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Abstract: Drones with obstacle avoidance capabilities have attracted much attention from researchers
recently. They typically adopt either supervised learning or reinforcement learning (RL) for training
their networks. The drawback of supervised learning is that labeling of the massive dataset is
laborious and time-consuming, whereas RL aims to overcome such a problem by letting an agent
learn with the data from its environment. The present study aims to utilize diverse RL within two
categories: (1) discrete action space and (2) continuous action space. The former has the advantage in
optimization for vision datasets, but such actions can lead to unnatural behavior. For the latter, we
propose a U-net based segmentation model with an actor-critic network. Performance is compared
between these RL algorithms with three different environments such as the woodland, block world,
and the arena world, as well as racing with human pilots. Results suggest that our best continuous
algorithm easily outperformed the discrete ones and yet was similar to an expert pilot.

Keywords: drone; deep Q-learning; U-net; actor-critic network; airsim; racing between human
and algorithm

1. Introduction

The drone is an unmanned aerial vehicle that has been around for a long time, and yet it has
become a major research field recently. It seems that the recent success of the drone may come
from the stable control of rotors and a bird’s eye view provided by a camera installed in front of it.
With the growing number of possible applications for the drone, i.e., disaster management [1] and
agriculture [2,3], the demand for expert drone pilots is growing up nowadays. To become an expert
level drone pilot, one has to spend extended time training. Dexterity in maneuvering a fast-flying
drone has become an essential asset for professional drone racers, as a survey indicates that drone
racing is one of the fastest growing e-sports, among many others [4]. Indeed, one of the major research
fields for the drone has been autonomous drone navigation. One of the critical requirements for the
successful application of drones is the ability to navigate through buildings and trees. To achieve this,
obstacle avoidance capability is essential in particular. Controlling a drone with such dexterity involves
solving many challenges in perception as well as in action using lightweight and yet high performing
sensors. Among many, simultaneous localization and mapping (SLAM) has been a major representative
approach to solve such challenges by utilizing the stereo camera, Lidar, and other sensors. Although
SLAM can cover a range of challenges with the localization problem [5], it also shows some limitations,
for example, when the target area has visually changed. Recently, an alternative by utilizing deep
learning has arisen, as its ability to deal with vision data is promising.

These approaches are mainly divided into two machine learning paradigms: (1) supervised/
unsupervised learning and (2) reinforcement learning (RL). In supervised learning, one has to gather a
large set of data for a specific environment where the drone will operate before the training. This scheme
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could be effective when the size of the dataset is large enough with high-quality labels. However,
collecting massive amounts of data whenever the given environment changes could become a problem.
Moreover, labeling all these data not only imposes a time-consuming job but also makes it hard to
guarantee whether or not hand-crafted labeling for the massive number of data is optimal for the task.
Due to this issue, unsupervised learning-based methods are adopted for the automatic labeling of the
dataset in several studies.

On the other hand, the RL based approach aims to deal with this issue by letting the drone-agent
itself learn a simulated environment in a trial and error manner. In RL based approaches, the agent
tries to learn in a virtual environment that is similar to the real environment and then the trained
model is transferred to the real drone for testing.

In this study, we experiment with obstacle avoidance drones within two control spaces: one is
discrete space and the other is continuous space. For the former, Deep Q-Network (DQN) [6] will be
adopted for controlling the drone while utilizing two visual inputs such as RGB and depth map from
the simulated environment constructed with Airsim [7]. There are four deep RL algorithms such as
DQN, Double DON [8], Dueling DON [9], and Double Dueling DON (DD-DQN). The present study
aims to test the possibility of whether a drone can be trained using deep RL algorithms to find a 3D
path through various 3D obstacles within the Airsim environment. The first one is the woodland,
called the Modular package, in which trees are randomly distributed along the pathway. The second
one is a custom-made block world in which differently shaped 3D objects, such as cone, cube, and
sphere, are distributed, and two wall-style obstacles are installed along the potential paths as shown in
Figure 1. The third is an arena world wherein the drone needs to navigate the various obstacles used
for the block world. However, it requires a higher skill set than the block world, since the drone flies
with a curved trajectory using a lot of yaw control.

Figure 1. Screen shots of the woodland (a), the block world (b), and the arena world (c), respectively.
Two insets in each shot indicate the depth map (left) and RGB input (right), respectively. As the space
between blocks in the block world is narrower than that between trees in the woodland, the former is
more challenging than the latter. In the arena, since the obstacles are arranged along a circular track,
the drone requires a delicate roll, pitch, and yaw control.

Given that restriction of the action space into the limited number of discrete actions can lead to
unnatural control of the drone, our second approach is to adopt an actor-critic network for controlling
the drone in continuous space. To deal with RGB (Red Green Blue) input, U-net based segmentation
model is used. This process can be understood as finding a way to go within the scene because this
segmentation model is combined with the actor-critic network working in the continuous action space.
The promising candidates are policy gradient algorithms such as Trust-Region Policy Optimization
(TRPO) [10], Proximal Policy Optimization (PPO) [11], and Actor-Critic using the Kronecker-Factored
Trust Region (ACKTR) [11] that represents the actor-critic networks. Our proposed system is to
combine a U-net based segmentation model with a policy gradient algorithm with a reward-driven
manner. Our contributions are:

1. It is shown that the drone agents can be trained using several deep RL algorithms in discrete
and continuous spaces using three different environments such as woodland, block world,
an arena world.
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2. Human pilots can make a drone race against an algorithm utilizing the hardware-in-the-loop
(HITL) feature, and performances between humans and algorithms are evaluated. Result suggests
that our best algorithm shows similar performance to that of an expert pilot in three environments.

3. Itis found that DD-DQN outperformed other deep RL algorithms for discrete action space, and
the performance of the algorithm was the best when both RGB and depth maps are given to the
agent, rather than when only one of the sensor signals is provided.

4. So far, U-net based segmentation model has been trained by the supervised learning paradigm
where labels are provided by laborious manual labeling. In the proposed system, a label map is
generated via the critic network using input provided by a simulated environment.

