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Abstract: With the development of big data, Radiomics and deep-learning methods based on
magnetic resonance (MR) images, it is necessary to conduct large databases containing MR images
from multiple centers. Having huge intensity distribution differences among images reduced or even
eliminated, robust computer-aided diagnosis models could be established. Therefore, an optimized
intensity standardization model is proposed. The network structure, loss function, and data
input strategy were optimized to better avoid the image resolution loss during transformation.
The experimental dataset was obtained from five MR scanners located in four hospitals and was
divided into nine groups based on the imaging parameters, during which 9152 MR images from
499 participants were collected. Experiments show the superiority of the proposed method to
the previously proposed unified model in resolution metrics including the peak signal-to-noise
ratio, structural similarity, visual information fidelity, universal quality index, and image fidelity
criterion. Another experiment further shows the advantage of the proposed method in increasing
the effectiveness of following computer-aided diagnosis models by better preservation of MR image
details. Moreover, the advantage over conventional standardization methods are also shown. Thus,
MR images from different centers can be standardized using the proposed method, which will
facilitate numerous data-driven medical imaging studies.

Keywords: cycle generative adversarial network; intensity standardization; magnetic resonance
imaging; resolution oriented; advanced weak-pair strategy

1. Introduction

As the most commonly used imaging method in the diagnosis of brain diseases, magnetic
resonance imaging (MRI) is one of the research hotspots of computer-aided brain diagnosis in recent
years [1]. Many magnetic resonance (MR) image based studies, such as computer aided diagnosis [2–4],
differential diagnosis [5], treatment options selection [6], and prognosis estimation [7], have made
great progress, which also put forward higher requirements for not only the quantity, but also the
quality of the image data.

To conduct a larger unified training set contains MR images obtained from different MR scanners,
the scale and intensity distribution difference of such images should be suppressed. There are already
some mature methods for solving scale inconsistency, including image slice resampling [8] and
scale-adaptive feature extraction [9]. To deal with different intensity distribution, preventing the
increasingly complex diagnostic models from being over-fitted and unstable as well as making the
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model more generalizable, there is a great need for methods to eliminate the inter-group difference by
intensity standardization, to ensure that the intensities of the same tissue type are the same in different
images. In this case, many standardized data from multiple sources can be used for model training,
and the models can be used in a wide range. To this end, many methods have been proposed, which
can be divided into three main categories: the global histogram-matching methods, the joint histogram
registration methods, and deep-learning-based methods.

The simplest method category among the three main categories is the histogram matching
methods. These methods generate a series of corresponding intensity landmarks based on the features
of the target images and the reference images, and then conduct a piecewise linear function based
on these intensity landmarks, which is treated as the transformation equation. Nyúl et al. applied
both overall and “foreground” percentile markers as intensity landmarks [10]. Collewet et al. utilized
and compared three landmark series, which contain the maximum intensity of MR images, the mean
intensity of MR images, and three sigma intensity points [11]. Madabhushi et al. employed the intensity
features extracted from the largest fuzzily connected homogenous region to avoid the influence of the
diseased tissue [12]. Sun et al. brought forward the maximum and the minimum decile along with
the mean intensity [13]. Nunzio et al. firstly formed linear transforming functions for different brain
tissues, and then built the final standardization function by joining the different transforming functions
with spline smoothness [14]. However, the robustness of such methods is not sufficient. If there
is a difference in tissue intensity relationship between the target images and the reference images,
for example, if tissues with the same intensity in the target images differ in intensity in the reference
ones, the piecewise linear function may not correctly describe the transforming function due to the
absence of the multi-modality information as well as neighborhood area information. Meanwhile,
such global transformation method is also unable to deal with spatial intensity nonuniformities due to
the radio-frequency field inhomogeneities.

