
applied  
sciences

Article

Bin2Vec: A Better Wafer Bin Map Coloring Scheme
for Comprehensible Visualization and Effective Bad
Wafer Classification

Junhong Kim , Hyungseok Kim, Jaesun Park, Kyounghyun Mo and Pilsung Kang *

School of Industrial Management Engineering, Korea University, Seoul 02841 , Korea;
junhongkim@korea.ac.kr (J.K.); hskim0263@korea.ac.kr (H.K.); jason_park@korea.ac.kr (J.P.);
momkdh2@korea.ac.kr (K.M.)
* Correspondence: pilsung_kang@korea.ac.kr; Tel.: +82-2-3290-3383

Received: 3 January 2019; Accepted: 6 February 2019; Published: 11 February 2019
����������
�������

Abstract: A wafer bin map (WBM), which is the result of an electrical die-sorting test, provides
information on which bins failed what tests, and plays an important role in finding defective
wafer patterns in semiconductor manufacturing. Current wafer inspection based on WBM has
two problems: good/bad WBM classification is performed by engineers and the bin code coloring
scheme does not reflect the relationship between bin codes. To solve these problems, we propose
a neural network-based bin coloring method called Bin2Vec to make similar bin codes are represented
by similar colors. We also build a convolutional neural network-based WBM classification model
to reduce the variations in the decisions made by engineers with different expertise by learning
the company-wide historical WBM classification results. Based on a real dataset with a total of
27,701 WBMs, our WBM classification model significantly outperformed benchmarked machine
learning models. In addition, the visualization results of the proposed Bin2Vec method makes it easier
to discover meaningful WBM patterns compared with the random RGB coloring scheme. We expect
the proposed framework to improve both efficiencies by automating the bad wafer classification
process and effectiveness by assigning similar bin codes and their corresponding colors on the WBM.

Keywords: wafer bin map (WBM); Bin2Vec; Word2Vec; bad wafer classification; convolution
neural network

1. Introduction

The semiconductor market is growing at a rapid pace with the advent of the fourth industrial
revolution, characterized by the widespread use of the Internet of Things and the use of artificial
intelligence technologies in daily life [1,2]. To connect not only traditional devices such as PCs and
smartphones but also other electronic devices such as automobiles and home appliances to networks,
and to store and process the huge amounts of data obtained by these devices, the demand for various
types of ultra-compact and highly integrated semiconductor products has significantly increased [1].
To meet these requirements, ultrafine process in semiconductor production technology has consistently
evolved and has reached the physical limit with the help of advanced manufacturing processes.

The semiconductor manufacturing process consists of three main steps: (1) wafer fabrication;
(2) wafer test, i.e., circuit measurement for defective die/chip identification; and (3) packaging,
i.e., cutting the finished chips to a specific size to assemble them and make the final product
such as DRAMs or solid-state drives [3]. Since hundreds of individual equipment are involved
in the semiconductor manufacturing process, more than three months of production time is required.
The overall yield of th semiconductor manufacturing industry is relatively lower than that of other
manufacturing industries [4] because of the highly complex manufacturing processes involved; hence,

Appl. Sci. 2019, 9, 597; doi:10.3390/app9030597 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app9030597
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/3/597?type=check_update&version=2


Appl. Sci. 2019, 9, 597 2 of 22

yield management is one of the key factors to gain a competitive advantage in the market. It is
obvious that developing a new product faster than competitors is necessary for market leadership,
but a company can also dominate the market when their mass production system is running with
a high and stable yield. The company can take an advantage of price competitiveness through cost
reduction, which results in increased market share and profits. Since the semiconductor manufacturing
process has becoming more precise and highly integrated, it is increasingly difficult to secure high
yields for various newly developed products [5].

The electrical die sorting (EDS) test is conducted to check the electrical operation state of each
die on a wafer to identify defective dies and determine whether the current wafer can move on to
the packaging stage [2]. From the perspective of yield management, it is very important to find
the cause of defects in the semiconductor production process by examining the EDS test result [6].
EDS tests are conducted based on predefined conditions, which vary with the characteristics of
products. Once a set of EDS tests is completed, a single decimal bin code is assigned to each die
on the wafer. This bin code indicates a certain combination of tests that the die passed or failed.
Theoretically, if there are 10 different tests, the possible number of bin codes is 1024 (210), which is
represented as a decimal number ranging from 0 (passed all tests) to 1023 (failed all tests).

A wafer bin map (WBM) is an image that shows the relative location of each die and its
corresponding bin code. WBMs are commonly used to help engineers understand the overall state
of a wafer based on the EDS test results, as shown in Figure 1. The large circles in both images
represent a single wafer while the small squares represent individual dies. The only difference between
Figure 1a,b is the coloring scheme used for bin codes. All bin codes, except the code indicating that
all EDS tests were passed, are presented as the same gray color in Figure 1a, whereas different RGB
values are assigned different bin codes in Figure 1b.

(a) (b)

Figure 1. Examples of WBMs with different coloring schemes: (a) WBM in which bins that passed all
EDS tests are white and all the other bins are gray, (b) WBM in which bins that passed all EDS tests are
white and other bins are randomly assigned a color according to the bin code.

Once the fabrication step is completed, various EDS tests are conducted for each wafer and
the results are visualized by a WBM, based on which experienced engineers with sufficient domain
knowledge determine whether the wafer should be delivered to the packaging step (normal/good
wafers) or discarded (bad wafers) [7]. Since this decision is made solely on the basis of the experienced
engineers’ knowledge, different engineers may make different conclusions because of their biased
domain expertise. In other words, the same wafer that is considered “normal” by one engineer may
be deemed “bad” by another. More specifically, when a WBM is inspected by an engineer, he/she
makes a bad wafer decision by focusing only on the types of test failures that are familiar based on



Appl. Sci. 2019, 9, 597 3 of 22

his/her experiences. In other words, he/she looks at only a few bin codes (WBM colors) to make
a decision rather than considering all the bin codes. Consequently, depending on the WBM colors that
the engineer focuses on, the same wafer can be identified as either “normal” or “bad.” This problem is
mainly caused by the limitations of the current WBM coloring scheme. When the gray WBM is used,
significant information loss is inevitable since the engineer can only see the dies that failed at least
one test; it is impossible to see which dies failed at what specific tests. With the random RGB coloring
scheme, the role of color is to indicate unique bin codes; similar colors do not mean that the failed tests
they represent are physically or electrically similar. Thus, existing WBM colors are not fully used since
engineers use color information only to distinguish one bin code from another. If WBM colors can
provide the relationship between two bin codes, i.e., two sets of failed tests, then engineers can better
understand the WBM and identify significant patterns for improved decision-making.

To address the limitations of the abovementioned WBM coloring schemes, we propose a new,
neural network-based WBM coloring scheme called bin-to-vector (Bin2Vec) that can preserve
the relationship between different bin codes to help engineers better understand the WBM and
help identify significant patterns on bad wafers. The Bin2Vec maps a scalar bin code onto
a three-dimensional continuous vector in order to assign a unique set of RGB values to the bin
code. The main idea behind Bin2Vec is that if two dies are physically close to each other, then it is
highly likely that their EDS results are very similar; they might even pass and fail the same tests
together. To realize this idea, Bin2Vec adopts the word-to-vector (Word2Vec) structure, which has been
successfully used in various natural language processing tasks [8,9]. We expect that once the Bin2Vec
succeeds in learning the local structure of EDS test results of closely located dies, the resulting RGB
codes can not only discriminate one bin code from another but the RGB code can also represent
the EDS test result similarity between any pair of bin codes. Moreover, these similarities can be
visualized in a two-dimensional space to help engineers better understand different WBM patterns.
In addition to the Bin2Vec, we also propose a convolutional neural network (CNN)-based bad
wafer classification model, which has been done manually by experienced engineers. CNNs have
shown excellent performance in various areas such as audio processing and image processing tasks,
including image classification [10–15]. The bad wafer classification model takes the WBM as the input
image, and determines whether it is normal or bad as the output of the network. To train the CNN
model, historical data consisting of WBMs and their corresponding normal/bad labels determined by
experienced engineers are used. If the CNN-based bad wafer classification model shows a certain level
of accuracy, then WBMs can be automatically classified without the intervention of engineers.

