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Abstract: This paper provides virtual inertia and mechanical power-based double synchronous
controller (DSC) for power converters based on the d- and q-components of the converter current to
assure the stable operation of the grid with the penetration of large-scale renewable energy resources
(RERs). The DSC is projected based on emulating both the inertia and mechanical power variables
of the synchronous generators (SGs), and its performance is compared with a non-synchronous
controller (NSC) that is without these emulations. The main contributions of the DSC are providing
a large margin of stability for the power grid with a wide area of low and high values of virtual inertia,
also improving significantly power grid stability (PGS) with changing properly the embedded virtual
variables of inertia, mechanical power, and also mechanical power error. Also, decoupling features of
the proposed DSC in which both d and q components are completely involved with the characteristics
of SGs as well as the relationship between the interfaced converter and dynamic models of SGs
are other important contributions of the DSC over the existing control methods. Embedding some
coefficients for the proposed DSC to show its robustness against the unknown intrinsic property of
parameters is another contribution in this paper. Moreover, several transfer functions are achieved
and analyzed that confirm a more stable performance of the emulated controller in comparison with
the NSC for power-sharing characteristics. Simulation results confirm the superiority of the proposed
DSC in comparison with other existing control techniques, e.g., the NSC techniques.

Keywords: renewables; non-synchronous controllers; stability of the grid; virtual inertia

1. Introduction

Renewable Energy Resources (RERs) have experienced more than 30% growth area in new
electricity networks compared with the growth of fossil fuel-based power production [1,2]. The lack
of inertia in the structure of converter-based generators increases the negative impacts on the stable
operation of the power grid [3–5]. Many applications related to RERs have been addressed in
recent references such as hybrid microgrid [6], stand-alone microgrid [7], smart residential user [8,9],
and energy hub [10]. In this route, control of power converters in microgrid structures is an important
issue regarding large shares of RERs along with highly controllable power processors based on power
electronics [11]. To deal with the unstable behaviors of the grid due to the renewables integration
at a large scale, several solutions have frequently been considered in the literature that are the
reactive power compensation-based controllers [12,13], the distributed energy storage systems [14–17],
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emulated synchronous generator (SG)-based control strategies [18,19], and the demand response from
thermostatically controlled loads [20,21].

Among these solutions, imitating the characteristics of the synchronous generators, i.e., inertia and
mechanical power, can provide a wide stability margin for voltage magnitude and frequency of power
grid under high penetration of RERs [22]. In order to reach a stable operation for the multi-virtual SG
microgrid in transient operating conditions, the voltage angle deviations (VADs) of generators with
respect to the angle of the center of inertia are designed [23]. Also, particle swarm optimization is used
to set virtual SG parameters for obtaining a smooth transition after a change or disturbance as well as
maintaining the VADs of generators within a specific limit.

In [24], two features of SG, i.e., the inertia and the damping power, have been placed in the
proposed controller to regulate the frequency amplitude and the power flow from the energy storage
system and also the optimization of control parameters have been continuously executed through
a self-tuning algorithm. For a voltage source converter used in HVDC, a synchronous generator
emulation-based control technique has been proposed in [25] that has been placed in two inner and
outer control loops. A comprehensive virtual SG control strategy was proposed in [26] for the full
converter wind turbine along with a multilevel storage system that leads to operating under both
grid-connected and stand-alone modes. The emulation of the behaviors of the SG for the control of
a voltage source converter in both transient and steady-state operating conditions is considered in [27].
In that paper, two hysteresis current controllers, i.e., standard and space vector-based, are introduced
for a virtual SG-based current controller in real-time [27]. In [28,29], evaluations based on the frequency
domain transfer functions have been presented to verify the operation of SGs-based control techniques.