The joint histogram registration methods, on the other hand, use intensities of the same spatial
location in multiple modalities among one scan as coordinates of a intensity vector and form
a multi-dimensional point cloud (i.e., the joint histogram) based on the intensity vectors with
different spatial location. Then, the elastic registration function of two point-clouds can be used
as the intensity vector mapping function between the corresponding scans. Jager et al. directly
applied the multimodality histograms to form the joint probability density functions (PDFs) [15,16].
Dzyubachyk et al. applied Jager’s method into body MRI scan and further came up with regional
equalization of the transforming function in different body parts [17]. Robitaille et al. firstly generated
the joint histogram, and then extracted a set of characteristic points for histogram matching method [18].
Our group formed the target and reference point cloud with weighted sub-region intensity distribution
instead of the joint PDFs [19,20]. These methods can better describe the transforming function but
require that the target dataset and the reference one used for training the elastic registration function
have the same multi-modality MR image data obtained from the same patient/volunteer and that
these data should be accurately registered, which is quite difficult to achieve.

To construct a generalized MR image standardization model that could transform MR images
acquired from different MR scanners and/or using different parameters, while multi-modality MR
images are not needed for training and spatial intensity nonuniformities might be eliminated with the
fusion of regional and global information, we propose a universal intensity standardization method
based on cycle generative adversarial network [21]. This method applies a many-to-one framework
with jump connections in the generators and weak-pair data augmentation strategy. This method is
able to produce proper intensity standardization results. However, the original CycleGAN is mainly
used in image segmentation as well as low-resolution image generation, while the cycle consistency is
an indirect structural similarity indicator which is easily affected by other factors and unable to remove
image blurring introduced by convolutional neural networks. Meanwhile, the weak-pair method
used in the original method does not guarantee a consistent balance of randomness and structural



Appl. Sci. 2019, 9, 5531 3 of 15

similarity when the axial density of the dataset varies. These all result in a reduced resolution of the
standardized images.

To achieve better preservation of MR image spatial resolution and generate precision standardization
results, in this paper, we propose a resolution-oriented MR image intensity standardization method to
generate MR image datasets with strong intensity and spatial uniformity. This method is based on the
cycle generative adversarial network (CycleGAN) [22] under the extended many-to-one framework.
Each generator in this framework, in particular, applies cascading residual blocks to enhance super
resolution performance. The generators also apply normalized mutual information (NMI) as a part
of the loss function, which is able to reduce and even eliminate image blurring by directly measuring
structural errors. Moreover, an advanced weak-pair data augmentation method is applied to adapt to
the varying MR image axial density.

The paper is organized as follows. Section 2 expatiates on the proposed method. The dataset and
data preprocessing steps are shown in Section 3. Section 4 describes the experiments and the results.
The discussion is presented in Section 5 and the conclusion is made in Section 6.

2. Methods

2.1. Network Architecture

Figure 1 illustrates the network architecture under the extended many-to-one framework. The aim
of the intensity standardization generator G f orward is to transform every T2-FLAIR MR image slice
xn,m, where n ∈ {1, 2, · · · , N} represents the group which the slice is from and m ∈ {1, 2, · · · , Mn} is
the slice number in the nth group, ensuring G f orward (xn,m) “seems to be” from the Nth group, which is
treated as the reference, while keeping its own structure/tissue properties. N reverse transformations
Gbackward n are established, ensuring that Gbackward n

(
G f orward (xn,m)

)
≈ xn,m, which could indicate the

preservation of image-specific structure/tissue properties. A forward discriminator D f orward and N
backward discriminators Dbackward n are also applied to form the GAN structures. Each G is optimized
in turn with the corresponding D during the training process to form the adversarial scheme so that
the intensity distribution of the generated images is gradually close to that of the corresponding
reference ones.

Figure 1. The network architecture of the proposed method. Different groups of MR images acquired
from different machines or using different acquisition parameters are standardized with a same forward
generator G f orward while the standardized images are transformed back using Gbackward n to evaluate
the information consistency.
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Each generator shown in Figure 2, in particular, consists of a convolutional concentration path,
a low-dimensional feature extraction residual convolution path, a convolutional dispersion path,
and jump connection paths. The convolutional concentration path contains a preprocessing convolution
layer and two strided convolution layers. The dispersion path contains two strided transposed
convolution layers and a synthetical transposed convolution layer. Two jump connections feed the
feature maps before and during the concentration process into the corresponding position in the
dispersion path to provide more details of input images [23].

Figure 2. The structure of the proposed generative networks. The orange arrow indicates the cascading
block in the dotted box at the bottom right of the figure. The plum arrow within the cascading block
indicates the residual block in the dotted box at the bottom left of the figure. All submodules in the
same parent module share a same set of parameters.