2. Related Work

Recently, deep neural network-based methods have been proposed to enhance the ability to
control the drone using computer vision, such as collision avoidance, navigation, etc. [12]. Among
many, supervised learning and reinforcement learning have been successfully adopted for the control
of the drone, whereas unsupervised learning has been studied for the action recognition and assisting
the labeling of the dataset.

2.1. Drone Navigation with Supervised Learning

Supervised learning can be promising with a large amount of labeled data. Almost all of the
studies on applying supervised learning are based on convolutional neural network (CNN), so that
their model can effectively extract features within vision inputs from various environments. It has
been shown that a drone can be trained to navigate indoor, where the surrounding area is comparably
small [13]. By focusing more on negative data, such as crashing and collision of a drone, it has been
shown that a network can effectively avoid collision [14]. A recent study shows that a drone navigates
through the corridors within a building using two well-trained CNNs: one is for depth map and
the other for RGB input [15]. It is also shown that a well-trained CNN has such a small footprint
that it is possible to embed on a nano quadrotor for controlling its flying trajectory [16]. The other
possible way for the drone navigation is to combine a CNN with a long short-term memory(LSTM) for
training within a Gazebo [17] environment, consisting of a block, a wall, and overhang in a room [18].
More recently, by utilizing a simulation environment during training, a CNN-based model for real-time
navigation in a drone-racing track is proposed using micro UAV [19]. This has shown that a deep
neural network not only controls a drone in real-time with vision input but also a network trained in a
virtual environment can effectively maneuver a drone in the real-world. Instead of training a network
in simulation first, many studies made use of data from the real-world directly to train networks.
By using vision data collected from forests, a network drives a drone for forestry purposes [2]. Similarly,
by using a large amount of data collected in an urban area, it has been shown that a drone can navigate
robustly by avoiding obstacles appearing in a city [20]. These improvements in controlling the drone
using supervised learning lead to broad applications for the society along with technologies such
as the Internet of Things (IoT) [21,22]. Even though the studies mentioned above have successfully
applied supervised learning to meet the needs of diverse applications, manual labeling remains a
burden for researchers. Moreover, as the data is highly oriented towards a specific environment, it is
necessary to go through the entire process again whenever there is a need to apply a model to a
different environment. On the other hand, research based on RL try to overcome such an issue.

2.2. Unsupervised Learning-Based Methods for Drone Applications

Unsupervised learning-based methods have been utilized for the drone applications, mainly for
the labeling. By using algorithms such as simple linear iterative clustering (SLIC), it has been shown
that unsupervised-based methods can help label the data for the training of supervised-based model in
an agricultural application, leading to the reduction of human effort [23]. Also, by interpreting a depth
estimation problem as a reconstruction problem, a study has shown that unsupervised learning models
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can successfully estimate a depth map from a monocular RGB image taken by a drone [24]. Based on a
reconstruction error of an unsupervised generative model, it has been shown that a robot can decide
whether to go or not [25]. Furthermore, it has been shown that a combination of unsupervised-based
methods could learn features for anomaly detection in pictures taken by a drone [26].

2.3. Drone Navigation with Reinforcement Learning

In RL, an agent is to be trained on how to navigate through the obstacles by making trials and
errors. Also, yet, this could be advantageous because once the training environment is ready, then the
agent learns by itself. For example, it is shown that a drone and Radio Control(RC) car can be trained
to predict uncertainty or collisions by utilizing model-based RL [27]. Here, a drone and RC car had
learned by making trials with a low speed so that the hardware was not damaged. This indicates that
a model can be trained directly in the real environment with a specific restriction. However, as RL
usually requires a lot of trial and error for the learning, having some restrictions on the environment
inevitably slows down the training speed. Such characteristics of RL approaches lead to making
use of a virtual environment, where the agent can safely make trials and errors quickly without
concerning the actual hardware [28,29]. By using sensory data from the accelerometer, it is shown
that the RL model can plan swing-free trajectories while carrying suspended load [30]. Similarly, by
applying RL, a substantial amount of practical applications have been proposed in controlling the
attitude [31], navigating from an arbitrary departure place to destinations [32], enhancing the efficiency
of a network of cellular-connected drones in the 5G era [33]. However, it has not been used widely
with the visual input, mainly because RL usually suffers from high dimensional data, especially for the
similar succeeding frames for continuous actions. One alternative solution is to restrict the continuous
action space into a discrete one so that a model can be trained with RL, such as the Deep Q Network [6],
known to learn well based on the image. For example, it was shown that a drone can fly to reach the
goal in environments by making discrete actions [34]. However, restricting the action spaces could
lead to unnatural behaviors.

2.4. Robot Navigation using Segmentation Map

Recently, there are several studies where the segmentation model is adopted to extract simple
and handy features for robot navigation. For example, a wheeled robot navigating the outdoor street
has been trained using the CNN-based segmentation model [35]. Here, the navigation direction is
controlled by a fuzzy logic that receives a segmented image from the RGB input. Another work
has shown that a semantic segmentation model trained in a virtual environment can minimize the
gap between the real and virtual environment [36]. In this study, the segmentation model plays an
essential role in visually guiding a robot where to go, and an RL agent trained in the simulation can
be transferred to the real environment to control a car. It has also been shown that the segmentation
model can learn from the simulated image jointly with the real image by combining a recurrent
neural network (RNN) so that the robot in the real environment can use the model directly without
having suffered from the gap between real and simulation [37]. Besides, a study shows that a depth
map generated from an RGB image using a CNN-based model can be used for training a network
controlling a drone [38] by utilizing supervised learning. With this model, it was shown that a network
trained in a simulation environment could navigate in the real world during testing.

However, none of the studies have applied the model on the drone using reinforcement learning
where it does not require manual labeling of the data. In this study, for the continuous control, we
have adopted segmentation model to simplify the information exhibited in the raw image from the
first person view (FPV) of the drone, so that an RL model can learn to navigate in the continuous
action space, which has been considered very challenging due to the curse of dimension. Moreover,
designing the reward function is replaced by taking advantage of mutual interaction between the
segmentation network and actor-critic networks.
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3. Deep Reinforcement Learning and U-Net Segmentation Model

In a problem of a sequential decision making, an agent interacts with an environment € over
discrete time steps [39]. For example, in the Atari domain, which is widely used to measure the
performances of various reinforcement learning algorithms, an agent observes frames from a video at
a time step t.

