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Abstract: The simplicity and excellent dynamic performance of Direct Torque Control (DTC) make
Induction Motor (IM) drives attractive for many applications that require precise torque control.
The traditional version of DTC uses hysteresis controllers. Unfortunately, the nature of these
controllers prevents the optimization of the inverter voltage vectors inside the flux hysteresis band.
The inverter voltage vector optimization can produce fast torque response of the IM drive. This
research proposes two torque optimization methods for IM systems utilizing DTC. Analysis and
Matlab simulations for the proposed optimization methods prove that the torque and, consequently,
the speed responses, are greatly improved. The performances of the drive system controlled by
the proposed optimization methods and the traditional DTC are compared. Conversely, the effects
of the parameters on the proposed optimization methods are introduced. The proposed methods
greatly improve the torque and speed dynamic performances against the traditional DTC technique.
However, one of the proposed optimization methods is more sensitive to IM parameter variations
than the other.

Keywords: induction motor (IM); direct torque control (DTC); voltage vector; optimization

1. Introduction

There are many applications that require high-performance Induction Motor (IM) drives such as
electric vehicles, mine winders, high-speed elevators, machine tools, and other more sophisticated
machines. These applications usually need speed–accuracy ≤0.5%, no less than 20:1 of wide-range
speed control, and a speed transient response ≥50 rad/s [1–4]. Fast, transient response and accurate
torque control are key to achieving a high-performance drive.

Three decades ago, direct torque control (DTC) was deemed the simplest, most accurate, and fastest
torque control method for IM drives [5]. Additionally, the DTC algorithm does not depend on motor
parameter variations [6,7]. Nevertheless, conventional DTC has the main disadvantage of having a wide
band of inverter switching frequency, despite constant torque and flux [8]. The nature of hysteresis
controllers has caused this wide inverter switching frequency to occur when being used for flux and
torque. The introduction of techniques using constant sampling helped to lead to the advancement of
the DTC concept. Therefore, these techniques have replaced conventional analog hysteresis controllers.
Accordingly, the inverter upper switching frequency is restricted. Different additions and changes to
the concept and theory of DTC regarding constant sampling frequency have been proposed by many
authors [9–13]. The fast torque response was not considered by these researchers Kumar and Zaid [14,15].
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There have been recent efforts to support the torque response of DTC in IM drives. Lascu [16]
introduces a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback
linearization and sliding-mode control (SMC). It is a useful and simple methodology, but has many
disadvantages such as torque vibrations, huge chattering, and sonic noise Ammar [17] obtains an
enhancement of SVM–DTC algorithm performance. This occurs when the super twisting, sliding
mode speed controller is used rather than the PI speed controller. The optimal design selection of
voltage vectors based on a fuzzy controller is introduced by Sudheer [18]. Nevertheless, the algorithm
shows a 43% decrease in torque ripple compared to discrete SVM–DTC [19]. An optimized dynamic
over-modulation approach is suggested by Jidin [20] to achieve a fast torque response, which decreases
the response time. The downside of this approach is a poor flux response and increased harmonic
content due to the use of the over-modulation procedure. The model predictive control approach
has been applied to IM drives with the help of DTC principles [21–23]. The basic concept of a model
predictive control is to calculate the suitable inverter voltage vector by utilizing a predefined cost
function. Though this approach successfully reduces the ripples in flux and torque, as well as the
switching losses of the inverter, it requires a high computation time [24]. Moreover, it shows a
negligible improvement in the system dynamics and an increase in the motor parameter’s dependency.
Artificial intelligence approaches have been applied to the DTC of IM drive systems [25–27] and
adjusted hysteresis band techniques have been implemented for the DTC of IM drives [28].

It is well known that the optimal selection of the voltage vector has proven to provide a fast torque
response for the IM drive [29]. Here, two optimization methods that modify the variable frequency
DTC are introduced and compared. The proposed methods greatly improve the torque and speed
dynamic performance against the traditional DTC technique. The methods involve constant sampling
of the DTC and optimization for a fast torque response. Finally, the two proposed methods are derived,
simulated using Matlab, and compared to the conventional DTC method. A new control algorithm is
established to deliver a fast torque response and the effects of the motor parameter variations on the
optimization processes are studied. The results prove that the torque optimization Method (2) does
not depend on any parameters of the IM. The drive system gives typical performances and simulation
results as Method (1) as those obtained with Method (2). It is concluded from the simulations that the
speed responses of the proposed methods are better than the traditional due to lower settling time
(12% improvement in some situations).