The rest of this paper is organized as follows. In Section 2, we briefly review previous studies
related to WBM-based bad wafer classification models. Section 3 discusses data collection and
preprocessing, followed by a demonstration of the Word2Vec and proposed Bin2Vec methods. Section 4
describes the experimental design, including the proposed CNN model structure and benchmarked
classification models. Experimental results are discussed in Section 5, and the limitations of the current
study and future research directions are discussed in Section 6.

2. Literature Review

The mainstream research on WBM analysis has focused on the discovery of meaningful patterns
or clusters from bad wafers. In this framework, bad wafers are manually filtered first, and then various
analytical techniques are applied to find significant patterns or clusters based on their WBMs [16–20].
In the early 2000s, Huang et al. [16] found wafer clusters by applying a 3× 3 median filter to the WBM
to replace isolated chips with the median value of neighboring chips. Since median filtering has
a blurring effect, it becomes difficult to discover defective wafer patterns with high precision. Instead of
a median filter, Wang Wang [17] applied a mean filter to the WBM for the purpose of denoising,
and found defective wafer clusters. As a clustering method, they employed spectral clustering based
on fuzzy C-means (FCM) with kernel principal component analysis, given that FCM-based spectral
clustering is known to be robust against outliers. Recently, a neural-network based method that



Appl. Sci. 2019, 9, 597 4 of 22

replaces the previous kernel principal analysis has also emerged to extract the principal singular triplet
(PST) of a cross-correlation data, such as wafer images [21].

In the 2010s, Ooi et al. [18] proposed the segmentation with detection and small cluster removal
(SDC) algorithm. The SDC algorithm automatically generated features for clustering WBMs by
local yield conversion (LYC) method, which extracted the mean value of the “passed” and “failed”
neighboring chips around the targeted chip. Through the cut-off filtering process, the LYC can
extract the dominant wafer defect patterns. Taha et al. [19] proposed the Dominant Defective
Patterns Finder (DDPFinder) algorithm that maintains the spatial dependence of defect patterns
throughout the WBM, and considers the relative coverage of defect patterns during the clustering
process. They randomly selected k sample dies for cluster centroid initialization, which resulted
in k-Voronoi regions in k-means clustering (KMC). The dominant defective patterns were extracted
by the centroids of the Voronoi region to which defective wafers were assigned. They compared
the performance of DDPFinder and eight benchmarked models (i.e., simplified subspaced regression
network, randomized general regression neural network, support vector machines, and four artificial
neural networks (ANNs, i.e., general regression neural, radial basis function, probabilistic neural
network, and multi-layer perceptron)). The experimental results showed that DDPfinder outperformed
the benchmarked methods with an accuracy of 99.78% based on a predefined defect wafer dataset.
Liu and Chien [20] proposed a framework that removed random noise to find robust defective WBM
pattern clusters based on a cellular neural network. To do so, they first used a moment-invariant
method, which is one of the shape recognition techniques widely used in the field of image processing,
to extract rotation and size-invariant features. Based on the extracted features, they applied a neural
network-based adaptive resonance theory (ART) to find WBM clusters. Their method showed 97%
clustering purity even with high defective rate in the highly noisy environment. The experimental
results also showed that the proposed method resulted in higher purity, diversity, specificity,
and efficiency than the four existing clustering methods (Ward, KMC, self-organizing map (SOM),
and spectral). However, the main disadvantage of this method is that it cannot find combined
defective patterns.

In addition to the task of finding significant defective WBM patterns, some studies have attempted to
automate the process of finding defective patterns and assigning the WBMs of newly processed wafers to
one of these patterns, which is formulated as a multiclass classification problem. Wang et al. [5] proposed
a hybrid clustering method to define the characteristics of WBM clusters and assign individual WBMs to
one of these discovered patterns. They first applied a spatial filter to WBMs to extract relevant features
for defective pattern identification. Then, they used hybrid clustering to define cluster types based on
the extracted features. To classify individual WBMs into one of these identified clusters (e.g., linear type,
elliptical type, and ring type), various classification methods such as classification module, estimation
module, Gaussian EM algorithm, and spherical shell algorithm, were employed. Li and Huang [22]
proposed a hybrid SOM–SVM method to recognize and classify WBM defect patterns. In their framework,
SOM was trained to discover representative WBM defect patterns, whose clustering membership became
the target class of the SVM classifier. Experimental results showed that the proposed method can correctly
classify the discovered defect patterns with more than 90% accuracy. Cheng et al. [4] attempted to
extract significant features using polar Fourier transform and rotational moment invariants, both of
which are commonly used in signal processing. They trained classifiers to classify six predefined WBM
defect patterns, i.e., bulls-eye, blob, hat, ring, line, and edge, based on the extracted features. A decision
tree, Naive Baye’s classifier, bagging decision tree, and boosted logistic regression were employed as
classification algorithms. Although this method showed good performance for simulated WBM datasets
(68.33% accuracy), its performance deteriorated when applied to a real WBM dataset (52.58% accuracy).
Another notable limitation is that the WBM defect patterns were predefined and were not changed over
time. Since currently non-existent defective patterns can be observed during the actual manufacturing
process, this method is not flexible enough to adapt to unexpected changes in manufacturing environment.



Appl. Sci. 2019, 9, 597 5 of 22

Liao et al. [23] proposed a defect-type detection method based on similarity searching to address
problems of not only inflexibility caused by predefined defect patterns but also the difficulty of
capturing complex defect patterns when more than two defect patterns occur simultaneously. To do
so, they first performed a morphological sample generation process to reproduce various pattern
derivations (shift, erosion, dilation, opening, and closing) from the original defect patterns. Then,
they used two types of training datasets: predefined defect patterns determined by experienced
engineers and dissimilar samples determined by the 1-SVM. The SVM classifiers were trained to
classify the five defect patterns. The experimental results showed that the proposed method achieved
95% catching rate with only 5% false-alarm rate. However, this model can only be applied to predefined
defect patterns. Adly et al. [24] and Adly et al. [25] employed ANN-based classifiers called simplified
sub-spaced regression network and randomized general regression network to improve the WBM
defect pattern classification performance. Their first proposed model [24] yielded superior and robust
performance, in addition to improved computational efficiency compared with the benchmarked six
methods. In the following study [25], they proposed a classification model with a bagging ensemble
scheme that guaranteed relatively stable prediction accuracy and low variance. The proposed method
achieved approximately 99.79% classification accuracy. Wu et al. [26] proposed a two-phase method
that first discovered defect patterns and then classified WBMs into one of these patterns based on
different image feature extraction methods. They employed random-based features, geometry-based
features, and Hough transformation features for feature extraction. Then, the SVM classifier was
used to classify the WBM. Their proposed model yielded 94.63% classification accuracy in nine-class
(eight defect classes + no class) classification.

The aforementioned studies mainly focused on discovering representative defect patterns that
appear on WBMs and classifying individual WBMs into one of these discovered classes. There are
two common assumptions behind these studies: (1) defective WBMs can be easily classified with
little effort, and (2) the classification result is highly accurate. However, these two assumptions
might not be supported in actual semiconductor manufacturing processes. First, defective WBM
classification is still manually conducted by experienced engineers, which is both time-consuming
and labor-intensive. Second, some wafers determined as normal by one engineer are determined as
defective by another engineer since engineers with different expertise investigate different bin codes
to make their decisions. In other words, human judgment of defective WBM is not based on all the
information embedded in the WBM but also on only a part of it. The information on WBM that is
used solely depends on who investigates it. The second problem is closely related to the current
WBM coloring scheme; RGB codes are randomly assigned to different bin codes. Hence, the colors
in existing WBM are simply identifiers of bin codes and cannot preserve the physical or semantic
relationship between them. If the relationship between bin codes can be understood through WBM
colors, then contradictory decisions by engineers regarding defective WBMs can be reduced, making it
possible to build an accurate autonomous WBM classification model that can classify every WBM in
real time without any intervention by human experts.

3. Bin2Vec: A Convolutional Neural Network-Based WBM Coloring Scheme

3.1. Data Description

In this study, we used a total of 27,071 WBMs from nine product groups (DRAM, SSD, etc.)
produced by a semiconductor manufacturing company in South Korea. The total number of bin codes
available for each die is 10,002, as listed in Table 1. If a die does not pass a certain set of EDS tests,
then one code between 1 and 9999 is assigned. The values 0, −1, and −2 refer to passing all the EDS
tests, untested dies, and non-wafer area, respectively. Figure 2 shows an example of a WBM with
random RGB coloring scheme (a), and a simplified binarization scheme (b) in which bin codes from
1 to 9999 are represented by the same color (blue in this example).



