
applied
sciences

Article

TrafficWave: Generative Deep Learning Architecture
for Vehicular Traffic Flow Prediction

Donato Impedovo * , Vincenzo Dentamaro, Giuseppe Pirlo and Lucia Sarcinella

Computer Science Department, Università degli studi di Bari Aldo Moro, 70125 Bari, Italy;
vincenzo@gatech.edu (V.D.); giuseppepirlo@uniba.it (G.P.); luciasarcinella@uniba.it (L.S.)
* Correspondence: donato.impedovo@uniba.it

Received: 17 October 2019; Accepted: 12 December 2019; Published: 14 December 2019
����������
�������

Abstract: Vehicular traffic flow prediction for a specific day of the week in a specific time span
is valuable information. Local police can use this information to preventively control the traffic
in more critical areas and improve the viability by decreasing, also, the number of accidents.
In this paper, a novel generative deep learning architecture for time series analysis, inspired by
the Google DeepMind’ Wavenet network, called TrafficWave, is proposed and applied to traffic
prediction problem. The technique is compared with the most performing state-of-the-art approaches:
stacked auto encoders, long–short term memory and gated recurrent unit. Results show that the
proposed system performs a valuable MAPE error rate reduction when compared with other state of
art techniques.

Keywords: traffic flow prediction; wavenet; TrafficWave; deep learning; RNN; LSTM; GRU; SAEs

1. Introduction

Traffic can be defined as the movement of vehicles on a road transport network regulated by
specific rules for its correct and safe organization [1]. More in general, the term indicates the number
of vehicles in circulation in a specific area. Roads congestion can occur in situations of intense traffic: it
is characterized by low speed and long travel times. This happens when the vehicular flow is greater
than the capacity of the road. This is a well-known phenomenon very familiar to those living in
medium/large cities: it results in loss of time, stress, incremented CO2 emissions and nevertheless
acoustic and atmospheric pollution [2].

In recent years, local administrations, also to comply with legal obligations, are increasingly
paying attention to the traffic prediction problem. Among the most effective interventions, there are
the strengthening of public transport, the adoption of predictive planning tools to limit the number of
accidents, increase viability and decrease the previously mentioned forms of pollution as well as to
provide intelligent public roads lighting solutions.

Under this light, it is essential to understand when road congestion or other traffic flow conditions
are going to occur. In order to have good predictions, traffic data should be accurately and continuously
collected over long periods and at all hours (both day and night). The most common methods of
automatic detection are pneumatic tubes, aerial photography, infrared sensors, magneto dynamic
sensors, triboelectric cables, video images, VIM sensors, microwave sensors, and many others [3,4].
These conditions are leading technological research to produce increasingly refined instruments and
automatic detection systems.

This work proposes the use of a tuned version of the Google Deepmind Wavenet [5] architecture
for traffic flow prediction problem and compare its performance to other state-of-the-art techniques
thus providing a review of the most profitable approaches highlighting pro and cons.

Appl. Sci. 2019, 9, 5504; doi:10.3390/app9245504 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9285-2555
http://www.mdpi.com/2076-3417/9/24/5504?type=check_update&version=1
http://dx.doi.org/10.3390/app9245504
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 5504 2 of 13

The paper is organized as follows. Section 2 contains a literature review focusing on a specific set
of state-of-the-art techniques stacked auto encoders, long–short term memory and gated recurrent
unit architectures. Section 3 describes the TrafficWave architecture proposed in this work. Section 4
presents datasets and the experimental setup. Section 5 shows and discusses the result. Section 6
concludes the article.

2. Methods

2.1. Mathematical Properties of Traffic Flow

Traffic flow deals with interactions between travelers (including pedestrians, cyclists, drivers and
their vehicles) and infrastructures (including motorways, signage and traffic control devices), in order to
understand and develop a transport network with efficient circulation and minimum traffic congestion
problems [6,7]. It is important to underline that spatial and temporal constraints must be considered to
properly model the flow [8,9].

Let Xt
i denote the observed traffic flow for the t-th time interval at the i-th sensing location and

given a sequence {Xt
i } of observed traffic flow data points with i = 1, ..., m, and t = 1, ..., T, the traffic

flow problem aims to forecast the flow for the next (t + ∆) time interval under a prediction window
∆ [10]. The traffic flow can also be defined, such as:

T =
{
Xt

i

}
∀ i, t ∈ ℵ i, t ≥ 0. (1)

If we consider highways, the traffic flow is generally limited along a one-dimensional path
(for example a travel lane).

Three main variables for displaying a traffic flow: speed (v), density (k), and flow (q).
In general-purpose systems, the speed of each vehicle cannot be tracked; therefore, the average
speed is measured by sampling the vehicles in a given area for a time period. However, in many other
cases, due to the adoption of speeding violations tools, average speed on a segment of the highway
and instantaneous speed, can also be monitored (e.g., Safety tutor system on Italian highways).