The paper is prepared as follows: Section 2 describes the IM torque response optimization.
The torque optimization Method (1) and Method (2) are presented in Sections 2.1 and 2.2, respectively.
Section 2.3 discusses IM parameter uncertainty effects on the torque optimization Method (1).
The system controllers are explained in Section 2.4. Section 3 provides a detailed discussion of
the simulation results and Section 4 shows the net conclusions of the paper.

2. IM Torque Response Optimization

Both motor torque and stator flux are controlled by a hysteresis controller in traditional DTC to
guarantee and secure proper operation under the hysteresis band, as seen in Figure 1. Although it is a
simple controller, it has many disadvantages such as variable frequency switching and low efficiency.
Another disadvantage is the lack of voltage vector optimization within the hysteresis band. The origin
of this problem comes from the hysteresis controller’s nature. The hysteresis controller always chooses
the previous selection within the hysteresis band [30], as indicated in Figure 1. This performance causes
a weak point for the hysteresis controller when operating in discrete systems. To improve hysteresis
controller performance, an optimization technique must be employed to elevate the drawback. To get
a fast torque response of the IM, the optimization technique must focus on selecting the voltage vector
that provides a maximum torque rate. The first step in the optimization procedure is the generation of
the torque rate equation as a function of the stator voltage vectors. The second step is the optimization
of the stator voltage vectors to produce the maximum rate of torque. However, the optimization
process can be performed using the two methods discussed in the following sections.
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Figure 1. The effect of voltage vector selection on the flux vector trajectory in the hysteresis band region.

2.1. Torque Optimization Method (1)

Considering Figure 2, the IM flux vectors, stator (λs) and rotor (λr), are indicated. The applied
stator voltage vector (Vk) is defined as follows:

Vk = V < θk (1)

where (θk) is the angle of the voltage vector, (k) is the order of the voltage vector, and (V) is the inverter
DC link voltage. Typically, the rotor time constant of IM is relatively large compared to the stator time
constant [31]. Hence, the rotor flux vector is supposed to revolve with constant amplitude and speed
through the changes of the stator variables [8]. The equation of the flux vector of the rotor may be
represented by:

λr = λr∠(ωt + θro) (2)

where (ω) is the rotor flux angular speed. Suppose that the stator flux vector initial value (λo) is given by:

λs
∣∣∣
t=0 = λo = λo∠θo (3)
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Assuming that the stator resistance is neglected, the stator voltage is related to the stator flux by:

Vk =
dλs

dt
(4)

Solving Equation (4) for the stator flux, we get:

λs = Vkt + λo (5)

According to Equation (5), the stator flux vector tip moves in a direction parallel to the selected
voltage vector. Hence, the trajectory of the stator flux can be directed by the selected voltage vector,
as shown in Figure 1. The torque equation of the IM is specified by the following:

T = kc·Im
{
λsλ

∗

r

}
(6)

where (kc) is the torque constant. The time rate differentiation of Equation (6) is:

dT
dt

= kc·Im

dλs

dt
λ
∗

r + λs
dλ
∗

r
dt

 (7)

Incorporating Equations (2) and (5) provides the following: dλ
∗

r
dt = − jωλ

∗

r
dλs
dt = Vk

(8)

Therefore, substituting Equation (8) into Equation (7), the equation is as follows:

dT
dt

= kc·Im
{
Vkλ

∗

r − jωλsλ
∗

r

}
(9)

when substituting Equation (5) into Equation (9), the equation is as follows:

dT
dt

= kc·Im
{
(Vk − jω

(
Vkt + λo

)
)λ
∗

r

}
(10)

Solving for the imaginary part and substitute with t = 0 (the time of checking for the optimum
voltage vector) to obtain the following:

dT
dt

= kcλr[Vsin(θk − θro) −ωλocos(θk − θro)] (11)

Using math operations and assuming that V, λo, and ω are considered constants during the
optimization process, Equation (11) can be reduced to:

dT
dt

= k∗sin(θk − θro − θx) (12)

where k* and θx are constants. Finally, the voltage vectors selection will be governed by Equation (12),
which will optimize the selection to the vector that gives quick torque response. The optimization
function ( f ) may be written as:

f = max
k

[sin(θk − θro − θx)] (13)

The main disadvantage of this method is the requirement to determine the rotor flux angle (θro).
A rotor flux observer must be adapted to determine θro. Unfortunately, this requirement utilizes some
parameters of the IM that may change with the operating conditions. A discussion of the parameter
variations’ effects on this method of optimization is found in the following section.
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2.2. Torque Optimization Method (2)

Since optimization Method (1) depends somewhat on motor parameters, it is better to improve it
by omitting the dependence on motor parameters. The torque rate relationship in Equation (12) will be
re-derived and adapted to be parameter independent. The derivation is as follows:

The IM torque equation may be written as:

T = C1Im
{
λ
∗

sIs
}

(14)

where (C1) is a constant and (Is) is the stator current vector. Hence, the time rate differentiation of
Equation (14) is:

dT
dt

= C1·Im

dIs

dt
λ
∗

s + Is
dλ
∗

s
dt

 (15)

But, if:

λs =

∫ t

0
(Vk −RsIs)dt + λo (16)

then:
dT
dt

= C1·Im
{

dIs

dt
(

∫ t

0
(Vk −RsIs)dt + λo) ∗+Is(Vk −RsIs)

∗

}
(17)

Substitute with t = 0 (the time of checking for the optimum voltage vector) to obtain the following:

dT
dt

= C1·Im
{

dIs

dt

∣∣∣∣∣∣
t=0
λ
∗

o + V∗k Is
∣∣∣
t=0

}
(18)

The right part of Equation (18) has two added terms. The first term is constant for all voltage
vectors and can be neglected. To optimize, Equation (18) can be reduced to:

dT
dt

= C1·Im
{
V∗k Is

∣∣∣
t=0

}
(19)

Solving for the imaginary part and substituting with t = 0 (the time of checking for the optimum
voltage vector) will obtain the following:

dT
dt

= C2sin(θis − θk) (20)

where θis is the stator current vector angle and C2 is a constant.
The optimization function ( f ) may be written as:

f = max
k

[sin(θis − θk)] (21)

Through measuring the stator currents, the angle of the stator current vector can be
determined. Hence, the optimization in Equation (21) does not require any parameter of the IM.
Therefore, the optimization is careful, simple, and robust.
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2.3. IM Parameter Uncertainty Effects on the Torque Optimization Method (1)

To discuss the effects of the uncertainty of the IM parameters on torque optimization Method (1)
that is based on Equation (13), assume that the factor (L) is given by:

L =
dT
dt

∣∣∣∣∣
k+1
−

dT
dt

∣∣∣∣∣
k

(22)

The factor (L) is a measure for the optimization between the two adjacent voltage vectors (k, k + 1)
of each sector. When the sign of (L) is positive, then the (k + 1)th voltage vector is optimum and vice
versa. Now, the sign of (L) will be checked against the IM parameter uncertainty.

Substitute Equation (12) into Equation (22) to obtain the following:

L = k∗[sin(θk+1 − θro − θx) − sin(θk − θro − θx)] (23)

Taken from the space vector relations of the inverter states, we have that (θk + θk+1= π/3) and,
using trigonometric relations:

L = k∗
[
cos

(
θk + θk+1

2
− θro − θx

)]
(24)

This means that the sign of (L) may have an error when the cosine angle becomes near the 90◦

angle and its odd multipliers. Hence, we have:

θk + θk+1

2
− θro − θx =

2n + 1
2

π (25)

where (n) is an integer.
Accordingly, the value of the factor (L) is around zero. Hence, the torque rates of the vectors are

nearly the same. Consequently, the optimization process is not valuable at these points. Typically, the
rotor angle estimation error is less than ±9%. The corresponding uncertainty change in (L) is less than
30%. However, the optimization is considered valuable when the value of (L) is larger than 50% [8].
The optimization process of Method (1) is less sensitive to the uncertainty of the IM parameters.

2.4. System Controller

A block diagram of the control system of Method (2) is shown in Figure 3. It is the same as that
of Method (1) except there is no rotor flux observer and the optimization Equation (13) is replaced
by Equation (21). The whole control system is working with digital signals and given sampling
time. The controller inputs are the measured currents and DC link voltage. Simple estimators are
implemented for the stator flux and torque. However, another estimator for the rotor flux angle is
required for Method (1). A detailed flow chart for the control algorithm of optimization Method (2) is
shown in Figure 4. The block diagram in Figure 3 represents proposed control Method (1) with the
dashed arrow for the rotor angle (θro). Additionally, the control flow chart of Figure 4 is typical for
Method (1) except for the estimator of (θro) and the optimization Equation (21).
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3. Simulation Results and Discussion

A Matlab/Simulink simulation package is utilized to simulate the IM speed-controlled drive with
the conventional DTC and the two proposed methods. The drive system has an IM of a nameplate
and circuit parameters shown in Table 1. Usually, the reference stator flux is the rated value of the IM,
which is pre-calculated from the IM parameters. The speed controller is a simple Proportional Integral
(PI) that is tuned using Nicola–Ziglar methodology. Figure 3 shows how the speed controller produces
the reference torque for the system according to the speed error—as the reference values of the stator
flux and torque are determined, the DTC algorithm starts. During this research, we compare three
DTC algorithms, the conventional DTC, the proposed optimization Method (1), and the proposed
optimization Method (2). The hysteresis tolerances of the flux and torque are 5% and 8%, respectively.