Appl. Sci. 2019, 9, 597 6 of 22

(a) Visualized by random RGB method (b) Visualized by simplified method

Figure 2. Example of WBM.

Table 1. Values that can be assigned to WBM image pixels.

Value Description

−2 Non-wafer part
−1 Untested portion
0 Not all results from 1 to 9999

1∼9999 Code indicating a set of EDS tests that the die does not pass

3.2. Word2Vec and Bin2Vec

3.2.1. Word2Vec

Word2Vec is the most widely used neural network-based distributed representation method that
represents a word by a numerical vector in a fixed dimension [27,28]. Traditional one-hot encoding
cannot preserve the semantic relationship because a word is represented by |V|-dimensional vector
(|V| is the number of unique words in the dataset) with only one element with the value 1, and all
other elements being 0. In contrast, Word2Vec can preserve the semantic relationship between words.

There are two Word2Vec structures: continuous bag-of-words (CBOW) and Skip-Gram that have
the exactly reversed structures. CBOW takes the neighborhood words as the input of the network
and is trained to correctly predict the targeted word, whereas Skip-Gram takes the targeted word as
the input of the network and is trained to correctly predict the neighborhood words. We adopted
the Skip-Gram structure, as shown in Figure 3 [27], since it is known to be more effective in learning
infrequent words. The bin codes in this study are equally important regardless of the frequency of their
appearance. The Skip-Gram model consists of the input, projection, and output layers. Assume that
we are attempting to find the d−dimensional word vectors for a total of |V| words in the dataset
(d << |V|), and the window size (the number of neighborhood words to predict in either direction
from the targeted word) is set to c. The input layer takes the one-hot encoding vector of the targeted
word, whereas the output layer consists of the one-hot encoding vectors of the words surrounding the
targeted words. The projection layer consists of d hidden nodes such that the hidden weight matrix
W between the input layer and projection layer becomes |V| × d, and the hidden weight matrix W′

between the projection layer and output layer becomes d× |V|. After the training process is completed,
either the row vector of W or the column vector of W′ can be used as word vectors.



Appl. Sci. 2019, 9, 597 7 of 22

Figure 3. The Skip-Gram model architecture.

The purpose of the Skip-Gram model is to maximize the probability of generating the actual
surrounding words for a given target word. More specifically, given a sequence of training words
w1, w2, w3, · · · , wT , the objective function of the Skip-Gram model is to maximize the average log
probability as shown in Equation (1):

max
1
T

T

∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt). (1)

The probability of generating the surrounding (output) words given the target (context) word is
computed using the softmax function as shown in Equation (2):

p(o|c) =
exp(uT

0 vc)

∑W
w=1 exp(uT

0 vc)
, (2)

where u is the column vector of the hidden weight matrix W′, and v is the column vector of the hidden
weight matrix W. The Skip-Gram model learns the weight matrices W and W′ by stochastic gradient
descent optimization method. There are two practical drawbacks of Equation (2). First, it is burdensome
to compute the denominator because all the words must be used to compute the softmax function.
Second, frequent words such as “the” or “it” are over-trained, whereas infrequent words cannot be
trained sufficiently. To resolve these issues, the negative sampling technique [29] is commonly used.
In the negative sampling technique, only a few non-surrounding words are sampled to compute
the denominator, and the sampling probability of each word is adjusted based on its frequency in
the corpus: the probability of sampling frequently appearing words decreases, whereas the probability
of sampling of rarely appearing words increases. Noise contrastive estimation [30] is an alternative to
reduce the computational complexity of the Word2Vec model.

3.2.2. Bin2Vec

In this study, the original WBMs have the size 301 × 301 pixels. Each pixel in a WBM can
have a value between −2 and 9999. Although the nine product groups have the same raw WBM
size, the actual number of dies on the wafer along the horizontal and vertical axes are different.
Table 2 lists the number of unique bin codes, the number of dies along the horizontal/vertical axis,
as well as the number of total, good, and bad wafers and their proportions. Group 1 has the largest
number of WBMs, containing 5464 WBMs with 23× 27 dies. In contrast, Group 9 has the smallest
number of WBMs, containing 1715 WBMs with 47× 51 dies. For the current manufacturing process of
the company, a total of 10,002 bin codes are possible for the dies, as explained with Table 1. However,



Appl. Sci. 2019, 9, 597 8 of 22

only a small portion of them actually appeared: Group 1 has the largest number of unique bin codes
(401), whereas only eight bin codes appear for Group 6. Although the size of raw WBMs is 301× 301
pixels, each die is represented by 3× 3, 4× 3, or 4× 4 pixels according to the product type, and the
same bin codes are assigned to the pixels for the same die. Hence, we resized the original WBM by
aggregating the pixels for the same die so that a die is presented by a 1× 1 pixel in the reduced WBM
as shown in Figure 4.

Table 2. Raw data information of WBM.

Group No. Wafers No. Good No. Bad Good (%) Bad (%) No. Bins No. Dies (Horizontal) No. Chips (Vertical)

1 5464 4156 1308 76.06 23.94 401 23 27
2 5449 4771 678 87.56 12.44 77 29 50
3 3261 2621 640 80.37 19.63 43 41 36
4 2781 2578 203 92.70 7.30 108 47 62
5 2543 2145 398 84.35 15.65 371 29 26
6 2101 850 1251 40.46 59.54 8 32 38
7 1958 1403 555 71.65 28.35 82 33 58
8 1799 1535 264 85.33 14.67 206 26 26
9 1715 1542 173 89.91 10.09 108 47 51

(a) Wafer bin map (b) Resized wafer bin map

Figure 4. Example of wafer bin map and resized image from wafer chip size.

Currently, WBMs are colorized by the random RGB scheme in which a randomly selected RGB
code is assigned to each bin code so that different bin codes can be distinguished on the WBM to
help engineers identify meaningful bin patterns. The main drawback of this coloring scheme is
that the relationships between bin codes are not preserved. In practice, some bin codes are closely
related while others are completely unrelated. This relationship information is completely ignored
by the current WBM coloring scheme. Encouraged by process engineers’ domain knowledge that
nearby dies often fail the same test together, we propose a new WBM coloring scheme called
Bin2Vec by considering the location information of dies on the wafer. The proposed Bin2Vec
transforms a one-dimensional scalar bin code into a three-dimensional embedding vector by employing
the learning mechanism of the Word2Vec embedding model. Once the bin code is converted into
a three-dimensional vector, it can be used not only to assign an RGB code, which can also be
considered a three-dimensional vector, but also to compute the similarity between any two pairs of bin
codes. For engineers who actually investigate WBM patterns, Bin2Vec can also provide the following
information compared with random RGB coloring, i.e., the more similar the color, the more frequently
the bin codes appear together in a local area on the wafer.

To train the Bin2Vec model, a total of 25 bin codes with size 5× 5 are taken to make a training
instance, as shown in Figure 5a. This square matrix is then reshaped into a 25-dimensional vector:
the first column becomes the first five elements and the last column becomes the last five elements,
as shown in Figure 5b. This sampling and reshaping process for a single wafer is repeated by sliding the



Appl. Sci. 2019, 9, 597 9 of 22

step size by one. For example, Group 1 products have 23× 27 dies on a wafer, and we assign the index
from top to bottom, and from left to right. The first training instance is made by taking 25 dies with
index of 1–5 (horizontal) and 1–5 (vertical). If horizontal sliding is done first, then the second training
instance is made by taking 25 dies with index of 2–6 (horizontal) and 1–5 (vertical). This process is
repeated until the 25 dies with index 19–23 (horizontal) and 23–27 (vertical) are taken. With these
vectorized bin codes, we employed the Skip-Gram structure [27] to learn the embedding vectors.
The bin codes in the middle, i.e., the bin code in the third row and third column in the 5× 5 bin matrix,
or the 13th bin code in the 25-dimensional vector, were used as the input while the other 24 bin codes
were used as the target of the Skip-Gram model, as shown in the first two steps in Figure 6. During
the Skip-Gram model training, we excluded the following two cases because they do not have any
significant information: (1) instances when all elements have the same bin code, and (2) instances that
contain only “-2” (non-wafer part) and “0” (the die passed all the EDS tests).

0 0 0 0 1

0 0 0 2 2

5 5 3 2 2

0 5 4 0 0

0 0 5 0 0

(a) Example of 5 × 5 window

0 0 5 0 0 0 0 5 5 0 0 0 3 4 5 0 2 2 0 0 1 2 2 0 0

Input variable

Target variable Target variable

(b) Bin2Vec input/target variable

Figure 5. Data converted from WBM to Bin2Vec input structure.

