
attention. Their chemical composition and physical properties create opportunities for multi-purpose
use. Characteristics of chalcedonites are influenced by the forms of SiO2 minerals that build them, as
well as certain amounts of calcium, magnesium, aluminum, iron, and manganese oxides. Chalcedonites
are also characterized by a large specific surface area and a large volume of macropores (slightly higher
than in the case of anthracite coal), which is important for biological processes [32,33]. Chalcedonite
due to the greater specific surface area and the volume of macropores creates better conditions for
immobilization of microorganisms and the development of the biofilm. The research carried out so far
shows that the effectiveness of the nitrification process is influenced by the presence of both iron and
manganese [20].

Some of the removal of manganese beds requires activation with potassium manganate (VII)
solution. In the case of a significant disproportion between the concentration of manganese (II) ions
and ammonium nitrogen, the water treatment process is based on the differentiation of mechanisms
and the use of biological nitrification as the main process for removing ammonium nitrogen. Therefore,
it has become necessary to investigate whether the activation of the bed will affect the growth of
nitrifying bacteria and the efficiency of ammonium nitrogen removal.

The main goal was to determine whether the presence of iron and manganese affects the course
of the process of biological oxidation of ammonium nitrogen, or changes in the oxygen content during
the purification process affect the inhibition of the nitrification process.

2. Materials and Methods

The tests were carried out on a laboratory scale on model filters filled with a chalcedonite deposit
(Table 1). The water purification process was carried out by single- and two-stage biofiltration, with
anti-gravitational flow at I◦ filtration and gravitational flow at II◦ filtration. The model filtration system
worked with a flow rate of approximately Q = 5 dm3/h, and the working time was T = 6h/d. The
study analyzed the efficiency of ammonium nitrogen, iron, and manganese removal in three systems,
as follows:

• Water I: single-stage biofiltration on a bed pre-activated with potassium manganese (VII) solution,
• Water II: two-stage biofiltration; I◦ filtration on a bed pre-activated with potassium manganese

(VII), II◦ filtration on a natural bed,
• Water III: two-stage biofiltration on beds without pre-activation (Figure 1).
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Table 1. Parameters of the model filters.

Parameter Value

Height 1.0 m
Diameter 0.055 m

Filtration speed 2–3 m/h
Direction of water flow through

the bed
I◦ filtration anti-gravitational
Ii◦ filtration gravitational

The activation process consisted of a single flooding of the bed with potassium manganese (VII)
solution and then leaving it for 24 h. The calculated dose of KMnO4 necessary to activate the bed was
D = 2.5 g/dm3 deposit (D = 1.72 g/kg deposit).

The process of transition from the activation of the bed to the work cycle was carried out by
rinsing the filter until manganese ions were no longer present in the leak. During the tests, the filters
were not rinsed. In the first 7 days, a biopreparation containing nitrifying bacteria was introduced into
the filters to accelerate the formation of the biofilm

A model solution was used for feeding the filtration systems. The solution was prepared on the
basis of mains water containing (Table 2):

• Ammonium nitrogen at a dose of about 2.0–3.0 g N-NH4
+/m3,

• Manganese at a dose of about 1.0 g·Mn/m3,
• Iron at a dose of about 1.0 g Fe/m3.

Table 2. List of reagents used in the research.

Product Name Chemical Formula Grade Source of Purchase

Ammonium chloride NH4Cl

Pure p. a.
Avantor Performance
Materials Poland S.A.
(formerly POCH.S.A.)

Manganese (II) chloride tetrahydrate MnCl2·4·H2O
Iron (II) chloride tetrahydrate FeCl2·4·H2O
Potassium manganese (VII) KMnO4

The reagents used in the study are included in Table 3.
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Table 3. The physicochemical quality of water directed to biofilters.

Parameter Min Max Mean Median SD N

Ammonium Nitrogen 0.50 3.70 2.49 2.50 0.62 57
Nitrite Nitrogen 0.00 2.26 0.37 0.06 0.61 57
Nitrate Nitrogen 0.02 3.58 2.01 2.00 0.85 57

Manganese 0.86 1.80 1.06 1.03 0.18 57
Iron 0.78 1.17 1.02 1.00 0.08 57

Dissolved Oxygen 5.10 10.84 8.26 8.45 1.31 55
pH 7.13 7.70 7.43 7.46 0.16 55

A red-brown-yellow version of chalcedonite with a granulation of 1.0–2.0 mm was used as the
filling for the filters; after thorough rinsing, the chalcedonite was dried and roasted at a temperature of
550 ◦C. The properties of chalcedonite are shown in Table 4. Selected physicochemical parameters of
the inflow and outflow water from the model filtration columns were determined according to the
methods listed in Table 5.