St = (xt,pJFl/m,xt €S, ;e A=1,.., |A|) 1

Equation (1) shows the ingredients of a state consisting of several frames from a video at time step
t: here x is the frame, t is a time step, and A is the number of actions, respectively. p stands for a
number of previous frames to observe for making action a;. Each s and a are the states that the agent
observes an action that the agent takes. The agent then chooses which action to take from a set and
receives a reward signal r. The goal of the agent is, of course, to maximize the cumulative reward R for
an episode,

R=Y 7""r. )

Equation (2) shows the reward along with the time steps, where r; is a reward at time step t and
7[0,1] is the discount factor that makes the agent deal with a trade-off between immediate and future
rewards [40]. In terms of action space, learning to maximize the reward in reinforcement learning
mainly diverges into two schemes: (1) RL in discrete action space; (2) RL in continuous action space.

3.1. Learning in Discrete Action Space

In discrete action space, an agent chooses to act according to a policy 7r, which usually has a form
of greedy learning. Here, 7t is equal to a state-value function V, since 7t can be seen to learn by greedily
choosing the best action given a state. One of the popular forms for estimating the value is Q function.
The connection between Q and V can be expressed as

Q™(s,a) = E[R|s; = s,a; = a, 71
Ul E . : 3)
(S) — La~n(s) [Q (S/ ll)]
where a4 is a chosen action given a state s. Then, by defining the optimal Q function as
Q* (st,ar) = max, Q" (s¢,at), 4)
a=argmax,,, eaQ"(st41,8141), 5)
and
V¥ (st) = maxaQ* (s, ar), (6)
Optimal Q function satisfies the Bellman equation:
Q*(st,at) = Egypy [r +ymaxg, ; Q" (sp41, ar41) [st, ad]. @)

For high dimensional data, i.e., image, the Deep Q Network (DQN) can effectively learn to solve a
given task [6]. Loss function for optimizing the DQN:

Loss = ||y?QN — Q(st,at;0)]], ®)

YtDQN = rpp1 +ymaxQ(Siy1,a141,0), )

where 0 is the parameters of a network for a current optimization step. However, it had been shown
that using the on-line parameter 6 for learning could cause unstable learning in vanilla DON. To solve
this issue, Double DQN [6] has been proposed. In Double DQN, a target network is copied for every
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pre-defined time step and is used to estimate the target value in the optimization step. Therefore,
the target value Y in time step t in Double DOQN is as follows:

YtDouhIEDQN =7rpp1 +ymaxQ(Spi1,a141,07), (10)

where 6~ stands for the fixed parameters of the target network,

et = (Et,ﬂt,T’t,St+1), (11)

D =eq,ey,..., 6, (12)

To delete the correlation of every experience accumulated in the buffer, which causes significant
deterioration of the stability of the network, DQN utilizes a technique called experience replay.
Equations (11) and (12) show how experiences are accumulated in the buffer, where s; is a state, a; is an
action, and r; is a reward. With experience replay, the network uses randomly sampled mini-batches
of experiences from D instead of using the data that is accumulated sequentially. An improvement of
DQN, called Double DQN [8] is proposed. To avoid the problem of over-optimistic estimation of Q
value, Double DQN uses different values to select and evaluate an action while DQN uses the same
values for selecting and evaluating values:

YtDO”bl" =1+ yYQ(spy1,argmaxQ(ss41,ar41,;6);07). (13)

Instead of using different values to select and evaluate the action, Dueling Deep Q-network (Dueling
DQN) [41] separates networks into a value network and an advantage network. The value network is
used to estimate the quality of the state while the advantage network is used to estimate the qualities
of each action,

Q(St/ at, 9/ ’, ,B) = V(St; 9/ ,3) + A(St/ at, 9/ DC)

1 . (14)
- Z ZaHl A(Sf/ a1, 6/ 0‘)

Among several equations to estimate Q(s, as; 0, «, p) in Dueling DQN, we adopt the Equation (14)
as it is known to stabilize the optimization process.

Given that there are two ways to improve the performance of DQN in previous sections,
we suggest in this paper that there is a better way for an agent to learn by combining Double DON with
Dueling DQN, called it Double Dueling DON (DD-DQN). In our experiment, we use Equation (14) to
calculate Q value as it is known to be robust for removing correlation. By combining Equation (14)
with Double DQN, we define the target value of DD-DQN as:

DoubleDuel Q
Y, =141+ YQ(St41,

, (15)
m’gmaxQ(St-H/ at/;el «, ,B)/ G_IDC_I ,B_)

where 0 stands for the parameter of convolutional layers, while « and § are parameters of the
advantage network and the value network, respectively. By following Equation (15), a loss function for
optimization is defined as

Loss = ||[YPoMYePlQ _ sy, a;60,a, B) . (16)

The flow diagram is shown in Figure 2, where the input consists of RGB and depth map.



Appl. Sci. 2019, 9, 5571 7 of 22

Input RGB Stream [ Dueling ‘ Doubling ‘
FCI1||FC2
® [RE— State Value Target Network Q-
XX = I;I ves
3(RGB) 32 ;1 O g /

ing =
zz

128 128
Depth Stream m Update? Q’(s.argmax,Q(s, a))
Fci[Fe2| NG

o \*: M
Action Advantage
o O

5
64
64

Ma L L
1(Depth) Po | 128 128
ng =
2x2

Figure 2. A schematic diagram of the present system with the Double Dueling Deep Q-Network
(DD-DQN). Both RGB and depth maps are fed into two CNNs as input, and each convolutional
neural network (CNN) has three convolutional layers. Two outputs from each CNN are concatenated
and fed into fully connected layers for a dueling operation, which produces state value and action
advantages. Here, state value concerns the given state itself for 2 input images, whereas action
advantages consider advantages for each action. Final values for each action is then produced by
merging state value and action advantages. The network is updated every predefined step, following
Q doubling optimization policy.