The low-dimensional feature extraction residual convolution path employs cascading residual
network (CARN) blocks in order to provide more “fast propagate” jump connections and acquire
multi-level representations by integrating features between layers [24]. This may significantly increase
the information richness of the generated images, thus be conducive to image resolution. Such residual
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convolution path consists of three cascading blocks. The 1× 1 convolutional layers are instantiated
after each cascading block to synthesize feature maps with fixed output channel number from all
previous cascading blocks along with the original result of the concentration path. The cascading
block consists of three residual blocks. Inside the cascading block, 1× 1 convolutional layers are also
instantiated after each residual block to build a fixed-channel intermediate feature map. A residual
block contains two 3× 3 convolutional layers, and the filter number is fixed to 256.

The discriminators are classical PatchGAN with three successive 4× 4 strided convolutions and
two synthetical convolutions. Each convolution process applies leaky rectified linear unit (LeakyReLU)
as the activation function. The discriminative feature map is 30× 30 with a single layer, which is then
used to create the final discriminative result.

2.2. Adversarial Loss and Cycle Consistency Loss

The adversarial loss is used to judge the distribution similarity between the transformed
images and the reference images. Applying least squares generative adversarial networks (LSGAN),
the forward adversarial losses is defined as

LLSGAN

(
G f orward, D f orward, Xn, XN

)
= E{xN}

[(
D f orward (xN)− 1

)2
]
+E{xn}

[
D f orward

(
G f orward (xn)

)2
]

.
(1)

In GANs, the objective of generator optimization is to “fool” the corresponding discriminator by
reducing the discriminator result gap between generated images and reference images while that of
discriminator optimization is to better distinguish the two kinds of images. Therefore, the objective
of the forward adversarial loss is min

G f orward
max

D f orward
LLSGAN

(
G f orward, D f orward, Xn, XN

)
, and that of the

backward one is min
Gbackward n

max
Dbackward n

LLSGAN (Gbackward n, Dbackward n, XN , Xn).

The forward generator and the backward one is combined to form an end-to-end structure
similar to the self-encoder. Therefore, the G f orward (xn,m) is treated as the “code”. To ensure the
preservation of image-specific feature in the “code”, cycle consistency loss is applied to compare xn,m

with Gbackward n

(
G f orward (xn,m)

)
and compare xN,m with G f orward (Gbackward n (xN,m)). Utilizing the

L1 norm, the nth cycle consistency loss function is

Lcycle

(
G f orward, Gbackward n

)
= E{xn}

[∥∥∥Gbackward n

(
G f orward (xn)

)
− xn

∥∥∥
1

]
+E{xN}

[∥∥∥G f orward (Gbackward n (xN))− xN

∥∥∥
1

]
.

(2)

2.3. Normalized Mutual Information Loss

To ensure the consistency of the morphological features and tissue characteristics between two
MR image slices, information consistency losses are applied. In particular, we apply the NMI loss as
part of the entire loss function [25] so as to ensure that the transformed image is consistent with the
target image in structure, that is, only the intensities corresponding to the tissues are about to change.
One of the NMI losses is expressed as

LNMI

(
G f orward

)
= E{xn ,xN}

H
(

G f orward (xn)
)
+ H (xN)

H
(

G f orward (xn) , xN

)
 (3)

where marginal entropies H (x) = −∑ Hist (x) log [Hist (x)], and the joint entropy H (x, y) =

−∑ JointHist (x, y) log [JointHist (x, y)]. Therefore, the NMI loss and the cycle consistency loss
are applied together to make both direct and indirect consistency measurement.
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2.4. Entire Loss Function

The entire loss function is defined as

L
(

G f orward, Gbackward n, D f orward, Dbackward n

)
= LLSGAN

(
G f orward, D f orward, Xn, XN

)
+ LLSGAN (Gbackward n, Dbackward n, XN , Xn)

+ Lcycle

(
G f orward, Gbackward n

)
+ LNMI

(
G f orward

)
+ LNMI (Gbackward n) .

(4)

Therefore, the objective of the optimization is to find the optimal G f orward and the N optimal
Gbackward n by

G f orward
∗, Gbackward n

∗

= arg min
G f orward ,Gbackward n

max
D f orward ,Dbackward n

L
(

G f orward, Gbackward n, D f orward, Dbackward n

)
.