The density (k) is defined as the number of vehicles per length unit. Spacing (s) is the distance
from center to center between two vehicles. The relation between density and spacing is the following:

k =
1
s

. (2)

Even in this case, density can be estimated in general terms or an extended evaluation of it can be
available depending on the specific devices available on the highway. The flow (q) is the number of
vehicles that exceed a reference point per unit of time, its unit of measure is vehicles per hour:

q = kv. (3)

The inverse of the flow is progress (h), which is the time between the first vehicle passing a
reference point in space and its successive vehicle:

q =
1
h

. (4)

In this work, the main metric is Flow (q). This value is aggregated with respect to the datasets
adopted for experiments by using timestamps of when each car was detected which implies also its
speed (v) and the overall density (k) over a predefined time window.

2.2. State of the Art on Deep Learning for Vehicular Traffic Flow Prediction

There are three main categories of traffic flow prediction solutions: parametric, non-parametric
and hybrid [10,11]. However, the traffic flow prediction problem is non-deterministic and non-linear

Appl. Sci. 2019, 9, 5504 3 of 13

because it can exhibit variations due to weather, accidents, driving characteristics, etc. Due to these
reasons, this work focuses on non-parametric solutions with special attention to very recent deep
learning techniques, which have been demonstrated to achieve state-of-the-art accuracies [11–13].

Authors of [12] have been among the first to address the challenge of road traffic prediction by
using big data, deep learning, in-memory computing and high-performance computing through GPU.
More specifically, the California Department of Transportation (Caltrans) dataset was adopted. Eleven
years of traffic at 5-min level were analyzed (thus the motivation on big data), in-memory computing
usage for real-time evaluations and convolutional neural networks (CNNs). The work reached a
minimum MAPE (mean absolute percentage error) of 3.5 against other works on the same dataset who
had a MAPE of 6.75 [10] and 9 [13]. Respectively authors in [10] used stacked autoencoders to learn
generic traffic flow features over the Caltrans dataset. The solution was tested against 15, 30, 45 and
60 min of data aggregation, the best result was achieved at 45 min aggregation. In [14] authors used
stacked layers of CNNs and recurrent neural networks layers merged by an attention model able to
score how strong the input of the spatial (CNN)-temporal (recurrent neural network (RNN)) position
correlates to the future traffic flow. When dealing with neural network models for traffic flow prediction,
an interesting issue deals with the selection of the most profitable one. In [15], long short–term memory
(LSTM) RNN, gated recurrent unit (GRU) RNN and ARIMA were compared: GRU outperformed
the others. In [16] authors developed an architecture able to combine a linear model fitted using L1

regularization and a sequence of tanh layers. The first layer identifies spatio–temporal relations among
predictors, the other layers model non-linear relations, the accuracy obtained was acceptable and the
authors showed an in-depth analysis on the fact that the architecture was learning spatio–temporal
features. In [17], the authors proposed a deep architecture consisting of a deep belief network in the
bottom and a regression layer on top. The Deep Belief Network was used for unsupervised traffic flow
feature learning. The authors reported a 3% improvement over state of the art. In [18] authors used an
Italian dataset belonging to the city of Turin for traffic flow prediction adopting a deep feed-forward
neural network to model the non-linear regression problem of the traffic flow. Their solution was
better than other shallow learning (all non-deep learning models) tested solutions. The authors also
tested several time window lags and data aggregation. In [19], the authors used the Auto Encoder to
model the internal relationship of the traffic flow by extracting the characteristics of upstream and
downstream traffic flow data. Additionally, the LSTM network utilizes the characteristic acquired
by the autoencoder and the historical data to predict linear traffic flow. The error rate obtained was
slightly lower than the reviewed works. In [20], authors created an improved spatio–temporal residual
network to predict the traffic flow of buses by using fully connected neural networks to capture the bus
flow patterns and improved residual networks to capture the bus traffic flow spatio–temporal patterns.
Their accuracies were the best among the compared. In [21], the authors proposed a novel approach
for identifying traffic-states of different spots of road sections and determine their spatiotemporal
dependencies for missing value imputations. The principal component analysis (PCA) was employed
to identify the section-based traffic state. The pre-processing was combined with a support vector
machine for developing the imputation model. It was found that the proposed approach outperformed
other existing models. In [22], the authors proposed e a deep autoencoder-based neural network
model with symmetrical layers for the encoder and the decoder which was able to learn temporal
correlations of a transportation network and predicting traffic flow. Their architecture outperformed
all their reviewed works.