MinMax

Normalization
BIN2Vec 

Input

Color mapping for 

BIN test result

BIN2Vec

Embedding

Figure 6. Bin code RGB color mapping framework based on Bin2Vec.

For the Bin2Vec model, the input vector dimension (|V|) is set to 401, which is the number of
total bin codes that appeared at least once in the WBM dataset. The number of hidden nodes is set
to 3 to assign the RGB code to the embedded bin codes. In an Natural language processing task,
it is common to use a negative sampling technique or noise-contrastive estimation [30] for Word2Vec
training to reduce the number of words used for the denominator of the softmax function, as shown
in Equation (2). Without these techniques, Word2Vec would consider more than 100,000 words to
compute the softmax function, causing a heavy computational burden. On the other hand, in the



Appl. Sci. 2019, 9, 597 10 of 22

Bin2Vec, we used all bins to compute the softmax function because there were only 401 distinctive bin
codes. Once the Bin2Vec model training is completed, the range of three embedded dimensions can be
different. To fully use the RGB code coverage, the embedded bin vectors are min-max scaled for all
dimensions, as shown in Figure 6. Accordingly, each bin code has a value between 0 and 1 in the R-,
G-, and B-axis, respectively.

Figure 7a is an example of a WBM with binary colorization scheme. The white color indicates
that the dies in those areas passed all the EDS tests while the gray color indicates that the dies in
those areas failed at least one of the EDS tests. The only information delivered to process engineers by
the binary colorization scheme is whether each die passed all the tests or not. The failed tests cannot be
distinguished because these are presented as the same gray color. To provide both types of information,
the random RGB coloring scheme assigns different colors to different bin codes, as shown in Figure 7b.
Although different bin codes are colored differently, it is not possible to determine which bins are
semantically similar to others; the colors only serve as identifiers. Bin2Vec can provide all three types
of information: (1) whether each die passed all the tests, (2) what die failed which tests, and (3) which
bin codes are semantically related. Figure 7c shows the same WBM with the Bin2Vec coloring scheme.
Compared with random RGB coloring, bin patterns are more noticeable with the Bin2Vec. The areas A,
B, and C have similar green colors in Figure 8a, whereas black, purple, and brown are assigned to the
dies in areas A, B, and C by the Bin2Vec, respectively (Figure 8b). In addition, Figure 8b shows that the
bin codes along the edge are semantically similar since they are represented in yellow. On the other
hand, they could also be misinterpreted as being very different since purple and green were assigned
to the same area by the random RGB coloring scheme.

(a) (b) (c)

Figure 7. Various visualization methods in WBM: (a) Binarization, (b) Random RGB, (c) Bin2Vec.

BB
CC ＡＡ

(a) Random RGB

BB
CC ＡＡ

(b) Bin2Vec

Figure 8. Bin patterns of random RGB and Bin2Vec.

Figure 9 shows two examples of WBMs where a significant bin pattern is recognized only with
Bin2Vec. Figure 9a–c are the WBMs for a wafer and Figure 9d–f are the WBMs for another wafer.
In Figure 9a,b, the bins seem to be randomly distributed and no significant patterns are recognizable.



Appl. Sci. 2019, 9, 597 11 of 22

However, it can be observed that there is a clear cross bin pattern in dark blue when Bin2Vec is applied.
Similarly, it is hard to find a circular bin pattern in Figure 9d,e, but a circular bin pattern was discovered
(color blue) by Bin2Vec.

(a) Binarization (b) Random RGB (c) Bin2Vec

(d) Binarization (e) Random RGB (f) Bin2Vec

Figure 9. Example of WBM with obvious patterns when visualized by Bin2Vec methodology
(Binarization, Random RGB, Bin2Vec).

Figure 10 shows other examples where small but significant bin patterns were discovered by
Bin2Vec. In Figure 10a, only two dies passed all the EDS tests. Based on the random RGB scheme,
it seems that many different bin codes are randomly distributed on the wafer. However, these bin
codes are actually very closely related to each other such that their colors resulted in similar RGB
codes with the Bin2Vec, as shown in Figure 10c. In Figure 10d, all dies failed at least one of the EDS
tests such that the all areas on the wafer are color gray. With the random RGB scheme, it appears that
there are three primary bin codes which are very different from each other. However, two of them are
actually closely related to each other semantically (green and gray), and the other bin code (dark blue)
is significantly different, which was discovered by the Bin2Vec.



Appl. Sci. 2019, 9, 597 12 of 22

(a) (b) (c)

(d) (e) (f)

Figure 10. Examples of visualized novelty bin codes using Bin2Vec methodology (Binarization, Random
RGB, Bin2Vec).

4. Experiment

In the semiconductor manufacturing process, WBMs are used as a source in faulty wafer
identification. If a WBM is deemed good, then the corresponding wafer is delivered to the packaging
stage. If it is deemed bad, then it is either re-processed or discarded. To identify bad wafers,
we constructed a binary classification model: the input is the WBM of each coloring scheme,
and the target (class label) is the good/bad identification results determined by expert engineers.
An independent classification model was trained for each of the nine product groups. Since WBM can
be considered as image data, we propose a CNN-based faulty wafer classification model. As benchmark
algorithms, multilayer perceptron (MLP) with one hidden layer and random forests (RF) were
employed. The training and test datasets were randomly partitioned by 8:2 for each product group,
and the experiment was repeated 30 times for performance comparison.

4.1. Convolution Neural Network

4.1.1. Convolution and Pooling Operation

In this study, CNNs extract useful features for classification from the image through
the convolution operation. In image classification, 2d convolution is commonly used. Let the feature
map of l-th layer be Xl ∈ RW×H×C, in which W and H denote the width and height of WBM,
respectively; and C denotes the channels (one for binarization, three for random RGB and Bin2Vec).
The convolution operation is computed as shown in Equation (3):

Xl+1
w,h,c =

M

∑
c′=1

M

∑
m=1

N

∑
n=1

kc,m,n,c′X
l
(w+m−M+1

2 ),(h+n− N+1
2 ),c′ , (3)

where Xl+1 is the output tensor of the convolution operation; w, h, and c denote the index of the width,
height, and channel of the output tensor, respectively; and kc,m,n,c′ is the weight used to conduct



Appl. Sci. 2019, 9, 597 13 of 22

the convolution with the width, height, and channel size of m, n, and c′, respectively. Figure 11a shows
an illustration of convolution operation.

Once the convolution operation is completed, the pooling operation is conducted to reduce
the width and height of features maps but preserve significant information, which helps improve
the computational efficiency of CNN models. Max pooling and average pooling are the most commonly
used pooling methods; we adopted max pooling since it focuses on the most important pixel in
the receptive field. Figure 11b shows an example of max pooling operation with size of 2× 2.

, ℎ

+1

, ℎ,

(a) Convolution
operation

3 2 8 12

5 7 1 4

3 15 2 7

7 8 9 8

7 12

15 9

ℎ

(b) Max pooling operation

Figure 11. Convolution and max pooling operations in CNN.

4.1.2. Convolutional Neural Network Architecture

A CNN is a special case of ANNs, as shown in Figure 12. CNN has been proven excellent
performance in recent various image processing tasks [31,32]. Some representative CNN architectures
include AlexNet [10], VGGNet [11], Inception [12], ResNet [13], and DenseNet [14].

The basic building blocks of a CNN are a convolution layer and pooling layer. Contrary to the basic
ANN where the previous layer is fully connected to the next layer, a small region of the previous
layer (m by n by c′), known as the receptive field, is connected to the next layer by the convolution
operation in CNN. This convolution operation is repeated starting from the top-most left receptive
field to the right-most bottom receptive field with the same convolution weights. Once the convolution
operation is completed, another convolution operation with different weights is performed in the same
manner. The number of different sets of convolution weights is known as the number of convolution
filters between two layers. Since the same weights are used for a specified convolution filter, the number
of weights to be learned is much smaller with the CNN than fully connected ANNs. In addition,
a single convolution filter can find a significant local pattern over all regions in the previous layer
using the same weights for the corresponding convolution filter.

Once the convolution step is completed, the size of the resulting tensor is reduced by pooling
operation to improve the learning process efficiency. The pooling result depends on the size and
method of pooling: the former decides how a large area is summarized while the latter decides how
to represent the targeted area. Max pooling and average pooling are two common pooling methods:
the former uses the largest value while the latter uses the average values of the targeted area.