This paper presents a new control strategy, i.e., the double synchronous controller (DSC) for
the integration of large scale RERs into the power grid through the power electronics converters.
The performance of the DSC is compared with a non-synchronous controller (NSC), which is not
included by any emulation which has not been investigated in other related works of the authors
in [30–36]. The main contributions of proposed DSC over existing methods can be stated as (1) more
comprehensive relationship between interfaced converter and SGs dynamic models, (2) a more
decoupling feature for both d and q components, (3) those components are completely involved with
the SG’s characteristics, (4) robustness feature against the unknown intrinsic property of parameters,
and (5) more detailed features of the SGs are contributed to provide appropriate virtual inertia.
In addition, regarding the mentioned contributions of this manuscript, the robustness features and
error curves have not been paid attention in previous works of the authors in [30–36].

The rest of this paper is organized as follows. The problem statement is defined in Section 2,
and the DSC and the NSC controllers are proposed in Section 3. In Section 4, the NSC and DSC active
and reactive error curves are presented. Section 5 is allocated to analyzing the power-sharing capability
issue. The angular frequency error evaluation is accomplished in Section 6. Finally, simulations results
are presented in Section 7, and the conclusions are drawn in Section 8.

2. The Problem Statement

Figure 1 shows the basic system for a large-scale interconnection of renewable energy resources
into the power grid. Three power sources except for the power grid can be seen where each source has
its obligations to produce the required active and reactive power.

Based on the connected loads at the PCC, SG, a controlled interfaced converter empowered
by RER and just-feeding interfaced converter empowered by RERs, should generate specific power.
The problem is that a sudden connection or disconnection of just-feeding interfaced converter RERs
may occur and lead to instability for the grid frequency and voltage magnitude because of a lack of
sufficient inertia in the control-based interfaced converter. However, the SG may have good response
due to its inherent inertia; but the grid might totally become unstable. To deal with this problem,
the proposed controller of the interfaced converter should emulate the inherent features of SG to
show acceptable and fast damping responses to any unexpected high penetration of just-feeding RERs.
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The just-feeding RERs are assumed to produce only constant active and reactive power with no change.
As the limitation of the system shown in Figure 1, both an interfaced converter and grid can maximally
generate a nominated power.
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Considering two PI controllers for (3) to compensateboth active and reactive power errors,
the proposed NSC can be as displayed in Figure 2. The proposed NSC is only dependent on the power
and other specifications of the interfaced converter along with its related compensators.
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By accurately analyzing (8), the proposed DSC can be achieved as depicted in Figure 3. Based on
the aforementioned points, the coefficients of low pass filter (LPF) and compensators can be driven as:

kpp = ω∗ J, kip =
P∗m − P∗

ω∗
, kpq = ω∗ JP∗/Q∗

kiq =
(P∗m − P∗)P∗

ω∗Q∗
, ω1 = 1/ω∗ J, ω2 =

P∗m − P∗

ω∗2 J

(9)

As it can be understood from (9), all the controller and compensator coefficients are related to
other parameters of interfaced converter and SG. As a result, the change of virtual inertia J can be
used to tune the controller coefficients in DSC. The coefficients α1, α2, β1, and β2 as well as the NSC
coefficients can be tuned through the trial-error method. The proposed DSC has all features of SG
in both its components of controller, and consequently, it can lead to a controller with adjustable
inertia effect and faster dynamic response with more effective virtual mechanical variables. In addition,
the coefficients α1, α2, β1, and β2 are the control factors of the proposed DSC that can provide two
decoupled closed-loop controllers. The current control-based dynamic of the proposed DSC is shown
as a low pass filter of 1/((L/R) s + 1) used at the end of Figure 3. It should be noticed that two
coefficients, β1 and α2, can be used to eliminate the problem relating to the unknown intrinsic property
of the parameters.
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4. The Comparison of the NSC and DSC Active and Reactive Power Error Curves

In this section, two active and reactive power error curves are achieved for both NSC and DSC to
analyze the related power errors and its stable operation. By applying small-signal linearization to two
first terms of (2), it can meet:
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By combining (10) and (11), the error curve of the NSC’s active and reactive power are given as,
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aNSC =

(∆ωP∗L−R∆uqP∗c1 −Ru∗q∆Pc1 + R∆Pdq

2ω∗L

)
bNSC =

(∆ωLQ∗ −R∆udP∗c1 −Ru∗d∆Pc1 + R∆Pd

2ω∗L

)