(5)

Finally, the G f orward is used to standardize MR image slices by transforming any MR image slices
into the reference domain.

3. Data and Preprocessing

3.1. Dataset

This study was approved by the Ethics Committee of all four participating hospitals while
informed consent was obtained from every patient and volunteer.

In total, 8192 MR image slices were obtained from 489 patients and divided into nine groups
according to the different acquisition parameter used. These image slices were used to train the
proposed model. The details of the patient images are shown in Table 1. Image Groups 1–5 were from
Department of Neurosurgery, Huashan Hospital, Fudan University, the first three groups of which
were acquired with a Siemens Magnetom Verio 3.0T MRI scanner and the other two groups were
acquired with a GE Discovery MR750 3.0T MRI scanner. Image Groups 6 and 7 were from Department
of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center using a Siemens Magnetom
Trio Tim 3.0T MRI scanner. Image Group 8 was obtained from Department of Neurosurgery, Huadong
Hospital, Fudan University with a Siemens Magnetom Verio 3.0T MRI scanner. Image Group 9 was
obtained from Department of Neurosurgery, Shandong Provincial Hospital using a Siemens Magnetom
Skyra 3.0T MRI scanner.

Meanwhile, two groups of T2-FLAIR MR images were acquired successively with the Siemens
Magnetom Verio 3.0T MRI scanner (Group 3) and GE Discovery MR750 3.0T MRI scanner (Group 6)
from ten volunteers. MR images of another two modalities were acquired at the same time to meet the
requirements of the joint histogram registration method (Groups 1 and 2 with the Siemens scanner and
Groups 4 and 5 with the GE scanner). Therefore, 60 image sets from the ten volunteers were treated as
the paired gold standard to perform all paired comparisons. The details of the volunteer images are
shown in Table 2.

Moreover, to prove that the proposed method as a pre-processing method not only improves the
visual perception of the resolution and related indicators, but also is conducive to the performance of
various resolution-sensitive post-processing algorithms, the effectiveness of the proposed intensity
standardization method for aiding the computer-aided diagnostic algorithms was evaluated. Two
sets of brain glioma MR images from two MR scanners were used to build a radiomics model for
differentiating high grade glioma (HGG) from lower grade glioma (LGG). The clinical image data and
radiomics model are briefly described as follows.
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Table 1. The details of the patient images.

(a)

Image Group 1 2 3 4 5

Image number 1904 1472 464 1196 656
Patient number 119 92 29 80 41

Slice thickness (mm) 6 6 6 6 4
Pulse repetition time/Echo time/

Inverse time (ms/ms/ms) 8000/102/2370 9000/1022500 8500/1022439 8800/152/2100 8525/142/2100

Imaging frequency (MHz) 123.1678 123.2407 123.2463 127.7692 127.7706
Pixel bandwidth (Hz/pixel) 287 287 287 195.312 195.312

Pixel spacing (mm) 0.4492 0.4492 0.4492 0.4688 0.4688

Receive coil
12-channel
head coil

12-channel
head coil

12-channel
head coil

8-channel
head coil

8-channel
head coil

(b)

Image Group 6 7 8 9

Image number 924 548 644 384
Patient number 46 30 32 20

Slice thickness (mm) 5 5 5.5 5
Pulse repetition time/Echo time/

Inverse time (ms/ms/ms) 8500/90/2439 8500/91/2439 9000/83/2500 9000/128/2500

Imaging frequency (MHz) 123.2587 123.2622 123.2001 123.2292
Pixel bandwidth (Hz/pixel) 289 287 201 285

Pixel spacing (mm) 0.6875 0.4297 0.8984 0.8984

Receive coil
12-channel
head coil

12-channel
head coil

12-channel
head coil

32-channel
head coil

Table 2. The details of the volunteer images.