After the set of convolution and pooling layers are processed, many commonly used CNN
architectures place fully connected layers between the end of convolution building blocks and
the output layer. For a classification task, the number of nodes in the output layer is set to the number
of classes, and the output values of the CNN are computed using the softmax function to ensure that
every output node value is between 0 and 1, and the sum of all output node values is 1. By doing
so, the output node value can be interpreted as the probability of the input image belonging to
the corresponding class. Because the number of weights to be learned is still quite large, some



Appl. Sci. 2019, 9, 597 14 of 22

practical techniques are used to improve training efficiency [33], such as adopting a rectified linear
unit (ReLU) [10] as an activation function and batch normalization [34] during the weight learning by
the gradient descent algorithm.

2048 1024

2

G

B

Input Conv1

FC1

3

3

FC2

64

MaxPool

3

3

Conv3

128

3

3

256

3

3

256

Conv4

Conv2

MaxPool

Figure 12. Convolutional neural network architecture used in this study.

The most commonly used input image size for CNN architecture is 224× 224, which is the input
size of the dataset provided by ImageNet [35], one of the largest labeled datasets for image processing.
The maximum input image size in this study is 47× 62. Hence, we used a simpler CNN architecture,
i.e., the number of convolution and pooling layers is less than that of other well-known CNN
architectures. Figure 12 shows the CNN architecture used in our study. Four convolution and pooling
layers were used followed by two fully connected layers. For all convolution layers, 3× 3 convolution
operation with stride size of 1 was performed, followed by 2× 2 max pooling with stride size of 2.
The number of convolution filters are 64, 128, 256, and 256 for the first, second, third, and fourth
convolution layers, respectively. The number of nodes used for the first and second fully connected
layers are 1048 and 1024, respectively. The number of output nodes was set to two: good and bad.

We used ReLU and batch normalization after all of the convolution layers. The batchsize was
set to 32. Given the imbalanced class distribution, i.e., the number of good wafers is generally much
greater than that of the bad wafers, we constructed the mini-batch training set by sampling 16 good
and 16 bad WBMs from the original training set. The learning rate started at 10−3, decayed by
10−1 every 5000 iterations after first 10,000 iterations, and trained 30,000 iterations in total. The first
20,000 iterations were trained with Adam [36] optimization, followed by 10,000 with mini-batch
gradient descent (MGD).

4.2. Multilayer Perceptron

A feedforward MLP with three hidden layers was employed in this study. As shown in Figure 13,
the number of hidden nodes was set to 1024, 1024, and 512 for the first, second, and third hidden
layers, respectively. The ReLU activation function was used for the first and second hidden layer
while the softmax function was used for the third hidden layer. Batch normalization is applied to each
layer and the dropout rate of 0.5 was used [37] for the weights between the third hidden layer and
output layer. The learning rate started at 10−3, decayed by 10−1 every 5000 iterations, and trained
15,000 iterations in total. We used the Adam optimizer for the first 10,000 iterations and then changed
it to MGD. Similar to CNN, the batch size was set to 32, consisting of 16 good and 16 bad WBMs.



Appl. Sci. 2019, 9, 597 15 of 22

1024 1024

Input

FC1 FC2

512

2

G

B

FC3

Figure 13. Multilayer perceptron architecture used in this study.

4.3. Random Forest

RF, which is a special case of the decision tree-based ensemble model, was first introduced by
Breiman [38] and has consistently shown its excellence in both classification and regression tasks in
various domains [39]. Two RF strategies to secure the diversity of individual models in the ensemble
population are (1) bootstrapping aggregating (bagging) and (2) randomly chosen variables for each
split during tree growth. Once a training dataset is provided, different training sets called bootstraps
are constructed by sampling with replacement. The number of instances in the bootstrap is the same
as that of the original training dataset. By allowing replacement, the data distribution of bootstrapped
training datasets is slightly distorted. For each bootstrapped dataset, a full decision tree is constructed.
The main idea of RF is that when growing the tree, only randomly chosen variables can be used
as the split variable. This variable selection process is repeated until the full tree is constructed.
The number of candidate split variables is usually set to the square root of the original variable,
as recommended in the original paper [38]. Adopting this recommendation, we set the number of
candidate split variables to the square root of the number of input variables, and the number of
bootstrapped training datasets was set to 500. Because the class imbalance is significant in our dataset,
i.e., the good WBMs outnumber the bad WBMs, we modified the bootstrapping process to ensure
balanced class distribution; equal number of good and bad wafers were sampled with replacement for
each bootstrap. With this process, bad wafers have higher chances of being sampled than good wafers.

4.4. Performance Evaluation Criteria

Since the purpose of the classification model is to identify faulty wafers correctly, the confusion
matrix can be summarized as Table 3. As performance measures, we used recall, precision,
simple accuracy, balanced correction rate (BCR), and the F1-measure, all of which can be computed
based on the confusion matrix.

Table 3. Confusion matrix for wafer bin map classification.

Actual Class

Bad (Positive) Good (Negative)

Predicted Class Bad (Positive) True Positive (TP) False Positive (FP)
Good (Negative) False Negative (FN) True Negative (TN)



Appl. Sci. 2019, 9, 597 16 of 22

Recall is the ratio of the number of correctly classified bad wafers and the total number of bad wafers,
whereas precision is the ratio of the number of correctly classified bad wafers and the total number of
wafers classified as bad by the classification model, as shown in Equations (4) and (5), respectively:

Recall =
TP

TP + FN
, (4)

Precision =
TP

TP + FP
. (5)

A good classification model can achieve both high recall and precision. If recall is low, then many faulty
wafers are missed by the model. If precision is low, then false alarms occur frequently. Simple accuracy is
the ratio of correctly classified wafers regardless of the original class, as shown in Equation (6):

Accuracy =
TP + TN

TP + TN + FP + FN
. (6)

Accuracy is not an appropriate performance measure when the class imbalance is significant,
as in our case, since it yields high accuracy if the model classifies all test examples to the majority
class, which is practically useless. Hence, BCR and the F1-measure could be more appropriate for
an imbalanced dataset. BCR is the geometric mean of class-wise accuracy and the F1-measure is the
harmonic mean of recall and precision, as shown in Equations (7) and (8), respectively:

BCR =

√
TP

TP + FN
× TN

TN + FP
, (7)

F1−measure =
2

1
Precision + 1

TPR
. (8)

The five performance evaluation criteria described above depend on the cut-off values. To compare
the intrinsic ability of classification models, cut-off independent performance evaluation criterion is
needed. The receiver operating characteristic (ROC) curve shows the relationship between the false
positive rate (x-axis) and true positive rate (y-axis) by varying the cut-off from tightest value to
the loosest value. The ROC curve always starts from (0, 0) and ends with (1, 1). The area under
the ROC curve (AUROC) is shown in Figure 14, and is commonly adopted as a cut-off independent
performance metric. The AUROC ranges between 0.5 (random model) and 1 (ideal model); the larger
the AUROC, the better the classification model.

The area under 
the ROC curve

(AUC)

False Positive Rate (FPR)

True
Positive

Rate
(TPR)

Figure 14. Receiver operating characteristic curve.



Appl. Sci. 2019, 9, 597 17 of 22

5. Results

In this study, we randomly split the entire dataset into 80% for training and the remaining 20%
for testing. This process was repeated 30 times to secure more reliable results than a single experiment.
Table 4 shows the classification performance of each model for the nine product groups and Figure 15
shows the box plots of the AUROC of three classification models for each product group. Bold numbers
in the table are the highest values among the three classification models for each group.

Table 4. Classification of Good and Bad WBM results from group 1 to group 9 (Values without/with
parenthesis are the average/standard deviation of 30 trials, respectively; in bold face are the best
performance for each group and indices).