3.2. Learning in Continuous Action Space

For the learning in continuous action space, there are several model-free policy gradient algorithms
available such as Trust Region Policy Optimization (TRPO) [10], Deep Deterministic Policy Gradients
(DDPG) [42], Proximal Policy Optimization (PPO) [11], and Actor-Critic using Kronecker-Factored
Trust Region (ACKTR) [43]. It has been shown that they are promising candidates in the continuous
control MuJoCo [44] domain from the OpenAl Gym [45]. They work to obtain the maximum expected
rewards by estimating the gradient:

e}
g = VQE[Z Tt]. (17)
t=0

In general, estimation of policy gradient using action 4 and state s becomes

= E[i YVglogry(a|st)], (18)
=0

where 7 is a policy(actor) network, and ¥ is a critic network. ¥ can be state-value, Q value, or
advantage, depending on the algorithm.

TRPO and PPO use constraints and advantage estimation to perform this update by reformulating
the optimization problem as
6 (at|st)

Ejf|l—— 2
max@ t[neold(ﬂt|5t)

At (st ar)]. (19)
Here, A is the generalized advantage function [46]. TRPO uses conjugate gradient descent as the
optimization method with a KL constraint:

E/[KL[7tg,, (alse), mo(als1)]] < 6. 20)

PPO reformulates the constraint as a penalty, and clip the objective to make sure that the
optimization is carried out within a predefined range. DDPG and ACKTR adopt the actor-critic
method, which estimates Q(s,a) and optimizes a policy that maximizes the Q-function based on
Monte-Carlo rollouts. DDPG does this using the deterministic policies, while ACKTR utilizes the
Kronecker-factored trust regions to ensure stability with stochastic policies. As there is an infinite
number of actions and states to estimate in the continuous action space, off-policy based approaches,
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such as DQN, are computationally expensive. However, the on-policy based approach can move to the
direction suggested by g using the gradient ascent optimization for the best returning policy 7.

3.3. U-Net Segmentation Model

U-Net architecture [47] stems from the so-called fully convolutional network. The main idea
is to supplement a usual contracting network by successive layers, where upsampling operators
replace pooling operations. Hence these layers increase the resolution of the output. A successive
convolutional layer can then learn to assemble a precise output based on this information.

A critical modification in U-Net is that there are a large number of feature channels in the
upsampling part, which allows the network to propagate context information to higher resolution
layers. As a consequence, the expansive path is more or less symmetric to the contracting party and
yields an u-shaped architecture. The network only uses the valid part of each convolution without any
fully connected layers. To predict the pixels in the border region of the image, the missing context is
extrapolated by mirroring the input image. Such a tiling strategy is essential to apply the network to
large images as otherwise the resolution would be limited by the GPU memory.

4. Method

4.1. Methods for Discrete Action Space

Airsim is a new simulation platform from Microsoft for autonomous vehicles such as drones
and autonomous cars. For the graphics, it uses the Unreal Engine that provides rich repertoires of
shader and other drawing tools with which third party suppliers or research users can make the
realistic landscapes. One of the early releases is called as “modular package”, mainly consisting of
the urban landscape and woodland areas. In particular, the present study utilizes the woodland area
as it provides an ideal woodland landscape for testing and training an autonomous drone, as shown
in the top of Figure 1. In this case, the drone supposes to avoid the trees and find a 3D path to the
goal. It is found in the early stage that the small branches and leaves of the trees were not recognized
as the obstacles, unlike the main branch, because the default option was set for the simple collision
case presumably because the processing time for detail graphics is to save within Unreal Engine [48].
Therefore, it required to bond the small brunches and leaves to the main branch of a tree as one object
and to work in the complex collision mode.

Though the woodland provides a stimulating environment for an agent, it does not require
much moving up or down direction simply because most of the trees are planted on a plain ground.
Therefore, we have designed more challenging landscapes, called the block world and the arena,
consisting of diverse solid objects, such as a cube, sphere, cone and other two wall-style objects such as
half-wall and arch bridge as shown in Figure 1. Given that most of the drones that use SLAM for their
autonomous navigation typically adopt either stereovision or Lidar, we utilize RGB and depth sensors
for our experiment. The sensed images are given to two CNNs as input to the deep RL network.
The size of the memory buffer is set to 1000, which means 1000 pairs of depth and RGB images are
stored and sampled for training.

DQN, Double DQN, Dueling DQN, DD-DQN algorithms are used for training and evaluating,
respectively, in the environment of two different worlds: the woodland and the block world.
For both cases, an agent learns to act with 5 actions, consisting of forward, left, right, up, and down.
After choosing an action, we use Euler angle pitch, tion, 10llaction, and throttle,.ti,, values to control
the drone. Therefore, Pitchg,one, Roll j,0ne, Throttle,,. commands sent to set the drone’s attitude are

10l grone = 10l getion * MaXangle
pitChdrone = pitChaction * MAXgpgle . (21)
throttleg,one = throttle ,one + throttle, tion
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pitchgction is set to +1 for forward and 0 for other 4 actions. roll,joy is set to +1 for right and —1 for
left. throttle,ctioy is set to 0.2 for up, and —0.2 for down, respectively. The above roll j,4,,., and pitchg gy,
are converted to Quaternions and then sent to the drone to match the pose, whereas throttle,sioy is
sent to the drone directly. ROS was used for transmission from the RL agent to Airsim environment.
Although we empirically chose maxg,gj and throttle,eio, for our environments, one can manually
set those values depending on environments. For the woodland, reward r is set to 0.1 only when the
agent chooses to go forward and —10 when the agent collides with any obstacle recognized as an
object. For example, every tree, leaves, and rocks are recognized as objects. For the block world case,
r is set to 0.1 when the agent chooses to go forward, —10 on a collision, and 0.08 when it makes an
action such as left, right, up and down, respectively. Because the block world has a more complicated
environment than the woodland case, the agent has to choose various actions to find a path and to
prevent a deadlock: a reward is given to each action, i.e., promotion of exploration.

An RGB (and depth map) is rescaled from 256 x 144 to 64 x 64 to prevent overfitting, and certainly,
it saves the training time of the network. When using both RGB and depth images for the training,
two separate convolutional networks receive each image. The output of 2 CNNss is concatenated and
used as an input for fully connected layers that are responsible for the dueling architecture. Finally,
Q value generated by the dueling operation is used in estimating the double Q as shown in Figure 2.
When using only one type of input, which is either RGB or the depth map, a same CNN and fully
connected layers with 64 neurons are used.

