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Abstract: Sentiment Analysis (SA) is an active research area. SA aims to classify the online unstructured
user-generated contents (UUGC) into positive and negative classes. A reliable training data is vital
to learn a sentiment classifier for textual sentiment classification, but due to domain heterogeneity,
manually construction of reliable labeled sentiment corpora is a laborious and time-consuming task.
In the absence of enough labeled data, the alternative usage of sentiment lexicons and semi-supervised
learning approaches for sentiment classification have substantially attracted the attention of the
research community. However, state-of-the-art techniques for semi-supervised sentiment classification
present research challenges expressed in questions like the following. How to effectively utilize the
concealed significant information in the unstructured data? How to learn the model while considering
the most effective sentiment features? How to remove the noise and redundant features? How to refine
the initial training data for initial model learning as the random selection may lead to performance
degradation? Besides, mainly existing lexicons have trouble with word coverage, which may ignore
key domain-specific sentiment words. Further research is required to improve the sentiment lexicons
for textual sentiment classification. In order to address such research issues, in this paper, we propose
a novel unified sentiment analysis framework for textual sentiment classification called LeSSA.
Our main contributions are threefold. (a) lexicon construction, generating quality and wide coverage
sentiment lexicon. (b) training classification models based on a high-quality training dataset generated
by using k-mean clustering, active learning, self-learning, and co-training algorithms. (c) classification
fusion, whereby the predictions from numerous learners are confluences to determine final sentiment
polarity based on majority voting, and (d) practicality, that is, we validate our claim while applying
our model on benchmark datasets. The empirical evaluation of multiple domain benchmark datasets
demonstrates that the proposed framework outperforms existing semi-supervised learning techniques
in terms of classification accuracy.

Keywords: textual sentiment classification; sentiment lexicons; initial training set; semi-supervised
learning; self-training; active learning; co-training; classification fusion

1. Introduction

In the last two decades, the web became a primary source, where people look for information
and share experiences and perceptions in the form of comments or opinions. The number of internet
users is increasing quickly, and the size of the generated data on social network sites (SNSs) is very
large. According to a statistical report issued in January 2017 by Hootsuite, 3.8 billion people (50% of
the world’s population are internet users and 2.8 billion of them are active users [1]. Another report
issued in April 2016 specified the strength of most popular SNSs such as Instagram (400 million users),
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LinkedIn (450 million Users) and Facebook (1.71 billion monthly active users) [2]. Similarly, monthly
active users of Twitter are above 288 million, with over 500 million tweets generated every day [3].

These statistics show the fame and importance of SNSs. Resultantly, such SNSs platforms generate
a gigantic amount of Unstructured User Generated Contents (UUGC). Such UUGC contains precious
information and can play an important role in decision making that can be advantageous for both
consumers and organizations. It is almost difficult for a human to check and categorize such a huge
number of documents manually. To turn UUGC into precious information, it must be queried, analyzed
and visualized. Sentiment Analysis (SA), using natural language processing and machine learning
tools and techniques, is the candidate solution for analyzing such useful information automatically. SA,
also known as opinion mining, is the process that extracts and analyzes people’s opinions, sentiments,
attitudes, judgments and emotions regarding entities, events and their attributes [4]. The field of SA
has been thoroughly studied in the literature [4–6].

The objective of SA is to classify UUGC into either positive or negative classes. Most of the
methods for SA work on Supervised Machine Learning (SML) [1,7–9]. The SML methods need a large
amount of labeled data to train a classifier (such as Support Vector Machine (SVM) [10] or Naive Bayes
(NB) [11] for sentiment classification. However, there is a shortage of labeled data which could be used
to train a classifier for multiple domains. Besides, it is also challenging and time-consuming to label a
large amount of data manually for various domains, as they need skilled human annotators.

In the absence of enough labeled data, the alternative usage of lexicon scoring (LS) and semi-
supervised learning (SSL) approaches for sentiment classification have greatly attracted the attention
of scientists. The LS addresses this problem by using existing general sentiment lexicons to calculate
sentiment scores of review texts. Based on calculated sentiment scores, the review text is categorized
into either positive or negative class. A sentiment lexicon is a list of words or phrases that express
sentiments. Sentiment lexicon plays a vital role in textual sentiment analysis. Sentiment lexicons have
been widely employed for textual sentiment classification due to the benefit that they do not need
labeled data for training [12,13]. Existing sentiment lexicons also have been utilized for learning an
initial classifier in order to generate a domain-specific sentiment feature for sentiment analysis [14].
A combination of lexicon and learning-based approaches for textual sentiment classification have been
proposed [15,16]. In the literature, several sentiment lexicons with different sizes and formats have been
created for sentiment analysis, e.g., AFFIN [17], OL [18], SO-CAL [19], WordNet-Affect [20], GI [21],
SentiSense [22], MPQA Subjectivity Lexicon [23], NRC Hashtag Sentiment Lexicon [24], SenticNet5 [25]
and SentiWordNet [26]. Despite wide usage for assessing sentiment in social media contexts, existing
sentiment lexicons have a concern with coverage, which may ignore important domain-specific
sentiment words. Besides, building sentiment lexicon manually is time-consuming and labor-intensive.
In order to improve the existing general sentiment lexicons, we integrate them leveraging linguistic
and semantic knowledge to expand the word coverage of individual sentiment lexicon.

Semi-supervised learning (SSL) is a machine learning technique that utilizes a large amount of
unlabeled data along with a small amount of labeled data to learn classifiers and achieve a better
performance [27]. In the literature, mostly learning models uses semi-supervised learning techniques,
such as self-training, co-training, active learning, and a combination of these has been mostly used for
textual sentiment classification [28–33].

Self-training is the most well-known and simple SSL algorithm. In self-training, first, a classifier
is trained on a small number of labeled data to predict the label for the unlabeled data. Then, high
confidence level unlabeled examples with predicted labels are selected to add to the training data.
Further, the classifier is retrained, and the process is recurrent until a predefined threshold is satisfied [34].
Wang et al. [34] addressed a semi-supervised learning approach, self-training, for sentence subjectivity
classification. He et al. [14] proposed a self-training method for automatically domain-specific features
acquisition by using the pseudo-labeled examples with high confidence. Qiu et al. [28] presented the
SELC Model (Self-supervised, Lexicon-based and Corpus-based model) for sentiment classification.



Appl. Sci. 2019, 9, 5562 3 of 28

Co-training is another semi-supervised learning method presented by Blum et al. [35]. In co-training,
two classifiers operate on two different and sufficient views for the training set expansion. In the
standard co-training algorithm, each classifier classifies the unlabeled data and selects the most
confident classified examples according to a threshold and adds into the training set of another
classifier. The training set of each classifier is enriched, this process continues for several iterations
until the condition criteria is satisfied [30,36]. Xia et al. [31] proposed co-training for semi-supervised
sentiment classification based on dual view bag of words representation. Yang et al. [37] proposed
a semi-supervised model for sentiment classification based on the idea of combining lexicon-based
learning and corpus-based learning in a unified co-training framework.