Table 4. Properties of chalcedonite [34,35].

Physical Properties Chemical Composition

Parameter Unit Range Parameter Unit Range
Specific density t/m3 2.62–2.67 SiO2 % 94.0–99.0

Bulk density t/m3 1.0–2.0 Al2O3 % 0.4–3.6
Porosity % 15–30 Fe2O3 % 0.1–0.8

Impregnability % 4–10 CaO % 0.1–1.2
Compressive strength MPa 60–120 MgO % 0.0–0.3

Abrasion in the Devala drum % 6–15 Na2O % 0.04–0.2
Oil number g/100 g meal 26 K2O % 0.1–0.5

Table 5. Methodology of physicochemical determinations of water parameters.

Parameter Unit Analytical Method/Standard

Ammonium nitrogen g N-NH4
+/m3

Colorimetric method with Nessler’s reagent using
UV-Vis Spectrophotometer (DR 5000, Hach-Lange,

Germany, Europe), method number 8155

Nitrite nitrogen g N-NO2
−/m3 Colorimetric method by Nitrite Test Merck 1.14408

(Germany, Europe), method number 8507

Nitrate nitrogen g N-NO3
−/m3

Colorimetric method with sodium salicylate using
UV-Vis Spectrophotometer (DR 5000, Hach-Lange,

Germany, Europe), method number 8039

Dissolved oxygen g O2/m3 Electrochemical method using a HQ30D Dissolved
Oxygen Meter (Hach-Lange, Germany, Europe)

Manganese g Mn/m3
Colorimetric method using UV-Vis Spectrophotometer

(DR 5000, Hach-Lange, Germany, Europe), method
number 8149

Iron g Fe/m3
Spectrophotometric method by the rhododendron method
using UV-Vis Spectrophotometer (DR 5000, Hach-Lange,

Germany, Europe), method number 8008

3. Results

Based on the obtained results, it can be concluded that purification of groundwater on chalcedonite
beds is an effective process in terms of ammonium nitrogen removal. In the case of single-stage filtration
(water 1) in the first days of the experiment, the reduction of NH4

+ content was due to the sorption
properties of chalcedonite with an average effectiveness of 16.5%, however, already from day 31, it
was due to the biochemical processes (Figure 2). The process efficiency was maintained at a high level
of 60 to 100%. During this period, values in the range 0–0.7 N-NH4

+ were obtained in the filtrate, with
a standard deviation of 0.22. The ammonium nitrogen was removed to a level below the permissible
norm of 0.39 g N- NH4

+/m3 as early as the 23rd day of the experiment (Figure 2). From day 31, an
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increase in the nitrite nitrogen content in purified water was observed, indicating the beginning of the
first phase of the nitrification process. The concentrations of nitrite nitrogen were in the range from
0.008 to 2.35 g N-NO2

−/m3 and from day 24, exceeded the permissible value of 0.15 g N-NO2
−/m3. It

was only after the 59th day of the experiment that the content of nitrites decreased, indicating that the
nitrification process had been carried out in full. The beginning of the second phase of the nitrification
process, characterized by the increase of nitrates in the treated water, occurred after the 51st day of the
experiment (Figure 2).

Appl. Sci. 2019, 9 6 

single-stage filtration (water 1) in the first days of the experiment, the reduction of NH4+ content was 
due to the sorption properties of chalcedonite with an average effectiveness of 16.5%, however, 
already from day 31, it was due to the biochemical processes (Figure 2). The process efficiency was 
maintained at a high level of 60 to 100%. During this period, values in the range 0–0.7 N-NH4+ were 
obtained in the filtrate, with a standard deviation of 0.22. The ammonium nitrogen was removed to 
a level below the permissible norm of 0.39 g N- NH4+/m3 as early as the 23rd day of the experiment 
(Figure 2). From day 31, an increase in the nitrite nitrogen content in purified water was observed, 
indicating the beginning of the first phase of the nitrification process. The concentrations of nitrite 
nitrogen were in the range from 0.008 to 2.35 g N-NO2−/m3 and from day 24, exceeded the permissible 
value of 0.15 g N-NO2−/m3. It was only after the 59th day of the experiment that the content of nitrites 
decreased, indicating that the nitrification process had been carried out in full. The beginning of the 
second phase of the nitrification process, characterized by the increase of nitrates in the treated water, 
occurred after the 51st day of the experiment (Figure 2).  