Image Group 1 2 3 4 5 6

Pulse sequence
Axial T2W

BLADE T1W FLAIR T2W FLAIR Axial T2 PRO-
PELLER T1 FLAIR T2

FLAIR
Slice thickness (mm) 6 6 6 6 6 6

Pulse repetition time/Echo time/
Inverse time (ms/ms/ms) 3500/95/NA 2000/17/857 8000/102/2370 4582/96/NA 1872/22/720 8525/146/2100

Imaging frequency (MHz) 123.1678 123.1678 123.1678 127.7705 127.7705 127.7705
Pixel bandwidth (Hz/pixel) 287 287 287 195.312 195.312 195.312

Pixel spacing (mm) 0.8984 0.8984 0.4492 0.4688 0.4688 0.4688

NA: not applicable.

The MR images of glioma patients from the Department of Neurosurgery, Huashan Hospital
affiliated to Fudan University were used, which were collected from a SIEMENS MAGNETOM R©

Verio 3.0T MRI scanner and a GE DiscoveryTM MR750 3.0T MRI scanner, respectively. Among them,
the images obtained from the SIEMENS scanner were treated as a subset of the reference images in
the proposed standardization method, and the images obtained from the GE scanner comprised a
subset of one target image group. HGG was considered as positive sample, and LGG was considered
as negative sample. Therefore, we used the MR images obtained from the SIEMENS scanner (34 HGG
and 32 LGG) to train the model and tested the model with the original images from the GE scanner
and the standardized GE images (17 HGG and 11 LGG). The detail acquisition protocols are shown in
Table 3.
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Table 3. The details of patient imaging acquisition protocols for the images used for glioma grade
classification.

Group Train Test

Instrument
SIEMENS MAGNETOM
Verio 3.0T MRI scanner

GE Discovery MR750
3.0T MRI scanner

Patient with HGG 34 17
Patient with LGG 32 11

Slice thickness (mm) 6 4
Pulse repetition time/Echo time/

Inverse time (ms/ms/ms) 8000/102/2370 8525/141.9/2100

Imaging frequency (MHz) 123.1678 127.7706
Pixel bandwidth (Hz/pixel) 287 195.312

Transmit coil name Body 8HRBRAIN
Pixel spacing (mm) 0.4492 0.4688

3.2. Advanced Weak-Pair Data Input Strategy

For the case where the axial position of the input MR image slice is close to the boundary, since
the axial density of the reference MR images is lower there, the structural similarity of the weak-pair
selection of the reference image may be lowered if the same random criterion is applied. Therefore, to
make the selected reference MR image structurally similar to the input MR image and guarantee a
certain randomness, an advanced weak-pair data input strategy is proposed. Firstly, the axial location
of each brain MR image slice in Montreal Neurological Institute (MNI) space is extracted with SPM12
tool. Then, in every epoch, 30 MR images in the reference dataset axially closest to xn,m is used to form
a set Xsel1n,m. Meanwhile, MR images in the reference dataset within the range of ±3 mm from xn,m is
used to form another set Xsel2n,m. One image xN,m̃ in the larger set above is randomly selected to be
paired for xn,m in the training process. After that, a random number randn,m is generated according to
a Gaussian distribution with µ = 256 and σ = Nepoch le f t + 64. The augmented image size is

sizen,m = round (256 + abs (256− randn,m)) . (6)

Therefore, the xn,m and corresponding xN,m̃ are scaled to sizen,m × sizen,m, randomly cropped to
256× 256, and then randomly flipped. The above random procedures are all synchronized within an
image pair to eliminate the structure disparity.

3.3. Optimized Training Strategy with Synchronized Batch Normalization

Batch normalization regards the statistics of neuron outputs with mini-batch input as the
estimation of the whole dataset and normalize the outputs according to the estimation in order
to prevent internal covariate shift and thus improve model stability. When multiple GPUs are used
in training process, the mini-batch is defined as the per-GPU input data, which works well in low
resolution scenario.

However, when higher input image resolution and a deeper network are applied, the graphics
memory within a GPU can handle several or only one input image. In this case, the statistics of the
mini-batch can no longer represent the entire dataset thus the batch normalization degenerates into
the instance normalization. Therefore, synchronized batch normalization is applied, which extracts the
statistics among all input samples distributed on multiple GPUs. Thus, the estimate based on such
samples are more accurate, so that the model stability is guaranteed.