Active learning, a type of semi-supervised learning, is used to actively select the unlabeled
examples to be annotated by an oracle (e.g., a human annotator) with minimum annotation effort [38,39].
The goal of active learning is to improve the classification accuracy with fewer labeled instances [40].
Zhou et al. [41] proposed a novel Active Deep Network (ADC), to address the sentiment classification
problem with active learning using a small number of labeled data. Hajmohammaadi et al. [33]
proposed a novel learning model based on the combination of active learning and self-training for
cross-lingual sentiment classification. They also designed and implemented some other baseline
models and compared it with their proposed model to show the actual effects of different parts of their
proposed model.

In semi-supervised learning, the initial training set is selected randomly from the whole unlabeled
data. Random selection of the initial training set does not guarantee to be the most representative subset
of the entire unlabeled data. Besides, mainly existing semi-supervised learning methods, which utilize
unlabeled data, contain abundant and redundant noisy features that may affect classification accuracy.
The existing semi-supervised techniques cannot handle these noisy features effectively. Moreover,
existing approaches do not focus effectively on the sentiment features of the unstructured data.

In this paper, we propose a novel unified sentiment analysis framework for textual sentiment
classification called LeSSA. In LeSSA, we utilize high-quality wide coverage sentiment lexicons
along with other machine learning techniques, such as k-mean clustering, self-training, co-training,
active learning for training sentiment learners. The full-trained sentiment learners predict the sentiment
polarity class for the test review document. We employ classification fusion using majority voting to
predict the final sentiment label for the unseen textual reviews.

In LeSSA, we aim to address the issues mentioned above under the umbrella of the two-step
process (1) integrating several sentiment lexicons leveraging linguistic and semantic knowledge to
induce high-quality wide coverage sentiment lexicon and, (2) training classification models based on
high-quality training datasets for sentiment classification.

In the former case, our objective is to induce a high-quality wide coverage sentiment lexicon.
The existing general sentiment lexicons have some shortcomings. (a) Many of the existing general
sentiment lexicons do not cover domain sentiment words, which may ignore important domain-specific
sentiment words. (b) Mostly words that are not considered sentiment words in the existing general
sentiment lexicon can express sentiment in a particular domain. (c) Most of the existing sentiment
lexicons cannot handle effectively context-dependent sentiment words. In order to solve these
shortcomings in the existing general sentiment lexicons, we integrate various sentiment lexicons
leveraging linguistic and semantic knowledge to expand the sentiment lexicons for better sentiment
classification. In the latter case, we competently select high-quality data for training to minimize the
data labeling exertion for better sentiment classification. In order to select the high-quality training
data, first, we generate the initial training set based on k-means clusteringthen, we train first classifier
on the initial training set and apply on unlabeled training dataset to label them based on some strategy
(e.g., uncertainty sampling, high confident level). This process continues for several iterations until
the termination condition is satisfied, and finally, the fully learned classifier is trained on the labeled
training data. While training data we remove the noisy and redundant features and extract and select
the most effective sentiment features for better sentiment classifier learning. Solutions to the mentioned
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issues result in lexicon-based and semi-supervised learning-based classification models. In detail, the
final output predictions of all the designed and implemented classification models on test data are
combined using majority voting to make a more accurate sentiment classification.

The experimental results show that our proposed approach is suitable in predicting the true class
that can improve the sentiment classification performance efficiently and outperforms baseline methods.

The key contributions of this work are as follows:

• A novel, unified sentiment analysis framework, known as LeSSA, has been proposed for textual
sentiment classification.

• The confluence of various sentiment dictionaries has been employed to generate a high-quality
wide coverage sentiment lexicon.

• We identify and extract context-aware domain-specific sentiment words by leveraging linguistic
rules and semantic knowledge.

• We exploit the bootstrapping method to obtain the most reliable training datasets employing three
well-known semi-supervised learning techniques, such as self-training, co-training, and active
learning in order to select the most useful instances to enhance and update the initial training set.

• We extract sentiment bearing features and reduce the feature space while exploiting MRMR
feature selection criteria.

• We design and implement multiple sentiment learners.
• The results obtained using classification fusion show higher accuracy comparable with base

sentiment learners.
• We evaluate the performance of various designed classification models in order to show their

effect on the proposed unified framework.
• The experiments on two well-known benchmark datasets validate that the proposed method

improves the sentiment classification in terms of accuracy.

All the acronyms used in this paper are listed in Table 1. The rest of the paper is organized as
follows: Section 2 is about related work on SML, SSL, and Sentiment Lexicons for textual sentiment
classification. The proposed unified SA framework (LeSSA) is briefly described in Section 3. The technical
and implementation details of LeSSA are discussed in Section 4. Experimental results, evaluation and
discussion are presented in Section 5. Finally, in Section 6, we conclude the paper by signaling future work.

Table 1. List of acronyms being used in this paper.

Name Acronym

Sentiment Analysis SA
Support Vector Machine SVM

Naïve Bayes NB
Supervised Machine Learning SML

Social Networks Sites SNSs
Semi-Supervised Learning SSL

Unstructured User-Generated Contents UUGC
Text Pre-Processing TPP

Sentiment Features Extraction and Selection SFES
Multi-Model Sentiment Learning Layer MMSLL

Wide Coverage Sentiment Lexicon-Based Sentiment Learner WCSL-SL
Bag of Words BOW

Minimum Redundancy Maximum Relevance MRMR
Self-Training Based Sentiment Learner ST-SL

Part-of-Speech Tag POS
Feature Engineering FE

Multi-Model Sentiment Learning MMSL
Sentiment Classification SC
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Table 1. Cont.

High Ranking Pseudo-Labeled Based Sentiment Learner HRPL-SL
Active-Self-Training Based Sentiment Learner AST-SL

Active-Self Co-Training-Based Sentiment Learner ASCT-SL
Classification Fusion CF

Lexicon Scoring LS
Sampling by Clustering SBC

2. Related Work

Recently several SML, SSL and lexicon-based approaches for textual SA have been proposed [7,12,34,42,43].
The SML approach relies on the presence of labeled training data to learn a classifier like SVM,

which is subsequently applied to the test data for classification. An SML approach for movie review
sentiment classification was proposed by pang et al. [7]. They applied three SML algorithms (NB,
Maximum Entropy and SVM) and achieved a high accuracy of 82.9% using unigrams as features.
Another SML approach was presented by Saleh et al. [44], in which they applied SVM for testing
diverse domains of datasets and used various weighting schemes (TFIDF, BO, TO) while adopting
n-gram based approach. They obtained a high accuracy level of 91.5% using unigram features with
TFIDF scheme. SML approach for sentiment classification performs well when enough amount of label
data is available. However, it is difficult to get a large amount of labeled data manually for different
domain. This deficiency brought an interest to lexicon based and SSL approaches for SA.