Binary Random RGB Bin2Vec

Group Model REC PRE ACC F1 BCR AUC REC PRE ACC F1 BCR AUC REC PRE ACC F1 BCR AUC

1

MLP 83.72
(3.28)

82.45
(2.62)

91.81
(1.08)

83.03
(2.28)

88.86
(1.797)

0.946
(0.011)

61.46
(3.43)

74.11
(3.06)

85.61
(1.07)

67.14
(2.64)

75.66
(2.10)

0.880
(0.014)

61.77
(3.17)

73.61
(3.10)

85.52
(1.11)

67.12
(2.62)

75.77
(2.01)

0.877
(0.013)

RF 83.06
(2.84)

79.51
(2.38)

90.72
(1.00)

81.21
(1.92)

87.96
(1.57)

0.941
(0.010)

71.04
(3.14)

65.56
(2.55)

83.97
(1.33)

68.15
(2.32)

79.10
(1.91)

0.894
(0.013)

65.64
(2.93)

69.25
(2.51)

84.65
(1.15)

67.36
(2.30)

77.15
(1.84)

0.876
(0.015)

CNN 91.40
(1.97)

92.85
(1.90)

96.25
(0.65)

92.10
(1.37)

94.53
(1.04)

0.989
(0.004)

88.56
(2.04)

91.04
(1.85)

95.17
(0.66)

89.76
(1.40)

92.80
(1.09)

0.981
(0.005)

87.06
(2.10)

91.04
(1.95)

94.84
(0.55)

88.98
(1.19)

92.02
(1.02)

0.971
(0.006)

2

MLP 89.07
(3.82)

88.93
(2.41)

97.25
(0.55)

88.95
(2.33)

93.60
(2.01)

0.972
(0.016)

89.53
(4.04)

90.06
(3.12)

97.45
(0.67)

89.74
(2.75)

93.92
(2.14)

0.972
(0.016)

86.40
(3.43)

89.77
(2.40)

97.07
(0.57)

88.02
(2.43)

92.28
(1.88)

0.970
(0.019)

RF 87.21
(3.39)

84.17
(2.51)

96.37
(0.61)

85.63
(2.34)

92.28
(1.83)

0.975
(0.009)

87.10
(3.24)

84.57
(2.24)

96.43
(0.53)

85.78
(2.07)

92.25
(1.72)

0.978
(0.008)

86.97
(3.51)

83.36
(1.90)

96.23
(0.46)

85.08
(1.94)

92.09
(1.83)

0.976
(0.008)

CNN 96.08
(1.31)

96.07
(1.59)

99.02
(0.21)

96.06
(0.84)

97.74
(0.63)

0.997
(0.003)

95.76
(1.91)

96.32
(1.67)

99.01
(0.25)

96.02
(1.02)

97.59
(0.93)

0.996
(0.004)

95.69
(1.54)

94.45
(1.63)

99.02
(0.26)

96.05
(1.04)

97.57
(0.77)

0.995
(0.005)

3

MLP 86.56
(3.50)

92.47
(2.68)

95.98
(0.97)

89.39
(2.63)

92.22
(1.98)

0.962
(0.018)

85.05
(4.85)

94.59
(2.19)

96.12
(1.09)

89.51
(3.16)

91.64
(2.68)

0.958
(0.018)

86.02
(4.63)

94.46
(2.43)

96.26
(1.06)

89.98
(3.01)

82.14
(2.54)

0.968
(0.017)

RF 87.41
(3.98)

93.44
(2.18)

96.38
(0.95)

90.27
(2.54)

92.78
(2.17)

0.976
(0.010)

87.98
(3.62)

94.31
(2.07)

96.66
(0.85)

90.99
(2.35)

93.18
(1.97)

0.980
(0.009)

97.95
(4.14)

94.54
(2.00)

96.70
(0.91)

91.07
(2.54)

93.19
(2.22)

0.979
(0.010)

CNN 96.15
(1.33)

97.69
(1.28)

98.80
(0.30)

96.90
(0.77)

97.78
(0.64)

0.992
(0.005)

95.91
(1.31)

98.36
(1.08)

98.88
(0.32)

97.11
(0.83)

97.74
(0.67)

0.992
(0.005)

95.99
(1.56)

98.12
(0.89)

98.85
(0.35)

97.03
(0.92)

97.75
(0.80)

0.991
(0.005)

4

MLP 62.11
(6.98)

70.40
(5.95)

95.27
(0.69)

65.81
(5.59)

77.86
(4.48)

0.897
(0.036)

63.74
(6.95)

74.26
(5.95)

95.67
(0.63)

68.30
(5.04)

78.99
(4.36)

0.911
(0.032 )

60.24
(7.17)

73.00
(6.73)

95.39
(0.70)

65.70
(5.49)

76.77
(4.56)

0.892
(0.030)

RF 85.07
(5.21)

55.00
(4.89)

93.83
(0.90)

66.67
(4.27)

89.61
(2.67)

0.944
(0.019)

83.59
(5.36)

58.37
(6.66)

94.42
(1.07)

68.55
(5.53)

89.19
(2.89)

0.948
(0.018)

84.23
(5.21)

58.52
(6.21)

94.48
(1.03)

68.93
(5.47)

89.53
(2.83)

0.949
(0.018)

CNN 83.25
(5.39)

90.96
(3.82)

98.15
(0.43)

86.80
(3.25)

90.89
(2.91)

0.970
(0.018)

86.59
(4.52)

91.00
(4.57)

98.37
(0.50)

88.64
(3.43)

92.70
(2.44)

0.970
(0.018)

87.15
(4.88)

91.79
(4.50)

98.46
(0.47)

89.28
(3.23)

93.02
(2.58)

0.979
(0.014)

5

MLP 83.46
(5.94)

58.65
(4.25)

88.05
(1.74)

68.74
(3.82)

86.07
(3.02)

0.914
(0.025)

78.00
(5.83)

57.52
(3.66)

87.43
(1.49)

66.09
(3.65)

83.34
(3.09)

0.886
(0.030)

77.42
(5.27)

61.85
(3.76)

88.90
(1.34)

68.67
(3.62)

83.90
(2.88)

0.917
(0.021)

RF 80.64
(4.62)

54.08
(4.01)

86.25
(1.33)

64.61
(3.30)

83.85
(2.26)

0.898
(0.016)

74.99
(5.31)

57.90
(4.13)

87.56
(1.28)

65.22
(3.61)

82.05
(2.93)

0.909
(0.013)

83.82
(4.09)

54.56
(4.20)

86.54
(1.48)

65.99
(3.55)

85.39
(2.22)

0.914
(0.012)

CNN 85.17
(4.77)

89.87
(4.45)

96.10
(0.77)

87.27
(2.40)

91.38
(2.26)

0.986
(0.007)

90.04
(2.85)

89.52
(3.74)

96.75
(0.68)

89.71
(2.04)

93.92
(1.40)

0.984
(0.009)

89.50
(3.62)

89.93
(3.37)

96.75
(0.64)

89.63
(2.04)

93.68
(1.79)

0.986
(0.010)

6

MLP 47.30
(32.57)

84.23
(12.88)

58.48
(5.90)

51.99
(17.30)

49.77
(2.71)

0.301
(0.017)

92.59
(2.09)

91.70
(1.40)

90.58
(1.67)

92.13
(1.43)

90.05
(1.66)

0.974
(0.006)

92.27
(2.85)

91.81
(1.58)

90.45
(1.47)

92.00
(1.34)

89.96
(1.38)

0.975
(0.006)

RF 28.40
(12.73)

89.56
(6.00)

54.94
(2.51)

41.64
(7.20)

49.88
(2.43)

0.321
(0.020)

93.18
(2.17)

90.81
(1.88)

90.35
(1.49)

91.95
(1.28)

89.65
(1.55)

0.967
(0.009)

93.01
(2.33)

90.78
(1.94)

90.25
(1.62)

91.86
(1.41)

89.56
(1.66)

0.970
(0.008)

CNN 97.19
(0.94)

65.76
(1.07)

68.14
(1.52)

78.44
(0.90)

49.44
(3.30)

0.292
(0.016)

94.48
(1.12)

91.81
(1.49)

91.66
(1.15)

93.11
(0.93)

90.92
(1.34)

0.979
(0.005)

94.38
(1.17)

91.84
(1.47)

91.64
(1.18)

93.09
(0.96)

90.91
(1.35)

0.979
(0.005)

7

MLP 82.43
(4.20)

85.65
(3.64)

91.07
(1.54)

83.93
(2.87)

88.22
(2.28)

0.937
(0.020)

84.99
(4.61)

90.50
(3.25)

93.20
(1.64)

87.58
(3.15)

90.50
(2.57)

0.954
(0.019)

84.60
(5.13)

89.75
(3.39)

92.88
(1.84)

87.02
(3.55)

90.15
(2.90)

0.950
(0.022)

RF 80.99
(3.18)

90.62
(3.53)

92.13
(1.18)

85.46
(2.24)

88.44
(1.70)

0.953
(0.012)

84.10
(3.75)

93.28
(2.63)

93.69
(1.26)

88.39
(2.29)