4. Experiments and Results

We firstly evaluated the resolution preservation ability enhancement brought by the proposed
method over the original unified method previously proposed by our group. As two unified models,
they should be able to convert any MR image within a certain range into an image of a reference
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group. Therefore, we first use a larger number of images with the same imaging parameters regarded
as the reference image group as the generator input, comparing the resolution loss of the output by
measuring consistency of the input and the output. We then used the paired volunteer dataset to
measure resolution parameters of the standardized images in the presence of intensity distribution
variation between the target and reference datasets.

Then, we compared the proposed method in general properties with the original unified
method and also the representative methods of the two major types of intensity standardization
methods, the histogram matching method proposed by Sun et al. and the joint histogram registration
method previously proposed by our group. To meet the dataset requirements of all above methods,
the volunteer dataset was applied.

To conduct a numerical comparison between these methods, the resolution-oriented metrics
including the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), the visual
information fidelity (VIF), the universal quality index (UQI), and the image fidelity criterion (IFC)
were utilized. The widely-used general properties containing the gradient magnitude similarity
deviation (GMSD) and the mean square error (MSE) were applied. The histogram correlation (HC)
and the average disparity (AD) we proposed before were also employed. All numerical results were
obtained by comparing the transformed (generated) three-dimensional (3D) image and the reference
3D image and then averaging between different participants of the corresponding experiment. The HC
is defined as

HC = 1−

√√√√√1−
∑
√

Cntstandard · Cntre f√
∑ Cntstandard ×∑ Cntre f

, (7)

where the Cntstandard records the values of histogram bins in the standardized image and Cntre f records
the values of histogram bins in the reference image. The AD is defined as

Average Disparity = 100×mean


∣∣∣Istandard − Ire f

∣∣∣
Ire f

 , (8)

where Istandard and Ire f are the standardized and reference image, respectively. Better standardization
result is denoted with larger PSNR, SSIM, IFC, UQI, VIF, and HC as well as smaller GMSD, MSE, and AD.

4.1. The Resolution Preservation Ability Enhancement Brought by the Optimizations on Methodology

To prove the proposed method’s improvement over the resolution preservation of the
standardized images, the resolution-related metrics of the methods was firstly explored. For the
sake of achieving stable test results on a large test set, the first experiment was conducted by obtaining
320 images with the same image acquisition conditions as Group 1, which is the reference group, in the
training set. Then, the standardized images were obtained with both the original unified method and
the proposed method. In theory, the standardized images should be the same as the original images,
thus we used the original images as the gold standard to calculate the resolution-related features of the
two sets of standardized images. PSNR, SSIM, VIF, UQI and IFC were applied.

Table 4 illustrates such a comparison. In this experiment, the proposed method was superior to
the original unified method in most resolution-related metrics while the fidelity-related indicators
were significantly improved. These demonstrate the improved effectiveness of the proposed method
in maintaining MR image resolution.
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Table 4. The resolution-related metrics comparison between the proposed method and the original
universal method over the images with the same conditions as the reference group.

Evaluation Criteria PSNR SSIM IFC UQI VIF

The proposed method 37.31 0.9663 4.164 0.6169 0.1588
Original universal method 37.21 0.9690 3.212 0.6138 0.1233

To better reflect the resolution preservation ability enhancement of the proposed method in the
presence of intensity distribution variation between input MR images and output ones, we conducted
another experiment by comparing the standardization result of volunteer MR images obtained from GE
scanner with the paired MR images obtained from SIEMENS scanner. Table 5 illustrates the comparison
of PSNR and SSIM. The proposed method not only successfully eliminated the huge difference between
the original target image and the reference image, but also had a significant performance improvement
compared with the original unified method, due to the absence of resolution-oriented optimizations.

Table 5. The resolution-related metrics comparison between the proposed method and the original
universal method over the volunteer images.

Evaluation Criteria PSNR SSIM IFC UQI VIF

The proposed method 65.51 0.9992 4.318 0.7568 0.2413
Original universal method 65.13 0.9989 4.294 0.7538 0.2431

Figure 3 shows the local details of some of the MR images within the experiment above. Since the
proposed method uses a network structure that is more focused on improving image resolution, a loss
function with normalized mutual information, an advanced weak-pair data augmentation method,
and a multi-GPU training strategy, the output images of the proposed method have a higher local
accuracy and resolution. This allows a series of image texture features to be extracted more accurately
on the standardized image generated by the proposed method.