Various sentiment lexicons with prior polarity have been created recently for document
classification. Sentiment lexicon assists as a vital tool for making a sentiment classification system [19].
Sentiment lexicon is a list of opinioned words or phrases. In some cases, a value is assigned to each word
in the sentiment lexicon to differentiate the semantic orientation level of the word. Some of the most
well-known and largely used general sentiment lexicons are AFFIN, OL, MPQA, SO-CAL, Subjectivity
lexicon, NRC Hashtag Sentiment Lexicon, etc. According to the existing literature, the general
sentiment lexicons have been generated manually, semi-automatically or fully automatically [45].
The manual approach of sentiment lexicon generation is very difficult due to high effort and expert
time requirements. The manual approach for sentiment lexicon development is usually combined
with automatic approaches. Hu et al. [18] have developed a manually compiled sentiment lexicon for
sentiment analysis.

Generally, there are two popular methods for sentiment lexicon construction, dictionary-based
method, and corpus-based method [4]. The dictionary-based method utilizes an initial set of seed
sentiment words, which are collected and labeled manually. This set is then expanding by looking
synonyms and antonyms in thesauri such as WordNet [46]. The corpus-based approach utilizes seed
sentiment words to discover new domain sentiment words and their orientation [4]. Hazivassiloglou
et al. [47] exploited some seed sentiment words for discovering new domain sentiment words in the
corpus. Another corpus-based method relies on the word co-occurrence in the corpus [48]. Most of the
existing general sentiment lexicons for sentiment classification is insufficient due to the limited word
coverage that may neglect important sentiment words, which are not present in the existing lexicons.

SSL approach can take benefit of utilizing a small amount of labeled training data, together with
a large amount of unlabeled data. There is a reason for using unlabeled data to boost the learning
performance of a learner in a case when only a small-scale of labeled data exists [27]. In the SSL
approach, an initial set is used for training the first classifier. The selection of an initial set for training
first classifier is significant. In previous studies, the selection of an initial set from the whole unlabeled
data is made by random sampling. However, due to the complex distribution of data, random sampling
cannot ensure selection of the most representative instances. Therefore, other techniques like sampling
by clustering and sentiment lexicon are used for initial training set generation [14,49,50].

In the literature, many SSL techniques such as self-training, co-training, active learning and
graph-based and topic-based semi-supervised learning have been used for classification problems [27].
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In self-training, the most confident unlabeled examples, together with their predicted label with
a given threshold are selected to add to the training set. Wang et al. [34] addressed self-training,
for sentence subjectivity classification. They adapted Value Difference Metric (VDM) as the selection
metric in self-training. According to their experimental results, self-training with NBTree and VDM
outperformed self-training with other combinations of classifiers selection metrics. Qiu et al. [28]
presented the SELC Model for sentiment classification, which successfully integrates a corpus-based
model with a lexicon-based approach.

Active learning is an encouraging process for SSL classification, which reduces the data
labeling cost. Zhou et al. [41] proposed a novel Active Deep Network (ADN) method for textual
sentiment classification. Li et al. [51] proposed active learning for imbalanced sentiment classification.
They utilized two complementary classifiers where the first classifier was used to obtain the most certain
samples and the second to obtain the most uncertain samples for manual annotation. Hajmohammadi
et al. [33] proposed a novel learning model in which they combine active learning with self-learning
to decrease the effort of human labeling and improve the classification performance in cross-lingual
sentiment classification. In their model, firstly, unlabeled data translated from the target language into
the source language, then translated data are increased into initial training data in the source language
utilizing active learning and self-training. They also considered the density measure of unlabeled
examples in active learning to avoid the selection of outlier examples from unlabeled data.

Co-training [27] is a bootstrapping method that assumes that feature space can be divided into
two different redundant and sufficient sets (views). Initially, two different classifiers are trained with
the labeled data on the two different views, respectively. Each classifier then applied to the unlabeled
data, and the most confident predictions of each trained classifier on the unlabeled data are added
into the training set of another classifier for label data expansion. Xia et al. [31] proposed a dual view
co-training algorithm based on dual view bag-of-words (BOW) representation for semi-supervised
sentiment classification. In dual view BOW, they automatically constructed antonymous reviews
by a pair of bag-of-words with opposite views. They made use of the original and antonymous
views pair-wisely in training, bootstrapping and testing processes, all based on a joint observation
of two views. Yang et al. [37] presented an LCCT (Lexicon-based and Corpus-based, Co-Training)
model for semi-supervised sentiment classification, combining the idea of lexicon-based learning
and corpus-based learning in a unified co-training framework. Li et al. [29] proposed a cooperative
semi-supervised learning approach based on the hybrid mechanism of active learning and self-learning
for textual sentiment classification.

Recently, deep learning-based aspect extraction [52], attention-based LSTM [53] and capsule
networks [54,55] have also been widely used for sentiment analysis and challenging NLP applications
that yield state-of-the-art prediction results. In this work, our focus is on the design of a unified
sentiment analysis framework for multi-domain textual sentiment classification.

In literature, for SA, SSL has been used by many researchers while gaining performance [29–31,41,51].
However, most of them did not notice how to utilize effectively concealed significant information,
which gives more sentiment clue as compare to other words. Likewise, they did not consider the
most appropriate sentiment features. The presence of redundant and noisy features in the text data is
also ignored. The initial training set for first model training is randomly selected, which may affect
the performance of sentiment classification. Besides, different classification models based on lexicon
and semi-supervised learning techniques have been proposed, but it is hard to judge which model
performs best in common.

In order to address the above issues in state-of-the-art work, in this paper, we propose a novel
unified SA framework based on high-quality wide coverage sentiment lexicons and semi-supervised
learning techniques in conjunction with classification fusion for textual sentiment classification.
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3. Proposed LeSSA Framework

Formally, we describe the LeSSA framework in this section, the implementation and technical
details in the next section. LeSSA is a novel unified SA framework, which has been designed with
the intentions for multi-domain sentiment classification in a case when the labeled data is scarce or
not available. LeSSA is also applicable for heterogeneous domain sentiment classification. The core
architecture of the LeSSA is illustrated in Figure 1. LeSSA is composed of three main layers: Feature
Engineering (FE), Multi-Model Sentiment Learning (MMSL), and Sentiment Classification (SC).

FE layer is responsible for generating effective sentiment features from unstructured data.
The construction of suitable feature vector creation from the unstructured textual data is a significant
task for well-learning performance in sentiment classification. In the literature, various feature
generation techniques such as BOW, n-grams, POS tagged features and semantic features have been
presented [7,9,56–59]. In this paper, we extract and select the most appropriate features from review
texts, which are adjectives, adverbs, verbs and nouns for learning sentiment classifiers.