90.55
(1.98)

0.966
(0.011)

84.06
(3.64)

92.48
(2.71)

93.44
(1.23)

88.00
(2.08)

90.38
(1.86)

0.967
(0.010)

CNN 94.60
(1.97)

96.67
(1.95)

97.53
(0.75)

95.60
(1.34)

96.62
(1.04)

0.992
(0.005)

95.47
(1.63)

97.04
(1.62)

97.88
(0.59)

96.23
(1.04)

97.13
(0.83)

0.992
(0.004)

95.35
(1.76)

96.71
(1.68)

97.76
(0.63)

96.01
(1.12)

97.01
(0.89)

0.990
(0.004)

8

MLP 67.55
(6.43)

61.51
(5.80)

88.91
(1.71)

64.21
(5.02)

79.00
(3.79)

0.858
(0.038)

68.81
(5.73)

79.56
(4.89)

92.78
(1.14)

73.66
(4.35)

81.59
(3.39)

0.886
(0.040)

66.16
(5.08)

84.97
(5.29)

93.26
(0.98)

74.25
(3.90)

80.44
(3.03)

0.884
(0.033)

RF 63.74
(5.68)

84.14
(4.21)

93.11
(1.18)

72.36
(3.93)

78.96
(3.46)

0.878
(0.048)

71.90
(6.75)

85.09
(5.45)

94.17
(1.16)

77.66
(4.20)

83.81
(3.83)

0.956
(0.020)

70.84
(5.82)

87.28
(4.88)

94.34
(1.13)

77.00
(3.81)

83.37
(3.36)

0.944
(0.020)

CNN 87.23
(4.37)

93.30
(3.91)

97.18
(0.87)

90.08
(3.04)

92.85
(2.34)

0.982
(0.010)

91.89
(4.00)

97.21
(2.59)

98.41
(0.70)

94.41
(2.48)

95.61
(2.09)

0.991
(0.007)

92.14
(3.58)

96.73
(2.83)

98.37
(0.65)

94.32
(2.27)

95.70
(1.85)

0.991
(0.008)

9

MLP 63.71
(7.28)

71.14
(6.67)

93.61
(0.88)

66.86
(4.89)

78.47
(4.43)

0.909
(0.022)

51.14
(5.83)

72.92
(7.60)

93.05
(0.88)

59.89
(5.37)

70.61
(4.07)

0.907
(0.031)

65.33
(7.72)

73.61
(5.90)

94.03
(0.80)

68.87
(4.70)

79.58
(4.54)

0.914
(0.030)

RF 74.94
(7.34)

68.04
(7.68)

93.98
(1.17)

71.05
(5.95)

84.76
(4.15)

0.946
(0.020)

85.68
(6.28)

64.68
(6.44)

93.92
(1.18)

73.54
(5.48)

90.08
(3.39)

0.951
(0.022)

85.45
(6.47)

63.28
(6.06)

93.63
(1.05)

72.50
(4.92)

89.81
(3.34)

0.951
(0.022)

CNN 85.24
(5.31)

89.05
(4.98)

97.40
(0.70)

86.95
(3.61)

91.72
(2.86)

0.989
(0.010)

87.81
(5.56)

90.62
(4.01)

97.81
(0.62)

89.04
(3.24)

93.16
(2.92)

0.990
(0.010)

86.67
(4.82)

90.58
(4.83)

97.69
(0.61)

88.43
(3.02)

92.57
(2.49)

0.989
(0.012)



Appl. Sci. 2019, 9, 597 18 of 22

BIN2Vec Binarization Random RGB

G
roup 1

G
roup 2

G
roup 3

G
roup 4

G
roup 5

G
roup 6

G
roup 7

G
roup 8

G
roup 9

MLP RF CNN MLP RF CNN MLP RF CNN

0.85

0.90

0.95

1.00

0.94

0.96

0.98

1.00

0.925

0.950

0.975

1.000

0.80

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

0.4

0.6

0.8

1.0

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

Figure 15. Box plot of DNN, RF, CNN, AUC results based on 1∼9 groups.

Except for product Group 6, which will be discussed later, the proposed CNN model outperformed
the MLP and RF with all WBM coloring schemes for all performance evaluation criteria. Not only did
it yield the best performance for all product groups, it also resulted in the most stable performance;
the standard deviations for 30 repetitions are much smaller than those of MLP and RF. The BCR of the
CNN model improved by 8.13% on average (min: −0.44% for product Group 6 with binary, max: 22.6%
for product Group 9 with random RGB), and the F1-measure of the CNN model improved by 15.14%
on average (min: 0.98% for Group 6 with random RGB, max: 36.8% for product Group 6 with binary).
In addition, the AUC of the CNN model improved by 0.04 on average (min: −0.029 for product Group
6 with binary, max: 0.12 for Group 8 with binary). These improvements are all statistically significant at
significance level of 0.01. Between the MLP and RF, RF generally yielded better bad wafer classification
performance than MLP. The average differences between BCR, F1-measure, and AUC are 3.24%, 0.72%,
and 0.02, respectively.



Appl. Sci. 2019, 9, 597 19 of 22

With respect to the WBM coloring scheme, both random RGB and Bin2Vec generally worked
well for bad wafer classification. Their AUROC values are greater than 0.99 for all product groups.
There are no significant differences between the random RGB and Bin2Vec in terms of bad wafer
classification performance. In other words, although the bin codes on the wafer are represented by
randomly assigned colors, different bin codes are distinguishable such that the bad wafer classification
model can learn the difference between bad and good wafers with high accuracy. This implies that
although the relationship between bin codes was are not configured, the weights of convolution
operations can be appropriately learned for the purpose of accurate bad wafer classification.

An interesting observation is that when binarization was used to represent the WBM color,
its bad wafer classification performance significantly decreased for product Group 6 irrespective of
classification models. Its AUROC is 0.292 although that of random RGB and Bin2Vec for the same
product group is 0.979. It can be concluded that for a certain wafer group, it is not sufficient to know
whether each die passes all EDS tests or not, but additional information, i.e., which combination of
EDS tests fails, must be provided for an improved classification performance.

The experimental results show that both random RGB and Bin2Vec provided satisfactory
performance in the bad wafer classification task. However, Bin2Vec has the advantage of more
in-depth analysis for discovering significant patterns among bad WBMs. Figure 16 shows all bad
WBMs in a two-dimensional space reduced by the t-SNE method [40]. The output values of the second
fully connected layer in Figure 12 were used as the input of the t-SNE algorithm. Based on Figure 16,
we can identify some representative bad wafer patterns. For example, WBMs where most bins are
beige are clustered at the top center area, next to where WBMs with green ring-shaped bins are located.
WBMs with blue cross pattern are clustered at the bottom left area, and WBMs with green scattered
bins are located near to the WBMs with blue cross pattern.

Figure 16. Visualizing bad wafers based on t-SNE and Bin2Vec.

Figure 17 shows the t-SNE results of the same wafers with the random RGB coloring scheme.
In contrast to the Bin2Vec, it is difficult to discover semantic patterns from this figure. For example,
not only the cross pattern in the bottom-right area but also various bad patterns are color green.
In addition, some very different colors are mixed in single WBMs at the top-left area, which might



Appl. Sci. 2019, 9, 597 20 of 22

be confusing for engineers investigating bad bin patterns. Based on these two figures, it is more
advantageous to use the Bin2Vec coloring scheme than random RGB because its color similarity within
WBMs is more consistent with human perception than that of the random RGB coloring scheme.

Figure 17. Visualizing bad wafers based on t-SNE and random RGB.

6. Conclusions

In this paper, we proposed a new, neural network-based WBM coloring scheme called Bin2Vec to
preserve the relationship between different bin codes to better understand WBMs and find significant
bad wafer patterns. Bin2Vec maps a scalar bin code onto a three-dimensional continuous vector in
order to assign a unique set of RGB values to the bin code. In addition, we also built a CNN-based
WBM classification model to automate the bad wafer classification process, which is done manually
by engineers. The experimental results showed that it is easier to discover significant WBM patterns
with Bin2Vec than with the random RGB method. In addition, the proposed CNN model with Bin2Vec
yielded high classification accuracy regardless of the product type.

Despite the favorable experimental results, there are some limitations in the current study, which lead
us to future research directions. First, although it was confirmed that Bin2Vec helped identify meaningful
bad wafer patterns, it can be more efficient that the significant bad WBM patterns are automatically
detected and grouped. This, in turn, raises the following questions: (1) Is this WBM good or bad? (2) If it is
bad, to what type of WBM pattern does it belong? It is possible for WBM patterns to change over time.
Therefore, it can be more helpful if a continuous WBM monitoring system is constructed.