As it is possible to note from the reviewed works, state of art solutions make use of Stacked
Denoising Autoencoders, LSTM RNN, and GRU NN. In addition, almost all works compare their
accuracies with the ARIMA model. Unfortunately, different works perform experiments on different
dataset and under different testing conditions, so that it is hard to clearly state which approach performs
better than another. The aims of this work are:

(1) to briefly review the most used and performing ones (i.e., stacked auto encoders (SAEs), LSTM,
GRU),

Appl. Sci. 2019, 9, 5504 4 of 13

(2) to introduce a new one named TrafficWave able to outperform the previous,
(3) to perform comparisons under a common testing framework.

2.3. Deep Learning Techniques

2.3.1. SAEs (Stacked Auto Encoders)

An SAE model is a stack of autoencoders used as building blocks to create a deep network [9].
An autoencoder is a Neural Network that attempts to reproduce its input. It has an input layer,
a hidden layer, and an output layer. Given a set of training samples

{
X(1), X(2), X(3), X(n)

}
where

X(i) ∈ R which can be considered to be the traffic flow at i-time, an autoencoder first encodes an input

X(i) in a hidden representation y
(
X(1)

)
on the basis of (5):

y(x) = f (W1x + b), (5)

then it decodes the representation y
(
X(1)

)
in a reconstruction named z

(
X(1)

)
calculated as in (6):

z(x) = g(W2y(x) + c. (6)

being:

• W1 a weight matrix,
• b a coding polarization vector,
• W2 a decoding matrix,
• c a decoding polarization vector,
• f (x) and g (x) sigmoid functions.

An SAE model is created by stacking autoencoders to form a deep neural network taking the
autoencoder output found on the underlying layer as current level input as shown in Figure 1.
After obtaining the first hidden level, the output of the k-hidden layer is used as an entrance to the (k +

1)-th hidden level. In this way, more autoencoders can be stacked hierarchically.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 13

2.3.1. SAEs (Stacked Auto Encoders)

An SAE model is a stack of autoencoders used as building blocks to create a deep network [9].
An autoencoder is a Neural Network that attempts to reproduce its input. It has an input layer, a
hidden layer, and an output layer. Given a set of training samples ൛ܺ(ଵ), ܺ(ଶ), ܺ(ଷ) … . , ܺ(௡)ൟ where ܺ(௜) ∈ R which can be considered to be the traffic flow at i-time, an autoencoder first encodes an input ܺ(௜) in a hidden representation ݕ(ܺ(ଵ)) on the basis of (5): (ݔ)ݕ = ݂(ଵܹݔ ൅ ܾ), (5)

then it decodes the representation ݕ(ܺ(ଵ)) in a reconstruction named ݖ(ܺ(ଵ)) calculated as in (6): (ݔ)ݖ = ݃(ଶܹ(ݔ)ݕ ൅ ܿ. (6)

being:

• ଵܹ a weight matrix,
• b a coding polarization vector,
• ଶܹ a decoding matrix,
• c a decoding polarization vector,
• f (x) and g (x) sigmoid functions.

An SAE model is created by stacking autoencoders to form a deep neural network taking the
autoencoder output found on the underlying layer as current level input as shown in Figure 1. After
obtaining the first hidden level, the output of the k-hidden layer is used as an entrance to the (k + 1)-
th hidden level. In this way, more autoencoders can be stacked hierarchically.

In order to use the SAE network for traffic flow prediction, it is necessary to add a standard
predictor on the top level. A logistic regression layer is generally considered [9].

Stacked denoising autoencoders for traffic flow prediction are adapted to learn network-wide
relationships, these are necessary to estimate missing traffic flow data, and thus predict the future
traffic value as a missing point with respect to the input data.

SAE networks have been used in [19,22,23]. Figure 2 reports the SAE architecture used in this
work to perform tests and comparisons.

Figure 1. Stacked denoising autoencoder.
Figure 1. Stacked denoising autoencoder.

In order to use the SAE network for traffic flow prediction, it is necessary to add a standard
predictor on the top level. A logistic regression layer is generally considered [9].

Appl. Sci. 2019, 9, 5504 5 of 13

Stacked denoising autoencoders for traffic flow prediction are adapted to learn network-wide
relationships, these are necessary to estimate missing traffic flow data, and thus predict the future
traffic value as a missing point with respect to the input data.

SAE networks have been used in [19,22,23]. Figure 2 reports the SAE architecture used in this
work to perform tests and comparisons.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 13

Figure 2. Stacked auto encoders (SAEs) architecture.