Figure 3. The local detail of the standardization result of two example MR images with the original
and proposed standardization method. The aim is to transform target images into the reference group:
(a1,b1) the reference MR images, the red boxes are zoomed in (a2,b2), respectively; (a3,b3) the details of
the target MR images; (a4,b4) the details of the results produced by the original many-to-one method;
and (a5,b5) the details of the results produced by the proposed method.

Moreover, the performances of differential diagnosis with the original dataset and the datasets
standardized with different methods were evaluated to reflect the advantage of the resolution
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preservation ability enhancement brought by the proposed method. Classical and highly interpretable
radiomics model was applied to better illustrate the superiority of the proposed method. First,
the obtained images from glioma patients and their standardized results were segmented using the
GrowCut method to obtain a glioma region [26]. Then, for the segmented regions, 555 features including
intensity features (21), shape features (15), texture features (39), and wavelet features (480) were extracted
using a self-adaptive feature extraction method [9]. The minimum-redundancy-maximum-relevance
(mRMR) based genetic-algorithm (GA) was applied for feature selection. Finally, the selected features
were used to train the SVM classifier.

Table 6 show the classification result of the original and standardized test set. The accuracy of
differential diagnosis between HGG and LGG was noticeably increased. Therefore, we believe that the
proposed method can effectively improve the accuracy of differential diagnosis methods by increasing
the preservation of image details and texture features as well as wavelet features, which highly rely on
image details.

Table 6. The result of HGG/LGG classification.

Test Group Original Images Standardized Images
with the Original Method

Standardized Images
with the Proposed Method

Accuracy 0.7143 0.8214 0.8571
Sensitivity 0.6471 0.7647 0.8824
Specificity 0.8182 0.9091 0.8182

4.2. Other Visual and Numerical Comparison with the Previous Methods

Figure 4 shows the standardized results of the proposed method, the original unified many-to-one
method, the histogram matching method, and the joint histogram registration method on the volunteer
MR image dataset while Figure 5 shows the logarithmic absolute error image between the standardized
image and corresponding reference image. The results of the histogram matching method are deviated
in terms of overall image intensity and contrast of gray matter and white matter. The joint histogram
registration method has good overall results, but has some image intensity errors in the skull, muscle,
and skin areas. Both the original unified method and the proposed method could produce the
state-of-the-art image intensity standardization results. In Figure 5, the mean intensity value of the
error image corresponding to the proposed method is relatively small, but the spatial distribution of
the errors is more extensive. This may be mainly because the standardization results of the proposed
method are highly similar to the original target MR image structure, while the original target image
and the reference “gold standard” image still have difference due to scanning interval and registration
accuracy. Therefore, such difference might be reflected in the error images.

Table 7 shows the numerical comparison for these different methods. The proposed method
outperformed the original unified many-to-one method based on CycleGAN in the overwhelming
majority of metrics. Meanwhile, the proposed method had a significant effect improvement over the
two conventional standardization methods.

In terms of runtime, the histogram matching method is mainly piecewise linear functions,
which takes only 0.5867 s to standardize an image slice. The joint histogram registration method
requires b-spline fitting, so the amount of calculation is large, and the time taken for processing a
slice reaches 2.1651 s. For the original many-to-one universal method and the proposed method, since
the convolution is very suitable for parallel computing using the graphics processing units (GPUs),
with the help of two NVIDIA TITAN Xp GPUs, the original many-to-one universal method only needs
0.2868 s to transform an MR image slice. Because the parameters are shared between layers in the
cascading block and between the cascading blocks, the proposed method only needs 0.1978 s, which is
fast enough for a preprocessing step.
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Figure 4. The tests of four standardization methods on five example slices from volunteers:
(a) T2 FLAIR MR images from GE scanner treated as the target; (b) T2 FLAIR MR images from
SIEMENS scanner treated as the reference; (c) standardization results with the proposed method;
(d) standardization results with the original many-to-one method; (e) standardization results
with the histogram matching method; and (f) standardization results with the joint histogram
registration method.

Figure 5. The logarithmic absolute error image of four standardization methods in Figure 4:
(a) standardization results with the proposed method; (b) standardization results with the
original many-to-one method; (c) standardization results with the histogram matching method;
and (d) standardization results with the joint histogram registration method.