RNSC =

√√√√√√√√√√√√√√
(∆ωLQ∗ −R∆udP∗c1 −Ru∗d∆Pc1 + R∆Pd

2ω∗L

)2

+(∆ωP∗L−R∆uqP∗c1 −Ru∗q∆Pc1 + R∆Pdq

2ω∗L

)2

(13)

The error curve for the DSC’s active and reactive power is given as (14),

(∆P + aDSC)
2 + (∆Q + bDSC)

2 = R2
DSC (14)

The radius and center parameters of the DSC error curve are specified as,

RDSC =

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

(
(P∗m − P∗)LQ∗∆ω−ω∗LQ∗∆Pm −Rω∗2 J∆ωQ∗ −ω∗3 JP∗L∆ω

2ω∗LQ∗

)2

+

(
Lω∗P∗∆Pm −ω∗3 J∆ωLQ∗ − LP∗(P∗m − P∗)∆ω+ω∗2 JP∗R∆ω

2LQ∗ω∗

)2

+


ω∗ JLQ∗2∆ω2

−ω∗ JP∗c1Q∗R∆ud∆ω−ω∗ JQ∗Ru∗d∆Pc1∆ω

+ω∗ JQ∗R∆Pd∆ω+ω∗ JP∗2L∆ω2

−ω∗ JP∗RP∗c1∆uq∆ω−ω∗ JP∗Ru∗q∆Pc1∆ω+ω∗ JP∗R∆Pdq∆ω


Q∗L

aDSC =

(
(P∗m − P∗)LQ∗∆ω−ω∗LQ∗∆Pm −Rω∗2 J∆ωQ∗ −ω∗3 JP∗L∆ω

2ω∗LQ∗

)
bDSC =

(
Lω∗P∗∆Pm −ω∗3 J∆ωLQ∗ − LP∗(P∗m − P∗)∆ω+ω∗2 JP∗R∆ω

2LQ∗ω∗

)

(15)

By noticing the error curve parameters of the DSC active and reactive power in (15), this point can
be understood that both centers coordinate and radius are dependent on the angular frequency error
and mechanical power error.
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For the same error values of all state variables in both the NSC and the DSC error curves given
in (12) and (14) respectively, two curves are drawn in Figure 4. As can be seen, the NSC error curve is
much larger than the DSC one. Thus, it is verified that using the NSC can lead to larger values for the
active and reactive power error. In other words, the employed characteristics of SG in DSC can force
the interfaced converter to generate the required active and reactive power with a significant smaller
errors related to the NSC. The virtual mechanical power error modifications can affect the DSC error
curve, according to Figure 5. Selecting various values for virtual inertia can make the DSC error curve
to be altered, according to Figure 6.
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5. The Power Sharing Capability

In this section, the mathematical representations of the NSC and the DSC closed-loop models,
given in Figures 2 and 3, respectively, are considered to analyze the ability of these controllers at
tracking the reference values of active and reactive power. By referring to Figure 2, the relation between
active and reactive power and their reference values for the NSC can be:

P
P∗

=
kpps + kip

(L/R)s2 +
(
1 + kpp

)
s + kip

(16)

Q
Q∗

=
kpqs + kiq

(L/R)s2 +
(
1 + kpq

)
s + kiq

(17)

Also, by using Figure 3, the relationship between active and reactive power and their reference
values for the DSC can be achieved as (18) and (19):

P
P∗

=



kppα1(L/R)s4 +
[(

1 + β2kpq
)
kppα1 + (L/R)