Table 1. System Parameters.

IM Rating IM Equivalent Circuit Parameters

10 KW, 6 pole, 220V, 60 Hz Rs = 0.294 Ω Lm = 0.041 H Ls = 0.0424 H λs = 0.454 Wb

Rr = 0.156 Ω Lr = 0.0417 H J = 0.4 kgm2

A simulation for proposed system with optimization Method (2) was conducted to compare with
the results of optimization Method (1). The simulation results indicate the same improvement in the
transient performance as that of Method (1), but with perfect identification of the motor parameters.
The simulation was conducted assuming that the motor parameters were constants during operation.
When there was incorrect identification or parameter changes, Method (1) performance deteriorated
while the performance of Method (2), which did not have parameters, remained unchanged. The torque
step response of Method (2) and Method (1) compared to the conventional DTC is shown in Figure 5.
It is noted that the response of Method (2) is similar to that of Method (1), except near the full load
torque. This may be due to the approximations made in Equation (13). Method (2) possesses a
significant advantage over Method (1) since Method (2) does not have any motor parameters except
for Rs. The drive system gives the same performance and simulation results with Method (1) as with
Method (2). The simulation results for Method (2) are typically the same as the results obtained with
Method (1). These results have been omitted to avoid repetition.
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The speed step responses of the conventional DTC compared to proposed Method (1), are shown
in Figure 6. The reference speed is 25% of the rated speed at full load conditions. It is concluded
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from Figure 6 that the speed response of Method (1) is better than the traditional response due to a
lower settling time (12% improvement). Figure 7 compares the tip trace of the stator flux vector of the
traditional DTC and that of proposed optimization Method (1). The stator flux trace of Method (1) is
better than the trace of the traditional DTC. Using the method of the least squares, the error in the stator
flux value for the traditional DTC is greater than the error with Method (1) by 9%. Hence, proposed
Method (1) has a better stator flux response, at steady-state, than the conventional DTC.
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Figure 7. The stator flux trace of (a) Method (1) (b) traditional DTC.

Figure 8 shows the effect of changing the controller sampling period on the inverter switching
frequency of proposed Method (1) at different operating speeds and full load conditions. It is clear
that, as the sampling frequency increases, the switching frequency increases. However, the traditional
DTC has a variable frequency. Its average value at full load conditions was nearly 200% of proposed
Method (1). Hence, the switching losses and system efficiency of the proposed systems are better
than the traditional DTC. The relationship between the IM torque error and the sampling frequency is
shown in Figure 9. The figure indicates that the torque error can be reduced by increasing the sampling
frequency. Conversely, the switching frequency will increase if the sampling is increased.

Figure 10 presents the torque steady-state error for proposed Method (1) and the traditional DTC.
The torque error of the traditional DTC is a constant compared to proposed Method (1), which is
relatively greater than that of the traditional.
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Figure 11 shows the comparison of the speed response of proposed Method (2) and the traditional
DTC at different set speed values and torque loads. Changing the set value with the PI controller gives
an unacceptable system response [32]. Hence, the PI controller is replaced by an adaptive PI controller
in this situation. Seen at all set points, there were no overshoots and no steady-state errors. The settling
time differs according to the set value. The step changes of the load torque barely affect the IM speed
due to the high performance of the adaptive controller. Figure 11 shows the response of the system
using proposed Method (2) and how the response is faster than the traditional DTC response. It is
noted that the responses may be typical at some set points. The cause of this phenomenon is that the
optimization of the voltage vector is always performed between two vectors inside the hysteresis band.
Sometimes the result of the optimization is similar to that given by the traditional DTC. This produces
the same speed response in random situations. However, the proposed methods give a response that
is equal to or faster than that of the traditional DTC.
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4. Conclusions

Two torque optimization techniques for DTC IM drives were proposed. The techniques greatly
improved the torque and speed dynamic performances against the traditional DTC technique.
Detailed discussions, comparisons, and simulations for the two proposed methods were presented.
Alternately, the uncertainty study of the IM parameters on proposed optimization Method (1) was
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parameters of the IM. The drive system gave typical performances and simulation results with Method
(1) as those obtained with Method (2). It is noted that the speed responses of the proposed methods
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optimization of the voltage vector is always performed between two vectors inside the hysteresis band.
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