MMSL Layer, uses five different sentiment learners, such as wide coverage sentiment lexicon-based
sentiment learner (WCSL-SL), high ranking pseudo-labeled based sentiment learner (HRPL-SL),
Self-Training based Sentiment Learner (ST-SL), Active-Self-Training based Sentiment Learner (AST-SL)
and Active-Self-Co-training based Sentiment Learner (ASCT-SL). For the first two sentiment learners,
we utilize the induced WCSL for learning, while for the remaining learners, we use SSL techniques
with the K-means clustering algorithm to generate an initial training set for first classifier learning.
In the SC layer, the final fully trained sentiment learners based on WCSL-SL, HRPL-SL, ST-SL, AST-SL,
and ASCT-SL are applied to the test data for sentiment polarity prediction. Finally, classification fusion
is presented that determines the final sentiment polarity based on majoring voting. In the proposed
framework diagram, the solid arrow line represents the model training workflow, while the dotted
arrow line represents the offline workflow for real-time prediction of SA.

4. LeSSA—Implementation and Technical Details

LeSSA is a multi-domain SA framework and consists of three layers. The technical details of each
layer are explained in the following subsequent sections.

4.1. Feature Engineering Layer

The construction of appropriate feature vector creation from the unstructured textual data is a
significant task for well-learning performance in sentiment classification. For this purpose, we develop
the FE layer, which consists of two components: Text Pre-processing (TPP) and Sentiment Features
Extraction and Selection (SFES). The TPP is employed to generate appropriate feature vector for better
learning performance in sentiment classification. The TPP component consists of four types of modules.
These modules are sentence parser, lower case, noise remover, tokenizer.

First, the review dataset is loaded, then the review text is split into words by using sentence parser
and tokenizer, respectively. In the next step, the noise remover module is invoked to remove noise from
the text if any, and the same are then transformed to lower case by using case transformer module.

The TPP then inputs the data to the SFES sub-module where the POS Tagger assigns POS tags
with the purpose of determining and extracting the likely words such as adjectives, adverbs, verbs and
nouns. After that, these words are searched in the induced wide-coverage sentiment lexicon to select
the effective sentiment words and filter-out non-sentiment words. Next, the feature vector is created
and selected using term frequency-inverse document frequency scheme (TF-IDF) and pruned words
below ‘absolute = 3′ and above ‘absolute = 3000′ from the feature vector space.
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Further, we selected high-quality top rank sentiment features using the Minimum Redundancy
Maximum Relevance (MRMR) [60] feature selection approach. The extraction and selection criteria
for high-quality sentiment features have a great impact on the performance of supervised and
semi-supervised textual sentiment classification [1,61]. We employed the aforementioned text-mining
techniques to all the proposed sentiment learners.

4.2. Multi-Model Sentiment Learning Layer (MMSLL)

MMSLL is composed of five types of sentiment learners, i.e., WCSL-SL, HRPL-SL, ST-SL, AST-SL,
ASCT-SL. The subsequent section explains the sentiment model learning techniques for textual
sentiment classification in more detail.

4.2.1. Wide Coverage Sentiment Lexicon Based Sentiment Learner

Sentiment lexicon plays a vital role in the review document sentiment classification. A sentiment
lexicon is a list of words that are used to show positive or negative sentiments [4]. In the absence of
abundant training data, the alternative approach of LS has been largely employed by many researchers
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in the domain of textual sentiment classification. In this approach, sentiment words in review
documents are matched against sentiment lexicons, and a sentiment value is assigned to matched
sentiment words. The overall sentiment orientation of a review document is then determined by using
a formula (as shown in Equation (1)). In detail, the sentiment values of matched sentiment words in
the review document are aggregated to determine the sentiment orientation for the review document.
The architecture of induced WCSL-SL for the review document classification is shown in Figure 2.
The detailed process of inducing WCSL-SL along with linguistic rules and semantic knowledge for
review document sentiment classification is given in the subsection below.

Review Sentiment Score = Sum of positive sentiment scores− Sum of negative sentiment scores. (1)
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Sentiment Lexicon Integration and Standardization

In the literature, several sentiment lexicons such as SentiWordNet, Wordnet-Affect, Micro-WNOP
with different sizes and formats have been constructed to classify review documents into positive
and negative classes. However, there is no optimum universal/general sentiment lexicon because the
semantic orientation of words is sensitive to a particular domain. Besides, words that are not considered
sentiment words in the existing sentiment lexicon can express sentiment in a particular domain.

Furthermore, the existing sentiment lexicon cannot handle effectively context-dependent sentiment
words. Many of the existing sentiment lexicons are beset by having limited words, which are
insufficient to calculate the sentiment score of a domain-specific sentiment word. We present an
integrated lexicon-based approach utilizing existing sentiment lexicons with linguistic rules and
semantic knowledge. Our purpose is to integrate multiple sentiment lexicons to increase the word
coverage of sentiment lexicon for sentiment classification.
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Moreover, we identify and extract context-aware domain-specific sentiment words and determine
their sentiment scores by leveraging linguistic rules and semantic knowledge. Here we integrate ten
state-of-the-art sentiment lexicons intending to improve the limited word coverage of the individual
sentiment lexicon. The summary of existing sentiment lexicons is given in Table 2, where the size and
format of the sentiment lexicons are different from each other. Some sentiment lexicons contained
numeric scores with different ranges, while other assigned positive, negative and neutral classes to
sentiment words. Furthermore, some sentiment words were categorized into a variety of emotions
such as joy, happiness and sadness. As these sentiment lexicons have distinct forms, it is important to
convert them into a standard form. We standardize the sentiment lexicons to have one of three different
values, +1, 0, −1. While for sentiment lexicon integration, we take the average of the sentiment values
of the overlapping words, which produces a huge sentiment lexicon with more sentiment words.

The detailed process of the sentiment lexicon standardization is explained below.

• AFINN: AFINN is a list of English words with an integer between −5 and 5. We scaled the
sentiment scores from [−5,+5] to [−1,+1] using minmax scale [62].

• General Inquirer (GI): The sentiment words in GI have been categorized into more than 180 classes.
We considered positive, strong, pleasure, virtue, pstv, active, complete and yes as positive categories
and assign +1 sentiment value to every sentiment word in the category. Furthermore, we examined
negative, ngtv, fail, weak, decrease, pain, no, negate as negative categories and assigned−1 sentiment
score to each word in them.

• Opinion Lexicon (OL): The opinion-lexicon is composed of positive and negative sentiment words.
We assign +1 and −1 score to positive and negative sentiment words, respectively.

• SentiWordNet: Sentiwordnet is based on wordnet synsets, and each synset s is associated with
positive and negative numerical scores within the range of [0,1]. We subtracted a term negative
score from its positive score. We consider a term as positive if its positive sentiment score is bigger
than its negative sentiment score; otherwise, it is considered as negative if its positive sentiment
score was less than its negative sentiment score. If the term positive score and negative score is
equal, then the term is considered as neutral. We assigned a numerical score of +1 to positive
words, −1 to negative words and 0 to neutral words.

• SO-CAL: The sentiment scores of words are scaled from [−5,5] to [−1,+1] using the
aforementioned technique

• Subjectivity Lexicon: Words belonging to positive, negative, both and neutral categories are
assigned numeric scores +1, −1, 0 and 0, correspondingly.