(
kipα1 + kppω2α1

)
− (L/R)ω1kpp

]
s3

+


β2kiqkppα1 +

(
1 + β2kpq

)(
kipα1 + kppω2α1

)
+

(L/R)kipω2α1 + β2ω1Q∗(L/R)β1kpq −
(
1 + β2kpq

)
ω1kpp − (L/R)kipω1

s2

+


β2kiq

(
kipα1 + kppω2α1

)
+

(
1 + β2kpq

)
kipω2α1

+β2ω1Q∗(L/R)β1kiq − β2kiqkppω1 −
(
1 + β2kpq

)
kipω1

s+
β2kiqkipω2α1 − kipβ2kiqω1



(L/R)2s5 +
((

1 + β2kpq
)
(L/R) + (L/R)(1 + (L/R)ω2) + (L/R)kppα1

)
s4

+


β2kiq(L/R) +

(
1 + β2kpq

)
(1 + (L/R)ω2) + (L/R)ω2 +

(
1 + β2kpq

)
kppα1+

(L/R)
(
kipα1 + kppα1ω2

)
− (L/R)ω1kpp

s3

+


β2kiq(1 + (L/R)ω2) +

(
1 + β2kpq

)
ω2 + β2kiqkppα1+(

1 + β2kpq
)(

kipα1 + kppα1ω2
)
+ (L/R)kipα1ω2+

β2ω1Q∗(L/R)β1kpq −
(
1 + β2kpq

)
ω1kpp − (L/R)ω1kip

s
2

+


β2kiqω2 + β2kiq

(
kipα1 + kppα1ω2

)
+(

1 + β2kpq
)
kipα1ω2 + β2ω1Q∗(L/R)β1kiq

−β2kiqkppω1 −
(
1 + β2kpq

)
ω1kip

s
+β2kiqkipα1ω2 − β2kiqω1kip



(18)

Q
Q∗

=
β2

(
kpqs + kiq

)
(L/R)s2 +

(
1 + β2kpq

)
s + β2kiq

(19)
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The Bode diagrams of Figure 7 ascertain more the aforementioned points. Notably, the angles of
the DSC transfer functions for both active and reactive power are nearly equal to zero. However, this
angle is about eight degrees for both active and reactive power of the NSC that leads to a decrease the
precise performance of the NSC.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 19 
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Figure 7. The Bode diagrams of: (a) P/P* and (b) Q/Q* of the NSC and the DSC.
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Choosing various values for virtual inertia can impact on the performance of the power-sharing of
the DSC that is investigated in this section. By considering the conditions of J1 > J2 > J3 > J4, the Nyquist
diagrams of P/P* and Q/Q* for the DSC are plotted, as shown in Figure 8.

It can be seen that the ability of the DSC to track the reference value of active power is noticeably
decreased as the virtual inertia decreases. The negative effect of decreasing virtual inertia is more for
reactive power, as shown in Figure 8b.
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The parameters in (21) are given at the footnote of the previous page. By noticing (21) and (22), 
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6. Angular Frequency Error Evaluation

The other important issue related to the high penetration of renewable energy resources into the
power grid is that how much the active and reactive power sharing can affect grid frequency regulation
and vice versa. To accomplish an accurate analysis, this section is focusing on this issue. By using
the two first terms of (2), the relationship between the angular frequency error and both active and
reactive power error of the NSC can be achieved as:

∆ω =


∆Q2 +

(
−R∆udP∗c1 −Ru∗d∆Pc1 + R∆Pd

ω∗L

)
∆Q

+∆P2 +

(
−R∆uqP∗c1 −Ru∗q∆Pc1 + R∆Pdq

ω∗L

)
∆P


−

(LQ∗∆Q + P∗L∆P
ω∗L

) (20)

By accomplishing the same process for (14) and (15), the relation between the angular frequency
error and both active and reactive power errors of DSC are given by:

∆ω =

√
(ϑ(∆P, ∆Q))2 + ρ2∆P2 + ρ1∆P + σ2∆Q2 + σ1∆Q

+ϑ(∆P, ∆Q)
(21)

ϑ(∆P, ∆Q) =


Q∗ω∗2 JR∆udP∗c1 + Q∗ω∗2 JRu∗d∆Pc1 −Q∗ω∗2 JR∆Pd + (P∗m − P∗)LQ∗ −Q∗ω∗2 JR−ω∗3 JP∗L∆P+

−

(
ω∗3 J

)
LQ∗∆Q− LP∗(P∗m − P∗)∆Q +ω∗2 JP∗R∆Q +ω∗2 JP∗RP∗c1∆uq +ω∗2 JP∗Ru∗q∆Pc1 −ω∗2 JP∗R∆Pdq