4.2. Method for Continuous Action Space

Given that U-Net-based segmentation model belongs to the supervised learning paradigm where
labels are provided by laborious manual labeling, the proposed system is to combine a U-Net-based
segmentation model with a policy gradient algorithm under the reward-driven way, wherein a label
map is generated with an optical flow calculated from sequential images via the critic network in
real-time while training. In other words, training in RL replaces the labeling task. By utilizing a realistic
simulation environment for training Actor-Critic networks and the segmentation model, it is shown
that the model successfully learns to control and navigate through obstacles. In this section, we will
describe how our two learning processes mutually cooperate: (1) a model for the visual representation
of the scene in the form of the segmentation map. (2) Actor-Critic RL for controlling the drone in the
continuous action space. First, we will describe the representative model, followed by RL.

4.2.1. Critic-Dependent Segmentation Model

Our actor-critic networks aim to assist the segmentation network by generating a label map.
There are two steps for generating the training data in terms of predicted reward. The first is to
recognize which direction the agent chooses to go within an image. An optical flow algorithm [49] is
adopted in calculating these vectors. The second is to generate a label map for the segmentation model
based on the predicted reward using the optical flow vectors.

To measure the direction where the RL agent chooses to go, we calculate optical flow vectors using
two sequential images from the environment, S; and S;_;. Here, S; stands for the raw RGB FPV on the
time step t. Then the equation we use to calculate x movement V, and y movement Vy/ is given as follow:

V,; | Lik(g)?* XiIx(q0)*y(q:) - L) T (g) , (22)
vy ¥ Iy (q:) Ix (q:) i Iy(q:) =X Ly(qi)Iq:)

where g; denotes a pixel value inside a window, and I stands for the partial derivative of S; and S;_; with
respect to the position (x, y). The size of the window for calculating optical flow is set to 10 in this study.

To get the vectors indicating where the drone moves, instead of the movement itself, we rotate V'
using a rotate matrix as follow:
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Vy cos®  sinf V;C
- 1|y 2
Vy [—sin@ cosf Vy (23)

where 0 is set by 180 to obtain aforementioned drone’s movement.

Using V calculated above, the second process is to make the label map. Using parallel
displacement of vectors, we first move V to the center of the image, so that the calculation of
the direction and speed for generating the label map could be more straightforward. After this
displacement, as shown in Figure 3, we separate an array into zones with directions that V' can have.
Then, each direction of the vector and scaled speed are superposed on the zones. We use coefficient 7,
which is set to 20 in this study, for the speed value to calculate how many zones are superposed under
each vector’s direction. For every vector, an array filled with zero is initialized, and zones under a
vector are filled with value one. Each of these arrays is flattened into 1-Dimension and fed into the
critic network for estimating the direction. Let W;; denotes a set of values exhibited in a zone at iy, row
and jy, column, and V;, denotes ny, optical flow vector, then each sample C,, used as input for a critic
network to make a label map are given as

Com{Wijy s Wi}, (24)

where W; ; means an average value of W; ;. h and w are the number of zones for height and width,
respectively. Then, each Cj, is fed into the critic network ¥ to receive its predicted reward. The label map
can be produced by filling a zeros array with the output values of ¥ corresponding to zones indicated
by V,, of every sample C,,. Note that filling the windows with the values from ¥ suggests each window
in a label map will have the predicted reward since the critic network learns to predict the reward
(Section 3.2). Figure 3 shows the label map generated with this sequential process. Input dimension
for actor and critic networks is 25 with i and w both set to 5, as shown in Table 1. Given S;_; as an
input and the corresponding label map described above as a target, our segmentation model learns
simultaneously with actor-critic networks. As the RL model performs well, the segmentation model
improves as well. During testing, the segmentation model receives RGB input and then produces a
predicted path in terms of reward without further processing indicated as optical flow and feedback
from ¥ as shown in Figure 4.

Table 1. Detailed specification of our Actor and Critic networks. During training, all 3 networks such as
U-Net, Actor, and Critic networks are required, whereas only the U-Net and Actor network are utilized
during testing. Note that all 3 networks, including the U-Net in Figure 5, use identical optimizer, and
weight initialization method. Note that * indicates types of networks.

Layer Layer Output Dimension  Activation
* Actor network

Input 25 x 1
Fully connected 64 x 25 Tanh
Fully connected 3 Tanh
* Critic network

Input 25 x1
Fully connected 64 x 25 Tanh
Fully connected 1 Tanh

Adam((betas = 0.9,0.99),
Optimizer weight decay=0,
Ir=1e%)
Weight, Kaiming He,

Bias unit Constant(0)
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Calculating optical flow

S¢—1(U-Net Input)

1L

Vi1, Uy

VX3 VV3

w

Figure 3. Process of generating a label map for the segmentation model. Optical flow vectors are
calculated using two frames. Directions and speeds indicated by each vector are used to put value 1
on windows under the vector. Then /1 X w number of windows are flattened to 1-D and fed into the
critic network for estimating the predicted reward in the direction. The final label map is generated by
superposing the estimated rewards from all vectors. & and w were both set to 5 in this study.

— - == Linear velocities
— _.. (X, Y.Z)
Actor Net.

S_t Segmentation Model(U-Net) Pooling and 1D vectorize
— — Actor-Critic Training
Reward > U-Net Training
FPV from UAV Replay Buffer = Testing

S t-1, label map

\ (lL“Lf’d[lngd abel map
[]]D]_-‘ State value

S t-1 Critic Net.

Environment Calculating upuml I'Iuw

Figure 4. Flow diagram of training/testing for our drone navigation system. For training the
U-net-based segmentation network, an optical flow calculated with two sequential images from
the environment is used to generate a label map (U-net training). The output of U-net is used to
calculate reward for the learning of the Critic network, as well as used as an input to Actor network
through the pooling and vectorization process (Actor-Critic training). Then, the reward is calculated by
comparing movement of the drone using the optical flow with the output pf U-net. The average pixel
value of the segmentation map becomes a reward by comparing movements indicated by flow vectors.
During testing, only a trained segmentation network and actor network are used (Testing).
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Figure 5. Specification of our U-Net architecture. Note that it receives 256 x 256 x 3 by rescaling from
256 x 144 x 3 raw image and outputs 256 x 256 x 1 with Sigmoid function at the last layer, containing
the segmentation of the input image in term of reward.