• WordNet-Affect: Words have been grouped into different emotion categories, namely, positive,
negative, ambiguous and neutral emotion. The sentiment score of +1, −1, 0 and 0, are assigned to
these categories, respectively.

• NRC Hashtag Sentiment Lexicon: We normalized the words sentiment score from [−7,+7] to
[−1,+1]

• SenticNet5: A sentiment score to each sentiment word has been assigned within the range of
[−1,1]. We considered the sentiment score of each sentiment word.

• SentiSense: SentiSense comprises of synsets with a set of 14 emotional categories. We assigned
score +1 to love, like, joy and hope categories and −1 to sadness, hate, despair and disgust
categories, while 0 score is assigned to anticipation, surprise and ambiguous categories.

Linguistic Rules

Linguistic rules assist in identifying context-aware domain-specific sentiment words in a better
way. Researchers [4] have pointed out that the usage of linguistic rules could positively affect the
performance of sentiment classification. Motivated by [47], we present how to identify and extract
context-aware domain-specific sentiment words using the following linguistic rules. We split the
review documents into sentences and identify all those sentences from the review documents that
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comprise the below conjunction clauses. We employ the Stanford Parser to parse each sentence and
extract context-aware domain-specific sentiment words. Each sentence was parsed into the syntactic
tree during tokenization and when applicable all the sentences that comprise conjunctions are extracted
for domain-specific sentiment feature extraction.

• Rule 1—similar sentiment: If two words or clauses are linked by “and” conjunction in a similar
sentence, then we can infer that they have a similar sentiment orientation. For example, “This phone
is nice and cheap”, both “nice” and “cheap” express positive sentiment orientation. Based on
this, if we are not sure about the sentiment orientation of the word “cheap”, but we can tell that
the sentiment orientation of the word “nice” is positive in general sentiment lexicon, then we can
deduce that “cheap” is also a positive word.

• Rule 2—opposite sentiment: It comprises some words like, “but”, “while”, “despite”, “unless”,
“however”, “although”, “nevertheless”. If two words are connected by “but” conjunction, then we
can assume that they both have opposite sentiment orientations. For example, “This laptop is nice
but expensive”, both “nice” and “expensive” are sentiment words. Based on this rule, if we are
not sure that the word after “but” conjunction is positive or negative, but we distinguish that the
word before “but” conjunction is a sentiment word, then we can refer that the word after “but”
conjunction is also a sentiment word.

• Rule 3—negation handling: The negation word or phrase generally alters the sentiment orientation
(polarity) of the sentiment word in the sentence or clause. Negations are typical words such as,
no, not, neither and do not and also pattern-based negations like “stop” vb-ing and “quit vb-ing”.
We used a list of negation words to determine negation expression in the review text. We adopted
a simple method for negation handling. If a negation word, e.g., “not” appears at the left side of
sentiment word then, in this case, the sentiment orientation of the sentiment word will be changed.
For example, “This movie is not good”, the word negation “not” alters the sentiment polarity of
word “good”. Negation handling is applied at tokenization time. There are also negation words in
phrases such as, “not only”, “not just”, “not all” which do not mean negation we do not consider
them as a negation expression pattern.

Semantic Knowledge

The word coverage limit in the sentiment lexicons is the main challenge. If a sentiment word is
not included in the existing sentiment lexicons, then it is ignored, which can affect the sentiment score
of the review text. In order to address this problem, we employ semantic knowledge using WordNet to
find the synonyms of the word and obtain its sentiment orientation.

Document Sentiment Score

During document sentiment score, each review text is tokenized, and POS tag is assigned to
extract the likely words such as adjectives, adverbs, verbs and nouns. The sentiment score of each
word is searched in the integrated wide coverage sentiment lexicon and using semantic knowledge.
For each word in the review text, a sentiment score +1 and −1 is assigned to positive and negative
words, respectively. The review with a score above zero is classified as positive, and the review with a
score of −1 and below is classified as negative. Linguistic rules for dealing with context-dependent
sentiment words are applied, and negated words are handled as mentioned before. We use the
document sentiment score formula given in equation 1 to calculate the review document sentiment
score. The detailed procedure for document sentiment score calculation is given in Algorithm 1.
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Table 2. Pre-build lexical resources (sentiment lexicons).

Lexical Resources
(Sentiment Lexicon) Size Category Sentiment

Score

AFFIN Words: 2477 N/A [−5, +5]

GI Words: 11,789 Positive, negative, pstv, ngtv, strong,
weak etc. N/A

OL Words: 6786 Positive, negative N/A
SentiWordNet 117,659 Synsets, Words: 155,287 Positive, negative and objective [0,1]

SO-CAL Words: 6306 N/A [−5, +5]
Subjectivity Lexicons Words: 8221 Positive, negative and neutral N/A

WordNet-Affect 2872 Synsets, Words: 4785 Positive, negative, ambiguous, neutral N/A
NRC Hashtag Sentiment lexicon Words: 54,129 Positive, negative [−7, +7]

SenticNet5 Concepts: 100,000 Positive, negative [−1, +1]
SentiSense 2190 Synsets, Words: 5496 Like, love, hope, hate, etc. N/A

Algorithm 1. Document sentiment score calculation

inputs: D – {s1, s2, . . . , sn}; /* Review documents with n sentences*/
Si – {w1, w2, . . . , wn}; /* Occurrence of n words in a sentence I */
Sw –

{
adjective, adverb, verb, noun

}
; /* Denotes sentiment words */

output: DO {ssw1, ssw2 . . . , sswn}; /* Denotes the n words sentiment score for review document
classification */

1 Begin
2 foreach Si in D {
3 PSi ← POSTagger(Si) /* Assign POS Tag to each sentence */
4 foreach Wi in PSi {

56 if Wi ∈ Sw {
7 //WCSL: Wide coverage sentiment lexicon

if Wi exists in WCSL {
8 SSiWi ← Search Wi in WCSL
9 }

else {
10 Syn_Wi ← fetch synonyms of Wi from Wordnet

// Sum score of all synonyms
SSiWi← Sum WCSL ( Syn_PSiWi)

11 }
12 } } }
13 Negation handling
14 Looking conjunctions for domain-specific words extractions

Determine the sentiment score of the D using Equation (1)
End

4.2.2. Semi-Supervised Learning for Textual Sentiment Classification

Semi-supervised learning is a popular technique that utilizes large amounts of unlabeled data
together with a small amount of labeled data to make better classifiers [27]. Semi-supervised learning
needs low human effort and grants high accuracy. Self-training, co-training and many other methods
are used for semi-supervised learning. In this work, we investigated four different semi-supervised
learning techniques for textual sentiment classification, which are mentioned in the below subsections.