 
Figure 2. Change in the content of ammonium nitrogen compounds after biofiltration on 
the chalcedonite bed in the analyzed systems. 

Introduction of the second degree of biofiltration (water II) additionally increased the efficiency 
of ammonium nitrogen removal, and from day 33 the NH4+ values were on a level from 0 to 0.2 g N- 
NH4+/m3, with a standard deviation of 0.22 (efficiency 69–100%) (Figure 3). The longer contact time 
of the treated water with the filtration material contributed to the increased microbiological activity 
of the beds. The increase in the content of nitrites in the treated water was observed from the first 
days of the bed's operation (phase I of the nitrification process), and the increase of nitrates in the 
spill occurred from day 24 (phase II of the nitrification process) (Figure 3).  

 
Figure 3. Change in the content of nitrite nitrogen compounds after biofiltration on the 
chalcedonite bed in the analyzed systems. 

Figure 2. Change in the content of ammonium nitrogen compounds after biofiltration on the
chalcedonite bed in the analyzed systems.

Introduction of the second degree of biofiltration (water II) additionally increased the efficiency
of ammonium nitrogen removal, and from day 33 the NH4

+ values were on a level from 0 to 0.2 g N-
NH4

+/m3, with a standard deviation of 0.22 (efficiency 69–100%) (Figure 3). The longer contact time
of the treated water with the filtration material contributed to the increased microbiological activity
of the beds. The increase in the content of nitrites in the treated water was observed from the first
days of the bed’s operation (phase I of the nitrification process), and the increase of nitrates in the spill
occurred from day 24 (phase II of the nitrification process) (Figure 3).
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In the water treatment system without pre-activation of the bed (water III), the time of biofilm
formation (maturation of the bed) was comparable to the two-stage biofiltration system with
pre-activation (water II). In this case, a higher efficiency of ammonium nitrogen removal was observed
from the first days of the biofilter’s operation (effectiveness for the entire test period was 78–97%) and
the permissible value of 0.39 mg N-NH4

+/m3 was obtained more quickly (on the 7th day) (Figure 4).
The values in the outflow were from 0 to 0.7 N-NH4

+, with a standard deviation of 0.14. Among the



Appl. Sci. 2019, 9, 751 7 of 15

samples analyzed, as many as 90% met the requirements for water intended for consumption. For
comparison, in the system with a chemically activated bed, the required level of ammonium nitrogen
was achieved only on the 24th day of the filter’s operation.
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The obtained test results confirm the effectiveness of the biofiltration process on the chalcedonite
beds in the removal of ammonium nitrogen from groundwater. Regardless of the analyzed variant,
from day 32, the efficiency oscillated in the range from 75% to 100%. In the initial phase of the
experiment, a less effective NH4

+ elimination was observed in the activated bed system (water III).
This phenomenon was caused by a longer time of the formation of the nitrifying biofilm, as evidenced
by smaller changes in the content of nitrite and nitrate ions as compared with changes occurring on
the non-activated bed (Figures 2–4).

The effectiveness of manganese removal was highest in a two-stage biofiltration system activated
with KMnO4 solution (water II) (Figure 5). In this case, the efficiency was at a level of 52% –99%
and in 30% of the analyzed samples, values below 0.05 g Mn/m3 were achieved. Chalcedonite
grains activated with the KMnO4 solution are covered with MnO2 coating and sorb and catalyze the
oxidation of manganese at a much faster rate than the unactivated bed. However, the use of only
single-stage filtration (water I) did not allow us to obtain satisfactory results in terms of Mn removal
either (Figure 5).Appl. Sci. 2019, 9 8 
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the analyzed systems.

On the chemically unactivated bed (water III), a reduction in the concentration of manganese
after the biofiltration process was observed only in the initial days (up to day 21). This was caused
by the low sorption properties of chalcedonite. Over time, not only was the efficiency of manganese
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removal reduced but more manganese was introduced into the treated water (Figure 5). The reason
for this phenomenon could have been the reaction of the produced manganese dioxide with the
nitrites generated in the nitrification process. A similar relationship was observed in the single-stage
biofiltration system (water I).