2
(
LQ∗ω∗

(
−(ω∗ J)Q∗ −

(
ω∗ JP∗2

Q∗

)))

ρ2 =
1(

(ω∗ J)Q∗ +
(
ω∗ JP∗2

Q∗

)) , ρ1 =

 ∆Pm(LQ∗ω∗)

LQ∗ω∗
(
−(ω∗ J)Q∗ −

(
ω∗ JP∗2

Q∗

))
, σ2 =

1(
(ω∗ J)Q∗ +

(
ω∗ JP∗2

Q∗

)) , σ1 =

(
Lω∗P∗∆Pm

LQ∗ω∗
)

(
(ω∗ J)Q∗ +

(
ω∗ JP∗2

Q∗

))
(22)

The parameters in (21) are given at the footnote of the previous page. By noticing (21) and (22),
it can be clearly seen that the angular frequency error is highly dependent on the values of the SG
features, i.e., the virtual inertia, the mechanical power reference, and also the virtual mechanical power
error. Thus, in the same operating conditions considered for the NSC and the DSC, the SG features can
be regulated in order to decrease the angular frequency error as much as possible.

By the use of (20)–(22), the angular frequency error curves based on the active and reactive power
error of the NSC and the DSC are drawn in Figure 9. According to Figure 9b, the simultaneous changes
of the active and reactive power error can lead to the smaller angular frequency error compared to the
NSC, as shown in Figure 9a. These results are achieved based on considering the same values for the
same variables and parameters used in (20)–(22). Consequently, it can be understood that the better
results of the proposed DSC are due to the embedded SG features. In further analysis of the DSC basic
operation, the effects of the simultaneous changes of the angular frequency and virtual mechanical
power error on active and reactive power errors of the DSC are shown in Figure 10. As can be seen,
the smallest circle is driven though the smallest values of the angular frequency and virtual mechanical
power error. On the other hand, the largest values of both angular frequency and virtual mechanical
power error can lead to the worst response for the active and reactive power errors of the DSC, which
is much more critical compared to the critical one in Figure 5.
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7. Results and Discussion

Performance of both proposed control techniques, i.e., DSC and NSC, are compared in this section
in MATLAB/SIMULINK environment to evaluate their operations in both steady-state and dynamic
operating conditions. The parameters of the simulation are given in Table 1. Figure 11 shows the
general structure of the grid under the high penetration of RERs through interfaced converters.
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Table 1. Simulation Parameters.

Parameter Value Parameter Value

dc-link Voltage (vdc) 850 V J1 1e3 s

Phase ac voltage 220 V Pm 3.3 kW

Fundamental frequency 50 Hz P 3 kW

Switching frequency 10 kHz Q 2 kVAr

Interfaced converter resistance (R1) 0.1 Ohm Interfaced converter inductance (L1) 45 mH

Interfaced converter resistance (R2) 1 Ohm Interfaced converter inductance (L2) 15 mH

7.1. Dynamic Analysis of the DSC vs. the NSC

Firstly, supplying a 3kW + j2kvar grid-connected load is performed by the NSC and DSC-based
converter RERs. Then, a sudden disconnection of the PV sources with 4kW + j3KVar happens at
the PCC at t = 0.1, which is not instantaneously supplied by the DSC and the NSC until t = 0.25 s.
After that, at t = 0.25, both the DSC and the NSC start their responsibilities toward the power grid
stability. In this sub-section, three RERs as power converter-based PV sources are used.

In this operating condition, the grid frequency of both the DSC and the NSC can be seen in
Figure 12a. After a load increment at t = 0.1 s, the DSC does not allow the grid frequency to have
more overshoot than the NSC, as depicted in Figure 12a. It happens for the dynamic response of the
DSC and the NSC grid frequency when both the proposed controllers operate at t = 0.25 s, according
to Figure 12a.