Although using policy gradient can be optimal in a certain environment, the problem in using
vision input in the continuous action space arises when all the state has high dimensions with a
similar appearance. In other words, 7t and ¥ cannot effectively learn from succeeding similar frames
that require different actions. To overcome such an issue with high dimensional data, we adopt a
segmentation model that compresses the information while preserving the useful features as mentioned
earlier. Let fsgg and 9533 denote the segmentation model and its parameter, then s; for training our
actor 7t and critic network ¥ are given as

St={W1‘J‘,..., Wh,w}r (25)

where W is the set of the values in the zones separating the output of fi.¢, as Equation (24), and W
means an averaged value of W. Our actor and critic networks accept an input that has /1 x w dimension
for training and testing. The reward is calculated using the optical flow vector V and the segmentation
model’s output. Given S; and S;;1, V can be calculated and indicates zones with the direction and
speed. Then, the corresponding zones in a segmentation map fseq(S¢|fseq) are selected and averaged
to become a reward for a given action a;. Apart from U-net generated reward, a reward is given as
—1 whenever the drone collides so that the critic can give both 77 and fs.; negative signals to learn.
So that, the reward at time step ¢ using the segmented output fs.¢(S¢|6seg) is computed as follow:

p (26)
-1 otherwise

yo {7}1 Y WiV if not collides
where W;|V; stands for an averaged value of a zone W; indicated by ty, optical flow vector V;. m is the
number of zones where V; is superposed. Note that the reward value ranges from —1 to 1, because
of Sigmoid function at the last layer of U-Net as shown in Figure 5. Action a; produced by the actor
network 77 using s; in Equation (25) is as follows:

ar = 1(s¢|07), (27)

where 6;; stands for the parameter of 7r. With these sy, a;, 14, 5;+1 defined above, our actor and critic
networks make a typical optimization step in RL by utilizing an experience replay buffer. During
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the testing, only the segmentation model fs.; and the actor network 7 are required as indicated by
Equation (27) and the procedure, indicated as blue lines, in Figure 4.

In the end, our actor-critic networks learn to follow the segmentation model, while the
segmentation model learns to generate a segmentation map as AC networks work well.

4.2.2. Control Commands for Drone with the Actor Network

Our control command is conveyed as linear velocities within X, Y, and Z-axis. In other words,
the actor network produces three continuous velocity values for a state, and this command is used to
control the drone for both training and testing (evaluation) as described in Section 5.

Let wy, wy, wy denote an output action a from 7 given a state s, our control commands sent to the
drone to control linear velocities are given as

Wy drone = W0 * (Px
Wy_drone = W1 * Py , (28)
Wy drone = W2 * ¢

where Wy grones Wy_drone, a0d W;_grone stand for the linear velocities for x, y, z axes being sent to the
drone, respectively. ¢x, ¢y, ¢, are the pre-defined parameters that one can set to prevent drone’s
attitude from moving too rapidly or either slowly. In this study, ¢ and ¢, were set to 1, whereas ¢,
was set to 0.5 for the stable control of w;, gpne-

5. Experiment

Experiments were designed to see training processes of algorithms for discrete and continuous
action spaces, followed by their evaluation in 3 virtual environments made using Airsim, as shown in
Figure 1. For the training in discrete action space, we have trained DQN, Double-DQN, Dueling-DON,
Double Dueling DQN(DD-DQN). For the continuous action space, TRPO, PPO, and ACKTR have
been trained with U-Net for the assistant segmentation as described in Section 4. Evaluation of the
networks has been carried out by comparing each algorithm for both action spaces as well as with
human pilots whose maneuvering skills vary, i.e., novice, intermediate, and expert.

5.1. Learning Environments

A work station equipped with Intel i7 3.4 GHz CPU and an Nvidia Titan X was used for both
training and testing with a Microsoft Airsim [7] simulation environment. Python 3.6, Tensorflow
1.10.0 [50], and OpenCV 3.4.1 [51] were used for experiments in Ubuntu 16.04 OS. During the training,
the simpleflight mode within Airsim was used. Hardware in the Loop (HITL) was used in measuring
the performance of human pilot where a Graupner mz-12 Radio Control(RC) transmitter and a Pixhawk
PX4 are connected to Airsim as shown in Figure 6. As PX4 is connected to Airsim, the pilot can use
an RC directly to control a drone within Airsim. The signal from the RC is calculated and sent to
Airsim in the same way as other commercially available drones whose flight controller is PX4. In our
experiments, 3 human pilots calibrate their RC using the QGroundControl. The memory usage of the
program was in a total of 280 MiB.

5.2. Network Training for Discrete and Continuous Action Spaces

The experiment was designed to see if the networks were able to maximize the reward by
making trials and errors. If that is the case, such rewards indicate that a drone has an obstacle
avoidance capability.

5.2.1. Training for Discrete Action Space

Training an agent in discrete action space has been made using algorithms, such as DQN, Double
DQN, Dueling DQN, Double Dueling DQN. With such algorithms, experiments were designed to
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examine the effect of varying two conditions. The first one is to see if the algorithms were able to
maximize the reward by learning. The second was designed to see the impact of input data type, i.e.,
RGB or Depth, on the learning.

Throughout the experiments in the woodland, block world, and arena, it was found that Double
Dueling DON (DD-DQN) showed the best performance in learning to maximize the reward among
four algorithms as shown in Figure 7. This was because DD-DQN is an algorithm that combines
Dueling DQN and Double DQN, which differently contributed to improving vanilla DQN. Second-best
was Dueling DQN, followed by Double DON and vanilla DQN. Also, in every case, using both RGB
and depth maps for the training was performing the best, as shown in Figure 7. It was also found to be
better to use a depth map than using only RGB. This indicates that the depth map contains a more
informative feature than RGB for the learning.

Firs

PixHawk—I)M

o P

“"Radio €ontroller

Figure 6. A drone pilot navigates through 3D objects within the block world where an Radio
Controller(RC) and a PX4 are connected to Airsim, playing a Hardware-In-The-Loop (HITL) mode.
Note that the subject sees the first person view of the block world and performance of human is
measured during the navigation task.