After the biofiltration process on the chalcedonite beds, iron concentrations in the analyzed water
did not exceed the permissible value of 0.2 g Fe/m3 [12] (Figure 6). The exception was one sample
taken from system I and II on the first working day of the filter, for which a value of 1.2 and 1.087 g
Fe/m3 was recorded. The values of iron on the outflow from biofilters ranged from 0 to 0.15 (average
standard deviation was 0.03). The obtained results indicate that the chemical activation of the bed and
the number of filtration stages did not affect the efficiency of the iron removal process (Figure 6).
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Research on the biofiltration process on sand beds carried out by Yang et al. [3] also showed a
high efficiency of iron removal (below 0.2 g /m3) from the first days of the experiment. Iron in the form
of Fe2+ at pH > 5 could also be chemically oxidized with the oxygen present in the water [1]. Values <
0.5 NH4

+ were obtained on the 10th day of the filter’s operation and the removal of Mn maintained at
a constant low level was observed after the 56th day of the filter’s operation.

On the basis of the results depicted in Figures 5 and 6, the capacity of the bed in relation to iron
was estimated at approximately 0.7 g/dm3 chalcedonite and filtration was not carried out to the point
of exhaustion. In the case of manganese, the capacity of the bed was only 0.19 g /dm3 chalcedonite.

In comparison with other chemically-active sorption deposits on the basis of silicate media,
chalcedonite has a lower level of sorption capacity (Table 6). However, it is necessary to indicate that
the values of this parameter were determined by the producers of deposits for model solutions in the
optimum conditions of filtration.

Table 6. The of chemically active filtration materials based on silica carriers.

Filtration Materials
The Sorption Capacity

References
g Fe /dm3 deposits g Mn /dm3 deposits

MTM® 1,3 0,6 [36,37]
GreensandPlusTM 1,3 0,6 [38,39]

In the case of catalytic deposits on the basis of manganese ores, i.e., G1, Defeman, Multiman
3M, Pyrolox Filox-R, MetalEase, the sorption capacity is not determined because their properties are
not exhausted. Yet, the producers of filtration deposits determine the maximum contents of iron and
manganese in the water supplied to the filter, thus indicating the scope of the effective use of a catalytic
ore [40–45].
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Dissolved oxygen is a very important factor affecting the growth rate of microorganisms, as
well as the efficiency, type, and rate of metabolite production. Changes to the oxygen content in the
biofiltration process in the analyzed systems are shown in Figure 7. The oxygen consumption in water
I and II was in the range 0.1–5.2 g O2/m3 and from the 51st day of the experiment, a greater reduction
in the content of O2 in the treated water was noted. The increase in oxygen consumption in connection
with the increase of nitrate nitrogen and the reduction of nitrite nitrogen may indicate higher activity
of microorganisms on the bed and the occurrence of biological processes, i.e., nitrification, taking place.
Oxygen could also have been used to oxidize iron compounds. In water III, the consumption was in
the range from 1.42 to 5.23 g O2/m3 (Figure 7).
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4. Discussion of Results

The research study mainly focused on the removal of ammonium nitrogen in the nitrification
process in the presence of iron and manganese. Therefore, iron and manganese sorption isotherms
were not determined and the sorption capacity of the chalcedonite deposits was not calculated. The
research enabled the observation of the effect of activation of the deposit with potassium manganese
(VII) on the effectiveness of biotransformation of ammonium nitrogen and the activity of nitrifying
bacteria. The activity of microorganisms was assessed by ammonium nitrogen removal efficiency.
Chemical activation was necessary because non-activated chalcedonite removes iron but does not
remove manganese. The creation of a catalytic MnO2 coating enabled the simultaneous removal of
iron, manganese, and ammonium nitrogen. The creation of a catalytic MnO2 coating and can be carried
out with 2 methods: self-activation of chalcedonite by filtration of water containing manganese (this
is a 2–3 month long process), or by chemical activation continuously or periodically with potassium
manganese (VII).

The creation of a catalytic MnO2 coating enabled the simultaneous removal of iron, manganese,
and ammonium nitrogen. The manganese (II) dissolved in water is adsorbed on the surface of
manganese dioxide, where in sequence according to theoretical reactions (1) or (2) it undergoes the
oxidation of Mn (II) to Mn (III).

Mn(OH)2 + MnO(OH)2 -> Mn2O3 + 2H2O (1)

Mn(OH)2 + 2MnO(OH)2 -> Mn3O4(OH)2 + 2H2O (2)

At the same time, some of the manganese dioxide on the surface of the medium is reduced from
the fourth to the third degree of oxidation. Subsequent reactions take place (3) or (4), in which the
trivalent manganese in reaction products (1) and (2) is oxidized to tetravalent with oxygen dissolved
in water:

Mn2O3 + 1/2O2 + H2O -> 2MnO(OH)2 (3)
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Mn3O4(OH)2 +1/2O2 + H2O -> 3MnO(OH)2 (4)

This results in the renewal of manganese dioxide on the surface of the material and the restoration
of its initial state. In the described mechanism, manganese dioxide acts as an adsorbent and redox
catalyst. According to the described mechanism, removal of iron from water occurs by oxidizing Fe (II)
to Fe (III).