Table 7. The comparison results of the different methods.

Evaluation
Criteria

Original
Images

The Proposed
Method

Original Universal
Method

Histogram Matching
Method

Joint Histogram
Registration Method

PSNR 53.75 65.51 65.13 61.39 64.27
SSIM 0.9829 0.9992 0.9989 0.9968 0.9988
HC 0.2724 0.9273 0.8865 0.8049 0.8825

GMSD 0.1328 0.1026 0.1027 0.1291 0.1245
MSE 18.50× 103 1.222× 103 1.353× 103 1.652× 103 1.559× 103

AD 30.8 4.505 1.093 13.54 8.467

5. Discussion

5.1. Analysis of the Model Stability of the Anomalies and Lesions

To support various post-processing computer-aided diagnosis models, the dataset we used
in training the model includes MR images from patients with various brain diseases. Therefore,
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the resized and cropped MR images used in the training may be either completely normal or contain
various types of lesion/tumor areas. Therefore, the diversity in data can guarantee the robustness
of the transformation model in one aspect. Meanwhile, on the other hand, since we use a method
based on GANs, all regions of the image, including lesions and tumors, will tend to match the intensity
distribution corresponding to the same tissue type of the reference image group during training to
minimize the adversarial loss. Furthermore, the consistency-based loss functions including both the
mutual information loss and the cycle consistency loss ensure the stability of the structure (including
the type of tissue) before and after the transformation (standardization). These loss functions ensure
that, although the transformation model has undergone regional intensity changes, such changes
should also be stable for abnormal tissues.

5.2. The Fusion of Various Losses during the Training Process

The loss functions we use in the proposed method include adversarial loss, cycle consistency
loss, and NMI loss. Among them, the adversarial loss is the basis of the generative adversarial
network and measures the difference in intensity distribution between the generated image and the
reference image. Consistency-based losses including cycle consistency loss and NMI loss measure the
feature preservation, especially structure retention of the original target after the intensity distribution
transformations of the MR images. All the loss functions are essential for the generator to make
high-resolution precise transformed MR images with standardized intensity distribution. However,
in the case of multiple losses acting simultaneously, the weight of the loss largely determines the
final performance of the model. In our study, the weights of these three losses have been manually
fine-tuned to achieve a more consistent decay curve, which has resulted in better convergence results.
Moreover, recent studies have pointed out that based on the noise or systematic uncertainty of each loss
corresponding to the task, an optimal loss weight may be derived [27,28]. Therefore, we may try to give
each loss element a learnable weight while giving a constraint to the overall loss, and automatically
obtaining the optimal loss weights based on the systematic uncertainty estimates during the iteration
process in the future.

6. Conclusions

In this paper, a resolution-oriented universal MR image standardization method is proposed
in order to standardize MR images from different MR scanner with different acquisition parameter.
The low-dimensional feature extraction residual convolution path in the generator, the loss function,
the data augmentation strategy and training strategy are all optimized for achieving better
transformation resolution. The experiments show the superiority of the proposed method over
the original unified many-to-one method as well as the conventional methods. This method has
far-reaching implications for the establishment of large-scale, homogeneous MR image datasets. Based
on such datasets, various identification and prediction models can achieve higher robustness.
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Abbreviations

The following abbreviations are used in this manuscript:

MRI Magnetic Resonance Imaging
MR Magnetic Resonance
CycleGAN Cycle Generative Adversarial Network
PDFs Probability Density Functions
NMI Normalized Mutual Information
CARN Cascading Residual Network
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LeakyReLU Leaky Rectified Linear Unit
LSGAN Least Squares Generative Adversarial Networks
HGG High Grade Glioma
LGG Low Grade Glioma
MNI Montreal Neurological Institute
PSNR Peak Signal-to-noise Ratio
SSIM Structural Similarity
VIF Visual Information Fidelity
UQI Universal Quality Index
IFC Image Fidelity Criterion
GMSD Gradient Magnitude Similarity Deviation
MSE Mean Square Error
HC Histogram Correlation
AD Average Disparity
mRMR Minimum-redundancy-maximum-relevance
GA Genetic-algorithm
GPUs Graphics Processing Units
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