5.2.2. Training for Continuous Action Space

This experiment was made to see if actor-critic networks described in Section 4 for continuous
action space can maximize the reward. As the reward is accumulated larger as an agent avoids
obstacles, such a reward can indicate that a drone has an obstacle avoidance capability. For this
purpose, starting points for the training were set as identical locations as training for discrete action
spaces in 3 environments, respectively. After the setting, processes for training actor-critic networks and
U-Net followed the typical RL process. Since U-Net already plays a role in semantic segmentation, and
its role is in a way similar to convert RGB to the depth map, only RGB image was used for the learning
in continuous action spaces. With the same specification of U-Net, 3 actor-critic algorithms, such as
TRPO, PPO, ACKTR, were adopted to compare their performance for obstacle avoidance drones.

Figure 8 shows how our U-Net segmentation model produces the output as the training proceeds.
Decrement of U-Net loss, as well as increment of reward, indicates that the agent’s performance
improves. As a result, it can make a successful path even in a newly configured environment. Note
that when the drone saw a different scene for the first time, the segmentation map produced by U-Net
was blurry on the given scene. However, by repeating trial and error made by actor-critic networks,
the U-Net loss decreases as the networks learn the surrounding area. After the loss became stable
by learning many scenes indicated by training steps around 55 and 78 in Figure 8 (left), the agent
obtained a high reward score. It shows that our agent became familiar with these obstacles through
trials and errors. The segmentation model learned by knowing where the agent had to go with the
given optical flow and the feedback from the critic net, whose role was to evaluate how good the
action was given the state. The obtained rewards by the actor network also increased as the U-Net
loss decreased, indicating that the segmentation model and actor-critic networks cooperated to avoid
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obstacles and made a successful path. Figure 9 shows how the actor network made flight trajectory
given segmentation outputs.
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Figure 7. Illustration of episode rewards for four deep RL algorithms with RGB (left), depth (middle),
and RGB + depth (right), respectively, in 3 environments such as the woodland (top), the block world
(middle), and the area world (bottom). The reward was the biggest when both RGB and depth input
were combined with DD-DQN, as shown in (c) of the woodland and the block world. However, since
these algorithms could not complete their races in the arena world, the differences between them were
not significant. Implementations for these 4 algorithms were based on OpenAl [45].
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Figure 8. U-net training and its corresponding outputs. As the training makes a progress, the U-net
loss decreases and the reward obtained by an RL (Kronecker-Factored Trust Region (ACKTR)) agent
increases (Left). Three different points during the training period are selected to illustrate how the
segmented outputs from U-Net become clearer as training makes a progress (Right). The three locations,
A, B, and C, selected along with a drone flight within the maze, are also shown in Figure 12a.

The second experiment was to determine which actor-critic based algorithm performed better
on the given task. It was conducted by replacing the actor-critic algorithm one by one, whereas
the U-net and reward scheme was identical. As shown in Figure 10, 3 recent and high-performing
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actor-critic algorithms, TRPO [10], PPO [11], and ACKTR [43] were evaluated. It is found that ACKTR
outperformed two other algorithms for the given task, as shown in Figure 10.

Moving Direction by

Acquired Image Segmentation Model

Resulting Image

>

Case 1

Case 2

4

Figure 9. Determination of moving direction according to the segmentation model’s output. Case 1:
As the acquired image contains an open space in the left, the model produces a cluster of green areas in
the same direction. Accordingly, the drone drifts to the left, as shown in the resulting image. Case 2:
When open space is located in the right side of the acquired image, the drone drifts to right, as shown
in the resulting image. See also Figure 12.
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60

5
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o
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0 20 80 100 0 20 80 100 0 20 80 100
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Figure 10. Average performances of three policy gradient algorithms used for our Actor-Critic networks
within three environments: (a) the woodland, (b) the block world, (c) the arena world, respectively.
Implementations for these algorithms were based on OpenAl [45] and their default hyper-parameters

for a fair comparison. Note that ACKTR outperformed others.

5.3. Evaluation of Networks

For the evaluation of algorithms for both discrete and continuous action spaces, the trained
models were used for testing in each of the 3 environments.

5.3.1. Comparison between Algorithms

To better understand how these algorithms work in three environments, the trained network
models ran in three environments such as the woodland, the block world, and the arena world,
respectively. It is found that DD-DQN in discrete action space outperformed others, whereas ACKTR in
continuous action space excelled others. DD-DQN made discrete trajectories as shown in Figure 11a,c,
mainly because it had only 5 possible actions, i.e., forward, left, right, up, and down. On the other
hand, ACKTR made smooth and continuous trajectories as shown in Figures 9 and 11b,d, because it
could produce actions in continuous space with three linear velocities. Note that such differences in
trajectories were more evident in the block world where there were densely located obstacles that each
agent had to avoid during its journey to the goal.
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Figure 11. Illustration of drone flight trajectories by two deep reinforced learning (RL) algorithms
such as DD-DQN (a,c) and ACKTR (b,d). (a,b) were collected from the woodland and (c,d) from the
block world, respectively. Here, training models at step 90 k (green), 95 k (yellow), and 100 k (red)
were deployed for each algorithm. Note that DD-DQN made discrete trajectories, whereas ACKTR
generated continuous trajectories. Note that, in each panel, only 3 trials among many are drawn
for clarity.

Our arena world consists of two kinds of obstacles: the first is wall-type large obstacles, consisting
of two double arch bridges with sand color and two hoop-embedded black walls; the second is the
small obstacles such as cone, half sphere, cuboid with different colors, as shown in Figures 8 and 12.
Since all obstacles were densely located along with a circular track, algorithms with discrete action
space failed to reach the goal mainly because they did not have delicate yaw control. However, it was
inevitable to restrict the action space because adding yaw could be having too many actions, which is
known to be leading to unstable learning. Note that DD-DQN could not reach the goal as shown in
Figure 12a, whereas ACKTR reached the goal successfully by producing different linear velocities.