Conventional methods of underground water conditioning, i.e., aeration and filtration through
sand beds, appear to be ineffective in the case of high concentration of iron and manganese,
accompanied by high levels of ammonia nitrogen and hydrogen sulfide [26].

Studies [29] have shown that groundwater with an excessive iron (> 6.0 g/m3), manganese, and
ammonium nitrogen content should be treated with two-stage filtration. Quartz sand should be used
in the first stage as it effectively stops the iron compounds present in the water. However, in order to
remove manganese and ammonium nitrogen, chemically active masses should be used—Greensand
obtains the best results. Compared to Greensand, clinoptilolite beds are characterized by comparable
efficiency in removing iron compounds but obtain worse results in reducing the content of manganese
and ammonium nitrogen. The Crystal-Right 100 zeolite mass met the high requirements for the
removal of iron, manganese, and ammonium nitrogen; however, impurities were removed in the
adsorption and ion exchange processes, resulting in frequent regenerations of the bed and shorter
working cycles compared to chalcedonite [29].

On the other hand, the removal of ammonium ions is possible only in the nitrification process
involving the biofilm produced on the surface of the mineral. The high concentration of nitrite nitrogen
in the water after the biofiltration process is a negative phenomenon due to the inhibition of the
development of nitrifying bacteria on the biofilter filling [19]. In order to maintain the high activity
of nitrifying microorganisms, commencing the second phase of nitrification as soon as possible and
eliminating excessive accumulation of nitrite ions are both extremely important [33]. In the analyzed
cases, the commencement of the second stage of nitrification occurred on days 51 (water I), 24 (water
II), and 21 (water III) of the filter’s operation, but higher increases in nitrate nitrogen were observed in
the system without chemical activation (water III).

The lack of bed activation also contributed to an increase in the consumption of oxygen dissolved
in the biofiltration process. Nitrification is a completely aerobic process, and so oxygen consumption
indicates that biological processes are taking place on the filters. The total stoichiometric oxygen
consumption in the nitrification reactions is 4.57 g O2 per 1 g of ammonium nitrogen, whereas, in the
case of iron and manganese oxidation, they are 0.14 g O2/g Fe and 0.29 g O2/g Mn, respectively [46].
In single-stage filtration with a water table above the filtration layer, in conditions of full saturation of
water with oxygen (10–16 ◦C), it is possible to oxidize no more than approximately 2 g of N-NH4

+/m3.
This limitation applies to biofiltration processes carried out in filters with a filling which does not take
part in the process of removing impurities or which take part in this process to a small extent. The
oxygen content below which the nitrification rate depends on the dissolved oxygen concentration is,
respectively, 2 g O2/m3 (for the first phase of the process) and 4 g O2/m3 (for the second phase of
the process). Too little a concentration of dissolved oxygen may cause the stopping of the biological
oxidation reaction after the first phase of nitrification, which will result in an undesired presence
of nitrite nitrogen in the water. Accumulation of nitrite ions is a negative phenomenon due to the
inhibition of the growth of nitrifying bacteria. Nitric (III) acid produced from NO2

− ions can be toxic
to both Nitrosomonas and Nitrobacter. The observed oxygen consumption was significantly different
from the theoretical oxygen demand and amounted to approximately 2–2.4 g O2 for each g of nitrogen
removed in the system with chemical activation, and approximately 3.2 g O2 for each g of nitrogen
removed in the system without activation (Table 7).
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Table 7. Comparison of parameters in the biofiltration process on chalcedonite beds.