4.2.3. High Ranking Pseudo-Label-Based Sentiment Learner

In this approach, we utilize the unlabeled training review documents to generate pseudo label
examples and it is a two-phase bootstrapping process. First, the quality wide coverage sentiment
lexicon is used to calculate sentiment scores for known review documents. Then the scored review
documents are classified into positive and negative classes by the sentiment scores. After, a portion of
the classified review documents as a reliable pseudo label example is selected according to high absolute
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sentiment score. Further, high ranking pseudo-label examples based on high absolute sentiment scores
are selected for training, and a supervised sentiment learner such as SVM is trained on these examples.
Finally, the learning classifier is applied to the unseen review documents, and the sentiment class is
determined for them.

While learning the sentiment classifier, we utilized the preprocessed textual reviews documents
using FE layer. The sentiment score of each review document is calculated using the review sentiment
score formula mentioned in Equation (1). The reviews are ranked in decreasing order based on
sentiment score, and the top positive and negative review documents are selected as pseudo labeled
examples. The workflow for HRPL is shown in Figure 3.
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4.2.4. Initial Training Set Selection for Self-Training, Active Learning and Co-Training

In semi-supervised learning, the selection of an initial training set for first classifier learning
is very important. This initial training set may affect the performance of semi-supervised learning.
In previous studies on semi-supervised learning, the initial training set is usually induced at random.
However, due to the complexity of unstructured unlabeled data distribution, it is hard to say that
the randomly selected subset for initial training set will be the most representative samples to the
unstructured unlabeled data. There have been many works on how to select the initial training set
such as employing clustering and sentiment lexicons [14,49,50]. Motivated by the method proposed
in [40], sampling by clustering (SBC) scheme is adopted for initial training set generation. In this
scheme, the unlabeled textual data is divided into known number of k clusters utilizing k-means
clustering algorithm. The k-means algorithm groups the unlabeled examples into k-clusters of similar
ones. In order to obtain the most representative initial training set, first we cluster the documents
into k- clusters, and then, a single document from each cluster closest to the respective centroids
based on cosine similarity is selected, which is considered the most representative sample from each
cluster. The selected documents are annotated, and an initial classifier is trained on them to predict the
labels for unlabeled data. From the unlabeled data the most reliable examples with their predicted
labels are selected and added into the initial training set based on some strategy (high confidence,
high uncertainty).

4.2.5. Self-Training-Based Sentiment Learner

Self-training, also known as self-learning, is one of the well-known semi-supervised learning
methods. In self-training, first, a classifier is trained using a small amount of initial labeled data. Then the
classifier is employed to classify the unlabeled data. After that, the high confident unlabeled examples
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with their predicted labels are selected to add to the training data. The classifier is retrained, and this
process is repeated many times to label unlabeled data and enrich the training data. In this paper, first,
the classifier is trained using the initial set which was obtained with SBC scheme and annotated manually.
Then the classifier is applied to the unlabeled text data for class prediction; thereafter, high-confidence
level classified examples by the classifier, according to a specific threshold are selected and added to the
labeled training text set. Furthermore, the classifier is retrained based on the enriched labeled training text
set and predicts labels for the leftover unlabeled texts. This process is continued for a certain number of
iterations until a termination criterion is satisfied. After a complete training process, the test data is given
to the final trained classifier for sentiment classification. The general procedure used for self-training is
described in Algorithm 2. The workflow for self-training is shown in Figure 4.

Algorithm 2. Self-training (ST)-based learning

inputs: X – {x1, x2, . . . ,xm }; /*unlabeled data of m instances*/
Y – {y1, y2, . . . ,ym }; /*labeled data of m instances*/
S – /*classifier*/
λ – /*Threshold*/
output: /* labeled data, |YO| leq |Y| + |X|, leq: less than or equal to */
YO – {y1,y2, . . . ,yn};

1 Begin
2 WHILE X contain instances {
3 S← train classifier on Y;
4 X1

← pick a portion of the unlabeled data
5 if (confidence of S = λ) {
6 Xp

1
← classify X1 by S and select high confident examples

7 Add Xp
1 to Y

8 Remove Xp
1, from X

} }
9 Return YO /*Final trained dataset*/

10 End
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4.2.6. Active Self-Training Based Sentiment Learner

Active learning techniques select the most informative unlabeled examples to predict their label
and include them in the training set [63]. Many researchers have successfully combined active
learning with self-training to decrease the human labeling struggle and enhance the classification
performance [33,64]. Motivated by the existing research [33], we integrate active learning with self-
training to select the most informative and high confident level examples. In this method, first, an initial
classifier is trained using the initial training set created by SBC technique and then applied to the
unlabeled data. Subsequently, some of the best informative examples from unlabeled text data in each
iteration are selected by active learning using uncertainty sampling and a class labeled is assigned to
them by a domain expert. In uncertainty sampling, the unlabeled examples with maximum uncertainty
are considered as the best informative case [49]. Maximum uncertainty refers that the learners have less
certainty to classify the unlabeled examples. In this case, labeling these examples to add to the training
set is useful, as it furnishes unrevealed sentiment clues that can better sentiment classifier learning.
At the same time, some of the high confidence level classified examples are selected in every iteration
by self-training with a specific threshold. Further, these informative and high confident level classified
examples are included in the training text set for the next iteration. In the next iteration, the classifier is
retrained on the enrich training text set. This process is iterated several times until a stopping criterion
is obtained. When the training process is converged, then the final trained sentiment classifier for test
review classification is obtained. The procedure used for AST based sentiment learning is described in
Algorithm 3. The work flow for AST-SL is shown in Figure 5.

Algorithm 3 Active self-training (AST) based learning

inputs:X – {x1, x2, . . . , xm}; /* unlabeled data of m instances */
Y –
{
y1, y2, . . . , ym

}
; /* labeled data of m instances */

S –/* classifier */
λ – {λ1, λ2 }; /* Thresholds */
output: /* labeled data |YO|, leq |Y| + |X| leq: less than or equal to */
YO –

{
y1, y2, . . . , yn

}
;

1 Begin
2 WHILE X contain instances {
3 S← train classifier on Y;
4 X1

← pick a portion of the unlabeled data
5 X1p

1, X2p
1
← classify X1 by S and select high confident examples (X1p

1 )and high
informative examples (X2p

1) respectively, use λ1 and λ2

6 If(confidence = λ1){
7 X1p

1
← classify X1 by S and select high confident examples

8 Add X1p
1 to Y

}
9 If(confidence = λ2){

10 X2p
1
← classify X1 by S and select high informative examples

11 Add X2p
1 to Pool /* for human annotation */

}
12 Hx ← Annotate instances from Pool /*Annotate by Human*/
13 Add Hx to Y
14 Remove X1p

1, X2p
1 from X

}
15 Return YO
16 End
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4.2.7. Active Self-Co-Training (ASCT) for Sentiment Classification

In this method, we combined co-training with self-training and active learning. Given a set of
labeled data (Y) and Unlabeled data (X). First, the feature space of the labeled data Y which is created
with SBC technique is divided into two views, Y = (Y1, Y2). Then a pool of unlabeled data, let us
represent it by X1 is also divided into two views (X1