5.3.2. Experiment on Robustness of Actor Network

As previous studies suggested that the segmentation model could offer robustness against a
certain environmental change, experiments were designed to see how an actor network and the
corresponding U-Net segmentation model would perform when there was a change in the environment.
Since our actor network could learn to follow the maximum reward zone suggested by U-Net, the actor
network could perform well if the segmentation would be successful with given obstacles.

Our segmentation network combined with the actor-critic network was trained using the arena
track with Figure 12a. Three more tracks were reconfigured from the arena (a) by calculating how
much each track was changed in ratio . The arena track (b) consists of shuffled obstacles (o = 65%),
having the same 4 large obstacles, whereas the arena track (c) was made by shuffling large and small
obstacles as well as by adding new obstacles with different colors (¢ = 75%). The arena track (d) was
made from (c) with more obstacles (¢ = 81%). Results suggest that our network cooperating with
U-Net could reach the goal in (b) and (c), where there were changes about 65% and 75%, respectively,
from (a). However, when the environment was too different from what it had been, such as 81% in (d),
it failed to reach the goal probably because of a severely reconfigured environment. Note that ¢ has
been calculated as follows:

__ Number of obstacles added or changed from track (a)
N Number of obstacles in a target track

x 100 (29)
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(a) (b)
(c) (d)

Figure 12. Drone flight trajectories collected from the trained arena track (a) as well as three untrained
arena tracks (b—d), where the sequence of obstacles were shuffled. Note that A, B, C in (a) indicate the
locations used for visualization of our segmentation model during its training, as shown in Figure 8.

5.3.3. Racing between Human Pilot and Algorithm

This experiment was prepared to examine the performance between the RL algorithms and drone
pilots. For this purpose, a few drone pilots were recruited based on their skills level of drone control,
i.e., novice, intermediate, and expert. The novice had about two weeks of experience of drone piloting,
the intermediate pilot about six months, and the expert pilot had more than two years of experience.
Test environments were the woodland, the block world, and the arena (a) in Figure 12. To inspect
how fast the pilots or algorithms reached the goal, 100 lines equally dividing the tracks until the
goal was installed and gave 1 point when the drone passed through each of them. After the setting
described in Section 5.1, all pilots did practice ten times before recording the data for comparison
against the algorithms.

In the woodland, the fastest was expert pilot (47 s), followed by ACKTR (51), intermediate pilot
(78), DD-DQN (84), and novice pilot (102) as shown in Figure 13. When there were more obstacles
densely located in the block world, the gap between the expert (37) and ACKTR (39) agent was
shortened. Interestingly, the gap between the intermediate pilot (56) and DD-DQN (70) was increased,
indicating that the DD-DQN agent had difficulty in avoiding obstacles with discrete action space.
In the arena, ACKTR reached the goal fastest (51) followed by the expert (61), and all others could not
complete the tasks, suggesting that this track was more difficult than two other tracks.
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Figure 13. Performance comparison in terms of time taken from the start (score = 0) to the goal
(score = 100) between human drone pilots and algorithms. For the woodland (a) and the block world
(b), both the expert and ACKTR were the winners with similar speeds, whereas ACKTR excelled others
in the arena world (c), wherein DD-DQN, the intermediate and novice drone pilots could not complete
their races because of collisions, indicated as red dots, made during navigation. Each algorithm (as
well as each drone pilot subject) made 3 trials within each environment. The average score for each
case is plotted as a color line with shade for indicating its variation. Note that the deployed models
were trained with 90 k (a), 95 k (b), and 100 k (c) steps, respectively. Our demo video can be found at:
https:/ /youtu.be/en6Xwht8ZSA.

6. Discussion

The drone can fly outdoor as well as indoors depending on its usage. Training a drone using the
machine learning algorithm requires a well-prepared dataset. In particular, collecting a high-quality
outdoor dataset is not easy. Gazebo has been a favored drone simulation tool by which one can collect
data and fly his drone after training, although so far most cases were for indoor navigations. Airsim
provides a new opportunity of collecting realistic outdoor datasets. In this study, we use one of the
packages from Airsim, i.e., the woodland, and design two environments, i.e., the block world and the
arena world, for training deep RL algorithms. We also plan to release these for public use.

The present study utilizes both RGB and depth map images as input for 4 RL algorithms with
discrete action space. Given that RGB image is the FPV of the environment from the drone and depth
map has the same view except for the fact that it is extracted from stereo images, these inputs contain the
partial information of the environment, whereas the input image typically has the whole information
at a given moment in playing any Atari game with DQN, that could make the present pathfinding task
harder. As we want to know how individual sensor contributes to the performance, an experiment
was carried out using 3 different cases such as RGB, depth image and depth + RGB, separately. Result
suggests that the depth + RGB case outperformed the other two cases. For the comparison between 4
deep RL algorithms with such input types, we found that all deep RL algorithms succeed in finding
the goal for the woodland experiment, whereas only Dueling DQN and DD-DQN were able to arrive
at the goal for the block world case. This confirms that pathfinding in the block world was relatively
harder than in the woodland for the deep RL algorithms. However, these algorithms failed to reach
the goal in the arena track, confirming that they had a limitation in yaw control.

It is well known that gaining some skill for maneuvering the drone using an RC, especially for
navigating through a group of 3D obstacles, often needs a certain period of training for a drone pilot.
In this study, deep RL algorithms have been used to train a drone agent that supposes to find a path
through obstacles and eventually to arrive at the goal. By using the HITL mode of Airsim, it was
possible to measure ther performance of human pilots and to compare it with the performance of
the algorithms.
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7. Conclusions

In this study, we compared RL for discrete and continuous action spaces in avoiding obstacles
by drone. A new method using a segmentation network for continuous action space is trained using
an actor-critic network from the RL paradigm. The significant advantage of this is, of course, that
manual labeling is not necessary, saving labor and time. The performance of U-net-based segmentation
model is also improved very much. The question for RL in terms of autonomous navigation problems
was how one could minimize the gap between real and training environments. Through a series of
experiments, we demonstrate that our trained model made successful flying journeys not only in the
trained environment but also in some re-configured environments. As far as we know the literature,
the present study could be the first attempt where human pilot made a drone racing with algorithm
and performance between them were evaluated. We plan to make a real arena shaped environment,
that is often used for the drone racing championship, for testing obstacle avoidance drones.
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