Author Contributions: J.K. initiated the research idea and carried out the experiment. He also wrote the draft of
the paper. H.K., J.P. and K.M. support the experiment. P.K. wrote and finalized the paper.

Funding: This research was supported by Basic Science Research Pro-gram through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03930729) and Institute for
Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIP)
(No. 2017-0-00349, Development of Media Streaming system with Machine Learning using QoE (Quality of
Experience)). This work was also supported by Korea Electric Power Corporation (Grant number: R18XA05).

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2019, 9, 597 21 of 22

References

1. Yoo, Y.; An, D.; Park, S.H.; Baek, J.G. Wafer map image analysis methods in semiconductor
manufacturing system. J. Korean Inst. Ind. Eng. 2015, 41, 267–274.

2. Ahn, J.I.; Ahn, T.H. The semiconductor quality management using the map pattern index. J. Korea Manag.
Eng. Soc. 2017, 22, 61–75.

3. Uzsoy, R.; Lee, C.Y.; Martin-Vega, L.A. A review of production planning and scheduling models in
the semiconductor industry part I: System characteristics, performance evaluation and production planning.
IIE Trans. 1992, 24, 47–60. [CrossRef]

4. Cheng, J.W.; Ooi, M.P.L.; Chan, C.; Kuang, Y.C.; Demidenko, S. Evaluating the performance of
different classification algorithms for fabricated semiconductor wafers. In Proceedings of the Fifth IEEE
International Symposium on Electronic Design, Test and Application (DELTA’10), Ho Chi Minh City, Vietnam,
13–15 January 2010; pp. 360–366.

5. Wang, C.H.; Kuo, W.; Bensmail, H. Detection and classification of defect patterns on semiconductor wafers.
IIE Trans. 2006, 38, 1059–1068. [CrossRef]

6. Chang, C.W.; Chao, T.M.; Horng, J.T.; Lu, C.F.; Yeh, R.H. Development pattern recognition model for the
classification of circuit probe wafer maps on semiconductors. IEEE Trans. Compon. Packag. Manuf. Technol.
2012, 2, 2089–2097. [CrossRef]

7. Wang, C.H. Separation of composite defect patterns on wafer bin map using support vector clustering.
Expert Syst. Appl. 2009, 36, 2554–2561. [CrossRef]

8. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
9. Nallapati, R.; Zhai, F.; Zhou, B. SummaRuNNer: A recurrent neural network based sequence model for

extractive summarization of documents. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, 4–10 February 2017; pp. 3075–3081.

10. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012;
pp. 1097–1105.

11. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556

12. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Boston, MA, USA, 7–12 June 2015; pp. 1–9.

13. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778.

14. Huang, G.; Liu, Z.; Weinberger, K.Q.; van der Maaten, L. Densely connected convolutional networks. arXiv
2016, arXiv:1608.06993.

15. Yu, D.; Li, J. Recent progresses in deep learning based acoustic models. IEEE/CAA J. Autom. Sin. 2017,
4, 396–409, doi:10.1109/JAS.2017.7510508. [CrossRef]

16. Huang, C.J.; Wu, C.F.; Wang, C.C. Image processing techniques for wafer defect cluster identification.
IEEE Design Test Comput. 2002, 19, 44–48. [CrossRef]

17. Wang, C.H. Recognition of semiconductor defect patterns using spectral clustering. In Proceedings of
the IEEE International Conference on Industrial Engineering and Engineering Management, Singapore,
2–4 December 2007; pp. 587–591.

18. Ooi, M.P.L.; Sim, E.K.J.; Kuang, Y.C.; Kleeman, L.; Chan, C.; Demidenko, S. Automatic defect cluster
extraction for semiconductor wafers. In Proceedings of the IEEE Instrumentation and Measurement
Technology Conference (I2MTC), Torino, Italy, 22–25 May 2010; pp. 1024–1029.

19. Taha, K.; Salah, K.; Yoo, P.D. Clustering the dominant defective patterns in semiconductor wafer maps.
IEEE Trans. Semicond. Manuf. 2017, 31, 156–165. [CrossRef]

20. Liu, C.W.; Chien, C.F. An intelligent system for wafer bin map defect diagnosis: An empirical study for
semiconductor manufacturing. Eng. Appl. Artif. Intel. 2013, 26, 1479–1486. [CrossRef]

21. Feng, X.; Kong, X.; Ma, H. Coupled cross-correlation neural network algorithm for principal singular triplet
extraction of a cross-covariance matrix. IEEE/CAA J. Autom. Sin. 2016, 3, 149–156.

http://dx.doi.org/10.1080/07408179208964233
http://dx.doi.org/10.1080/07408170600733236
http://dx.doi.org/10.1109/TCPMT.2012.2215327
http://dx.doi.org/10.1016/j.eswa.2008.01.057
http://dx.doi.org/10.1109/JAS.2017.7510508
http://dx.doi.org/10.1109/54.990441
http://dx.doi.org/10.1109/TSM.2017.2768323
http://dx.doi.org/10.1016/j.engappai.2012.11.009


Appl. Sci. 2019, 9, 597 22 of 22

22. Li, T.S.; Huang, C.L. Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor
manufacturing. Expert Syst. Appl. 2009, 36, 374–385. [CrossRef]

23. Liao, C.S.; Hsieh, T.J.; Huang, Y.S.; Chien, C.F. Similarity searching for defective wafer bin maps in
semiconductor manufacturing. IEEE Trans. Autom. Sci. Eng. 2014, 11, 953–960. [CrossRef]

24. Adly, F.; Alhussein, O.; Yoo, P.D.; Al-Hammadi, Y.; Taha, K.; Muhaidat, S.; Jeong, Y.S.; Lee, U.; Ismail, M.
Simplified subspaced regression network for identification of defect patterns in semiconductor wafer maps.
IEEE Trans. Ind. Inf. 2015, 11, 1267–1276. [CrossRef]

25. Adly, F.; Yoo, P.D.; Muhaidat, S.; Al-Hammadi, Y.; Lee, U.; Ismail, M. Randomized general regression
network for identification of defect patterns in semiconductor wafer maps. IEEE Trans. Semicond. Manuf.
2015, 28, 145–152. [CrossRef]

26. Wu, M.J.; Jang, J.S.R.; Chen, J.L. Wafer map failure pattern recognition and similarity ranking for large-scale
data sets. IEEE Trans. Semicond. Manuf. 2015, 28, 1–12.

27. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and
phrases and their compositionality. In Proceedings of the Neural Information Processing Systems,
Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119.

28. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv 2013, arXiv:1301.3781.

29. Goldberg, Y.; Levy, O. word2vec Explained: Deriving Mikolov et al.’s negative-sampling word-embedding
method. arXiv 2014, arXiv:1402.3722

30. Dyer, C. Notes on noise contrastive estimation and negative sampling. arXiv 2014, arXiv:1410.8251.
31. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region

proposal networks. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 91–99.

32. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

33. Gao, S.; Zhou, M.C.; Wang, Y.; Cheng, J.; Yachi, H.; Wang, J. Dendritic neuron model with effective
learning algorithms for classification, approximation, and prediction. IEEE Trans. Neural Netw. Learn. Syst.
2018, 30, 601–614. [CrossRef] [PubMed]

34. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 448–456.

35. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009),
Miami Beach, FL, USA, 20–25 June 2009, pp. 248–255.

36. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
37. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to

prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
38. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
39. Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real

world classification problems. J. Mach. Learn. Res. 2014, 15, 3133–3181.
40. Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2007.09.023
http://dx.doi.org/10.1109/TASE.2013.2277603
http://dx.doi.org/10.1109/TII.2015.2481719
http://dx.doi.org/10.1109/TSM.2015.2405252
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://www.ncbi.nlm.nih.gov/pubmed/30004892
http://dx.doi.org/10.1023/A:1010933404324
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Bin2Vec: A Convolutional Neural Network-Based WBM Coloring Scheme
	Data Description
	Word2Vec and Bin2Vec
	Word2Vec
	Bin2Vec


	Experiment
	Convolution Neural Network
	Convolution and Pooling Operation
	Convolutional Neural Network Architecture

	Multilayer Perceptron
	Random Forest
	Performance Evaluation Criteria

	Results
	Conclusions
	References