1, X2
1). After then, separate classifiers S1 and S2

are trained on one view, Y1, Y2 respectively.
Further, the classifier S1 is applied to the unlabeled view X1

1 to select some of the high confident
level classified examples according to a specific threshold predicted by the classifier S1 and added into
the training data. Then applying classifier S2 to the unlabeled view X2

1. Some of the best informative
examples are selected by active learning (utilizing uncertainty sampling scheme) and assigned to a
domain expert for manual annotation that is added into the training data. This process continues
for several iterations until the termination criteria is satisfied. After several numbers of iterations,
we obtain a set of labeled data from the co-training components of classifier S1 and S2. The labeled
data obtained from two co-training components are integrated into a final classifier. The final trained
sentiment classifier is then used for test review classification. The procedure used for ASCT based
sentiment learning is described in Algorithm 4. The workflow for ASCT-SL is shown in Figure 6.
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Algorithm 4 Active self co-training (ASCT) based learning

inputs: X – {x1, x2, . . . , xm}; /*unlabeled data of n instances*/
Y –
{
y1, y2, . . . , ym

}
; /*labeled data of n instances*/

S – {s1, s2}; /*classifiers*/
λ – {λ1, λ2 }; /*Thresholds*/
output: /* labeled data, |YO| leq |Y| + |X|, leq: less than or equal to */
YO –

{
y1, y2, . . . , yn

}
;

1 BEGIN
WHILE X contain instances {

2 /* divides labeled data into two views*/
3 Y1, Y2

← Split Y
4 s1, s2 ← train classifiers on each view Y1, Y2 respectively

X1
← pick a certain number of the unlabeled data

5 /* divides unlabeled data into two views
6 X1

1, X2
1
← Split X1

7 If(confidence = λ1){
8 X1p

1
← classify X1

1 by s1 and pick high confident examples
Add X1p

1 to Y
9 }

10 If(confidence = λ2){
X2p

1
← classify X2

1 by s2 and pick high informative examples
11 Add X2p

1 to Pool /* for human annotation*/
}
Hx ← Annotate instances from Pool /* Annotate by Human */

12 Add Hx to Y
13 Remove X1p

1, X2p
1 from X,

14 }
15 Return YO
16 End

4.3. Sentiment Analysis with Classification Fusion

The idea of classification fusion is to utilize multiple classification models and combine their
predictions in some way, such as voting. The primary aim of classification fusion is to decrease the error
rate in classification tasks, which may occur in single classifiers [65], and also to improve generalization
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ability/robustness over a single classifier and enhance the classification performance of the system.
Classifier fusion produces better results when there is an obvious diversity among classifiers. In this
paper, the predictions (votes) of all the designed and implemented sentiment classification models
on test review are combined using majority voting to determine the final sentiment orientation and
produce improved results. The details of classification fusion for designed sentiment classification
models are given in the below case study.

Case Study—Classification Fusion

In this case, each sentiment learner predicts the sentiment label (positive or negative) of test textual
review document. The predictions from each sentiment learner on test review are then combined and
provided to a fusion module that determines the final sentiment polarity of test review based on a
majority voting scheme. For example, we have a test textual review document from movie review
dataset given in Figure 7. The five different designed sentiment learners, WCSL-SL, HRPL-SL, ST-SL,
AST-SL, ASCT-SL predict the sentiment polarity for the input textual review document. The predicted
polarities of test textual review document are combined based on majority voting using a threshold
t (i.e., t ≥ c, c = 3, where c is the value of threshold) to determine the same polarity (final sentiment
polarity) predicted by at least three sentiment learners.Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 30 
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5. Results, Evaluation and Discussion

5.1. Datasets

We evaluate our proposed unified framework on the two different domain datasets, the Cornell
movie review dataset [7] and Amazon product review datasets [66]. The Cornell movie review dataset
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consists of 2000 reviews contain 1000 positive and 1000 negative reviews. The Amazon product reviews
datasets contain four domains, i.e., Book, DVD, Electronics, and Kitchen; each domain consists of 1000
positive and 1000 negative reviews. For each domain dataset, we used 80 percent instances as the
training set and the remaining 20 percent instances as the test set. We select 10 percent instances of the
training set as the initial labeled data with reinforcement of the labeled data using the SBC technique
and used the remaining instances as the unlabeled data. The classification performance of final trained
sentiment learners is evaluated on test documents.

5.2. Experimental Setting

Similar to state-of-the-art techniques for multi-domain datasets, we used 5-fold cross-validation
for all the experiments in multi-domain data sets. Each dataset was split randomly into a training set
and testing set in 5-fold cross-validation, one of which is used for testing, and the remaining including
initial set are used for training. The classification performance is estimated by the averaged results of
5-fold cross-validation. For the implementation, we exploited Rapidminer Studio [67], which provides a
complete environment for machine learning, text mining, deep learning, data processing and predictive
analytics. We used SVM (Linear) for HRPL-SL. Multinomial Naive Bayes (MNBs) is utilized as the
base classifier of ST-SL, AST-SL, ASCT-SL [68,69] with all parameters set at their default values. SVM
(Linear) is also used for the final trained sentiment learners to classify test textual reviews.

We set the thresholds of text samples as p = 3, n = 2 (p = positive class, n = negative class) for ST-SL,
AST-SL, ASCT-SL. The total number of iterations is set to 90 for Algorithm 2, 3 and 4. Sentiment features
were extracted and selected on the training dataset by using MRMR selection method. The dimension
for appropriate sentiment feature is 800. We utilized the paired t-test (P < 0.05) to calculate the accuracies
of all techniques.

5.3. Evaluation Metrics

We used accuracy as an evaluation criterion to calculate the overall sentiment classification
performance. The classification accuracy of a method is measured based on the testing texts.

Accuracy = correctly classified reviews/total number of review (2)

5.4. Experimental Results and Discussion

In this section, we evaluate and show the effects of various parts of the proposed approach on
multi-domain datasets. We also evaluate and discuss how the proposed approach could overcome the
sentiment analysis problem.

Experiment 1. Evaluation of induced WCSL for review document scoring and classification.

The induced high-quality WCSL in conjunction with linguistic and semantic knowledge achieved
good performance on Book, DVD, Electronics and Kitchen datasets and best classification performance
on Movie domain dataset. The effective performance of induced high-quality WCSL is due to the wide
coverage of general sentiment words including context-aware domain-specific sentiment words which
matched many sentiment words in the review documents. The classification accuracy achieved by
WCSL on multi-domain datasets is shown in Figure 8.

Experiment 2. Evaluation of high ranking pseudo-labeled examples for review sentiment classification.

The selection of high ranking pseudo-labeled example by WCSL for sentiment classification
achieved good performance on Book, DVD and Electronics domain datasets and best performance on
Kitchen and Movie domains. The influential performance of this approach is due to the selection of
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high absolute score sentiment examples, which comprise effective sentiment words. The classification
performance achieved by HRPL-SL is shown in Figure 9.Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 29 
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Experiment 3. Evaluation of sentiment learner based on self-training.