The grid voltage magnitude due to the DSC and the NSC during this dynamic condition can be
observed in Figure 12b. As can be seen, the high damping properties of the DSC can help the grid
voltage not to see any significant drop, especially, compared with the NSC. It causes a grid voltage
magnitude of the DSC to be kept in an acceptable region. Also, the DSC is able to present a fast-dynamic
response in its operation time at t = 0.25 in which the grid voltage magnitude will follow its reference
value with a slight transient response. Furthermore, the NSC does not have a fast-dynamic response in
comparison with the DSC, and also it is not able to reach its desired value after t = 0.25 s, as shown
in Figure 12b.
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7.2. Impacts of Virtual Mechanical Power Error (VMPE) on Operation of the DSC

Selecting different values of VMPE in the DSC can affect the power grid stability. Figure 13
shows the grid frequency and the grid voltage magnitude of the DSC under three low, high, and very
high values of VMPE. As can be seen in Figure 13, for the low values of the VMPE, accurate results
are achieved for both state variables. According to Figure 13a,b, the unstable behaviors of the grid
frequency and grid voltage magnitude reactions for these very high values of VMPE are obvious.
Simulation results demonstrated that the VMPE and inertia effectively impact on the operation of the
DSC. Also, for high values of VMPE, both steady-state and dynamic responses of all state variables can
follow their desired values with a different margin that generally is superior for the DSC compared
with the case due to various values of virtual inertia.
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7.3. Impacts of Parameter Variations on Operation of the DSC and NSC

Some variations on parameters R and L are considered at t = 0.15 s. It can be seen from Figure 14
that no significant changes happen on grid frequency and voltage magnitude when the proposed
DSC is employed to the grid-connected interfaced converter. Also, by noticing to Figure 14, it can be
understood that the proposed DSC has a significant superiority in both steady-state and transient
operating conditions under the parameters variations in comparison with the performance of the NSC
in the same operating conditions.
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8. Conclusions

A double synchronous controller (DSC) was projected for the interfaced converters between
renewable energy resources (RERs) and the power grid. The proposed controller is based on the
emulated features of SGs, i.e., inertia, virtual mechanical power reference, and virtual mechanical
power error, to guarantee the stable operation of the power grid under high penetration of RERs. Using
a more comprehensive relationship between the interfaced converter and SGs dynamic models along
with more detailed features of SGs have been major contributions of the proposed DSC in comparison
with other similar existing methods. Other contributions have been to provide more decoupling
features for both d and q components that are completely involved with SGs characteristics as well
as robustness against the unknown intrinsic property of parameters. The operation of the proposed
DSC has been compared with a non-synchronous controller (NSC) to confirm the high performance of
the DSC in the control of the interfaced converters in the power system. Moreover, a comprehensive
stability analysis of the DSC power sharing capability along with its flexible regulation of both grid
frequency and voltage magnitude has been executed. Obtained results confirm that the proposed DSC
can behave as a power electronics-based synchronous generator for the integration of large-scale RERs
into the power grid.
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Nomenclatures

Abbreviation
RERs Renewable Energy Resources
VMP Virtual Mechanical Power
DSC Double Synchronous Controller
SG Synchronous Generator
DESS Distributed Energy Storage System
VSM Virtual Synchronous Machine
PV Photovoltaic
PCC Point of Common Coupling
LPF Low Pass Filter
Variables
idq Currents of Converter in dq reference frame
vdq Voltages at PCC in dq reference frame
vdc dc-Link Voltage
udq Switching Functions
idc dc-Link Current
P The Active Power of an interfaced converter
Q The Reactive Power of interfaced converter
Pc2 dc-Link Current Based Power
Pd d-Component Power
Pdq Combined Power
Pm Mechanical Power
ω Angular Frequency
∆P Active Power Error
∆Pm VMP Error
∆ω Angular Frequency Error
∆Q Reactive Power Error
P* Reference Active Power
Pm* Reference VMP
ω* Reference Angular Frequency
Parameters
L The Inductance of an interfaced converter
R The Resistance of interfaced converter
C DC-Link Capacitor
J Virtual Inertia
ω1,ω2 LPF Coefficients
kpp, kip The Controller Coefficients of Active Power Component
kpq, kiq The Controller Coefficients of Reactive Power Component
α1(2), β1(2) Decoupled Factors of Closed- Loop Descriptions
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