Parameters
Water I Water II Water III

Beds Pre-activated Bed without
Pre-activation

The amount of nitrogen removed
∆ N-NH4

+ [g N-NH4
+/m3] 0–3.70 0.1–3.5 1.34–3.00

Amount of nitrite nitrogen formed
∆ N-NO2

− [g N-NO2
−/m3] (−1.39)–2.04 (−0.923)–2 (−0.01)–2.09

Amount of nitrate nitrogen formed
∆ N-NO3

− [g N-NO3
−/m3] (−1.20)–1.38 (−2.5)–2.73 (−0.02)–2.73

Oxygen consumption ∆ O2 [g O2/m3] 0–4.06 0.52 4.12–8.43

Efficiency of N-NH4
+ removal [%] 0–100 2.85–100 78–96

Efficiency of Fe removal [%] 85–100 93–100 93–100

Efficiency of Mn removal [%]

(−34)–97%
from 57 days,

washing out Mn to
the filtrate

52–99%
from 28 days 0,

washing out Mn to the
filtrate

Time to obtain a normative value
(0.39 g N-NH4

+/m3) [day] 23 23 14

Oxygen consumption per 1g of nitrogen [g O2/1 g N] 2.02 2.43 3.20

The start time of the I phase of nitrification [day] 31 1 7

The start time of the II phase of nitrification [day] 51 24 21

For comparison, in the biofiltration process in a sand bed with gravitational flow, the consumption
of oxygen for each 1 g of removed ammonium nitrogen was between 50–150% of the theoretical oxygen
demand [47]. Such high oxygen consumption was explained by the biodegradation of dead organic
matter accumulated in the bed. In the discussed case, in the first stage of biofiltration, anti-gravitational
flow was used which favored a natural regulation of biofilm thickness and resulted in the successive
removal of dead organic matter from the biofilter, and consequently, reduced oxygen consumption.

From the comparison of the biofiltration process in the analyzed filtration systems, it can be
concluded that chemical activation has no effect on the efficiency of removal of iron and ammonium
nitrogen but delays the start of both the first and second phase of the nitrification process. Activation
of the bed positively influences the removal of manganese and results in less oxygen consumption in
the treated water as compared with the bed not subjected to chemical activation (Table 7).

In the research conducted thus far, it has been demonstrated that the removal of manganese
and iron from water is the result not only of physicochemical processes but also of the involvement
of iron and manganese oxidative bacteria [1,48]. Other sources indicate that microorganisms may
play a significant role in the formation process of the catalytic layer of manganese oxides; however,
once the formation of this layer is completed, manganese oxidizing bacteria do not affect the
efficiency of manganese removal from water [28]. The mechanism of the removal of manganese
process with the simultaneous removal of ammonium nitrogen has been previously described in the
literature [3,19,27,29,49]. Slight changes in nitrate concentration and reduced manganese removal
efficiency may explain the delay of the nitrification process due to the reaction of nitrites with
manganese dioxide. The deposits are not subjected to a desorption process, but only to a periodic
rinsing to remove accumulated sediments. The sorption properties of chalcedonite and the ability to
retain the water microorganisms that cause the biofilm formed on its surface takes over the sorbent
functions and uses the retained substances for the development and multiplication of bacterial cells.
The creation of biofilms and the formation of manganese oxide coatings on the surface of chalcedonite
causes the deposit to work continuously (does not run out). For that very reason, the Thomas model
commonly applied to describe the continuous column system [30] may not be used.
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5. Conclusions

1. The removal of ammonium nitrogen, iron, and manganese in the biofiltration process on
chalcedonite beds is an alternative method to conventional processes used in water treatment
plants-filtration on quartz beds. Chalcedonite has greater porosity and a more proper surface
than quartz sand. It is a better substrate for immobilization and development of microorganisms
involved in the biodegradation of pollutants, which allows for simultaneous removal of NH4

+,
Mn, and Fe according to different types of mechanisms.

2. Among the analyzed systems, the best efficiency of removing ammonium nitrogen, iron, and
manganese from groundwater was demonstrated by two-stage biofiltration on chalcedonite beds,
with initial chemical activation at the first stage of filtration.

3. Chemical activation of the chalcedonite bed had an effect on the efficiency of removal of
manganese (II) ions but did not affect the efficiency of iron removal.

4. In the pre-activated bed system, a longer biofilm formation time (start-up of the bed) was
observed, which resulted in a longer waiting period for obtaining the required concentration of
ammonium nitrogen in the treated water.

5. Activation of the bed with potassium manganese (VII) reduces the oxygen consumption in the
biofiltration process as compared with the non-activated bed. The oxygen deficiency can inhibit
the ammonium nitrogen removal process.

6. The sorption properties of chalcedonite and the ability to retain water borne microorganisms that
cause the biofilm formed on its surface takes over the sorbent functions and retained ammonium
ions processing the construction of new bacterial cells. The creation of biofilms and the creation
of manganese oxide coatings results in continuous filter operation. Filling the biofilter does not
require regeneration.
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