In this experiment, we used specific confidence threshold values while predicting the labels of
unlabeled data. The confidence values evaluated as thresholds are 0.5, 0.6, 0.7 and 0.8. Those classified
examples whose confident score is high are selected and added in the label training set. The selection
of classified examples based on low confidence threshold values, i.e., 0.5 and 0.6 decline the learning
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process due to the misclassified examples. Therefore, we adopted the high confident threshold value
0.8 to select more valuable p positive and n negative examples for the complete learning process.
Figure 10 shows the performance of the final trained sentiment learner on multi-domain datasets based
on self-training with four different confidence threshold values, 0.5, 0.6, 0.7 and 0.8. From Figure 10,
it is clear that the final trained sentiment learner based on ST-SL with confident threshold 0.8 achieved
good classification performance.
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Experiment 4. Evaluation of sentiment learner based on active self-training.

In this experiment, some of the highly-uncertain, most-informative examples (misclassified
unlabeled examples) whose confidence score is close to 0.5 are actively selected for manual annotation.
According to the method proposed in [70], the misclassified unlabeled examples in active learning
may carry more information than correctly classified unlabeled examples. Simultaneously, some of
the high-confidence level classified examples with threshold value 0.8 are selected by self-training.
The good performance of this approach on multi-domain datasets is due to the selection of classified
examples with active learning together with self-training. The classification performance obtained by
final sentiment learner based on AST is shown in Figure 11.

Experiment 5. Evaluation of sentiment learner based on active self-co-training.

In this experiment, most informative and high confident level classified examples are selected by
active learning and self-training, respectively. In details, two different classifiers (S1, S2) with different
labeled (Y1, Y2) and unlabeled views (X1

1, X2
1) were hired for active learning (AL) and self-training

(ST) respectively. The most informative examples predicted by classifier S1 whose confidence score
is closest to 0.5 are selected by active learning for human annotation, more especially uncertainty
sampling [70]. Further, the most confident level examples with threshold value 0.8 are selected by
self-training. The final trained sentiment learner based on Active-Self-Co-Training achieved good



Appl. Sci. 2019, 9, 5562 22 of 28

performance on Book, DVD, Electronics and Kitchen domain dataset, and best performance on Movie
domain dataset. Figure 12 shows the performance of the final sentiment learner based on ASCT on
multi-domain datasets.Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 29 
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Experiment 6. Evaluation of final sentiment orientation based on classification fusion.

In this experiment, the predictions of final trained sentiment learners on test reviews are combined
based on majority voting exploiting a threshold t (i.e., t ≥ c, c = 3, where c is the value of threshold).
In detail, the same sentiment orientation predicted by at least three sentiment learners is considered as
the final sentiment polarity of the class. The approach of classification fusion based on majority voting
for multi-domain sentiment classification achieved high performance. The classification performance
obtained by CF is shown in Figure 13.
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5.5. Result Discussion

The performance of all the designed and implemented sentiment analysis techniques on
multi-domain datasets is shown in Figure 14 along with the Table. As shown in Figure 14, the WCSL based
sentiment classification obtained the best performance on Kitchen review dataset; the HRPL-SL achieved
the best performance on Books and DVD datasets; and the ASCT-SL achieved the best performance on
Electronics and Movie review datasets, while the performances of ST-SL and AST-SL on multiple domain
datasets were satisfactory. Further, the CF-based on simple majority voting improved the classification
performance. In this approach (CF), we combined the classification predictions from all the sentiment
learners on test datasets using majority voting and determined the final sentiment orientation for each
review text in the test datasets.Appl. Sci. 2020, 10, x FOR PEER REVIEW 24 of 29 
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5.6. Performance Comparison with State-of-the-Art Methods

In order to show the effectiveness of our proposed approach, we compared it with the following
state-of-the-art methods for textual sentiment classification.

Active deep network (ADN) [41]: ADN is a semi-supervised learning method which exploits the
embedding information from the huge amount of unlabeled data together with a small number of
labeled data for review sentiment classification.

Dual-view co-training [31]: A dual-view co-training method, which makes use of the original
and antonymous views in pairs, in the training, bootstrapping and testing process, all based on a joint
observation of two views for semi-supervised sentiment classification.

Self-training-S [61]: A self-training approach in which multiple feature subspace-based classifiers
are used to explore a set of good features and select informative samples for automatic labeling. In this
approach, the top two informative samples are selected for manual annotation in each iteration.

LCCT [37]: A semi-supervised model based on lexicon and corpus-based co-training for
sentiment classification.

CASCT [29]: A co-operative hybrid semi-supervised learning for text sentiment classification
Figure 15 along with table shows sentiment classification performance of LESSA against

state-of-the-art approaches. It is clear that our proposed approach LESSA achieved the highest
performance in terms of accuracy on the multi-domain datasets. There are many reasons for the
high performance of the proposed approach as compared to other approaches. The first reason for
achieving the highest performance of the proposed SA framework is the construction of high-quality
wide-coverage sentiment lexicons, leveraging linguistic and semantic knowledge. The second reason
is the selection of most representative instances for the initial training set. The third reason is
training high-quality data with semi-supervised techniques, considering both the most informative
and high-confident examples. The fourth reason is the removal of noisy and redundant features from
the text data during pre-processing. The fifth reason is the extraction and selection of sentiment bearing
words from textual data in each iterative round during sentiment classifier learning. The sixth reason
is the prediction of final sentiment orientation based on classification fusion.
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6. Conclusions

A massive amount of unstructured textual data in the form of users’ reviews is available online.
This unstructured data contains beneficial information for business analysis and decision making. SA is
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an influential research area, which aims to classify online user’s reviews into positive and negative
classes. In this context, diverse techniques such as SML, SSL and LS for textual sentiment classification
have been proposed. The main difficulty in SML approach is the absence of enough labeled training
data for heterogeneous domains. SSL approaches for textual sentiment classification have improved
their performance while suffering from research challenges, whereas, most of the SSL approaches
could not identify efficaciously important concealed information in the unstructured data. Moreover,
the most significant sentiment feature extraction and selection are not handled successfully. Noisy
and redundant features are also ignored in the textual data. Many of them randomly selected initial
training set for first classifier training. Besides, the lexicon-based approaches for textual sentiment
classification need improvement. In order to tackle and investigate such concerns, we propose a novel
unified sentiment analysis framework, which we call “LeSSA” for textual sentiment classification.
LeSSA is a novel framework, which has been designed for multi-domain sentiment classification.
LeSSA is applicable to heterogeneous domain sentiment classification. LeSSA predicts the accurate
sentiment label for the unseen textual reviews. A number of experiments were performed to validate
the usefulness of LeSSA. The experimental results on multi-domain benchmark datasets show that
LeSSA outperforms existing SSL, lexicon-based and hybrid approaches. In future work, we will
incorporate other techniques, such as deep learning and linear discriminate analysis for testing LeSSA.
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the idea; devised, designed and accomplished all the experiments and wrote the paper.
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