2.3.2. LSTM (Long–Short Term Memory)

LSTM was originally introduced by Hochreiter [24]. A typical LSTM cell, Figure 3, is mainly
composed of four gates: input gate, input modulation gate, forget gate and output gate. The input
gate takes a new input and processes the incoming data. The input port of the memory cell receives
as input the output of the LSTM cell of the previous iteration. The forget gate decides when to discard
the results and then selects the optimal delay for the input sequence. The output gate takes all the
calculated results and generates the output for the LSTM cell. In linguistic models, a soft-max layer
is usually added to determine the final output. In the traffic flow prediction model, a linear regression
layer is applied to the output level of the LSTM cell. A typical architecture is presented in Figure 4
and is equivalent to the architecture used in [9]. In this domain, LSTMs have been used by [15,19] and
[23].

Figure 2. Stacked auto encoders (SAEs) architecture.

2.3.2. LSTM (Long–Short Term Memory)

LSTM was originally introduced by Hochreiter [24]. A typical LSTM cell, Figure 3, is mainly
composed of four gates: input gate, input modulation gate, forget gate and output gate. The input gate
takes a new input and processes the incoming data. The input port of the memory cell receives as
input the output of the LSTM cell of the previous iteration. The forget gate decides when to discard
the results and then selects the optimal delay for the input sequence. The output gate takes all the
calculated results and generates the output for the LSTM cell. In linguistic models, a soft-max layer is
usually added to determine the final output. In the traffic flow prediction model, a linear regression
layer is applied to the output level of the LSTM cell. A typical architecture is presented in Figure 4 and
is equivalent to the architecture used in [9]. In this domain, LSTMs have been used by [15,19] and [23].

Appl. Sci. 2019, 9, 5504 6 of 13Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 13

Figure 3. Long short–term memory (LSTM) cell.

Figure 4. LSTM architecture.

2.3.3. GRU (Gated Recurrent Unit)

GRU was originally proposed by Cho et al. [25]. The typical GRU cell structure is shown in
Figure 5. A GRU cell is composed of two gates: reset gate r and update gate z. The output of the

Figure 3. Long short–term memory (LSTM) cell.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 13

Figure 3. Long short–term memory (LSTM) cell.

Figure 4. LSTM architecture.

2.3.3. GRU (Gated Recurrent Unit)

GRU was originally proposed by Cho et al. [25]. The typical GRU cell structure is shown in
Figure 5. A GRU cell is composed of two gates: reset gate r and update gate z. The output of the

Figure 4. LSTM architecture.

Appl. Sci. 2019, 9, 5504 7 of 13

2.3.3. GRU (Gated Recurrent Unit)

GRU was originally proposed by Cho et al. [25]. The typical GRU cell structure is shown in
Figure 5. A GRU cell is composed of two gates: reset gate r and update gate z. The output of the
hidden layer at time t is calculated using the hidden layer of t − 1 and the input value of the time series
at time t:

ht = f (ht−1,xt). (7)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 13

hidden layer at time t is calculated using the hidden layer of t−1 and the input value of the time series
at time t: ℎ௧ = ݂൫ℎ௧ିଵ,ݔ௧൯. (7)

The reset gate is similar to the LSTM forget gate. Interested readers can find details in [25]. The
regression part and the optimization method are, in general, the same as for an LSTM cell. The
architecture is presented in Figure 6. GRUs have been used by [15,23].

Figure 5. Gated recurrent unit (GRU) cell.

Figure 6. GRU architecture.

3. TrafficWave Architecture

Figure 5. Gated recurrent unit (GRU) cell.

The reset gate is similar to the LSTM forget gate. Interested readers can find details in [25].
The regression part and the optimization method are, in general, the same as for an LSTM cell.
The architecture is presented in Figure 6. GRUs have been used by [15,23].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 13

hidden layer at time t is calculated using the hidden layer of t−1 and the input value of the time series
at time t: ℎ௧ = ݂൫ℎ௧ିଵ,ݔ௧൯. (7)

The reset gate is similar to the LSTM forget gate. Interested readers can find details in [25]. The
regression part and the optimization method are, in general, the same as for an LSTM cell. The
architecture is presented in Figure 6. GRUs have been used by [15,23].

Figure 5. Gated recurrent unit (GRU) cell.

Figure 6. GRU architecture.

3. TrafficWave Architecture

Figure 6. GRU architecture.

Appl. Sci. 2019, 9, 5504 8 of 13

3. TrafficWave Architecture

The solution here proposed, named TrafficWave, is based on Wavenet [5]. Wavenet was originally
developed with the aim of producing (imitating) human voice. Wavenet uses a deep generative model
able to produce realistic sounds. It works by extracting patterns from human voice recordings, in order
to create sound waves able to reproduce a syllable sound. Wavenet calculates the trend of the single
wave: it merges knowledge of what has been produced before and knowledge about how waves
operate (the previously extracted patterns), therefore, it foresees the trend of the wave (in terms of
rise and fall) for each instance. In other words, at each instant, a value is generated based on all the
previous values and on rules learned from the analysis of many samples.

Van Den Oord et al. [5] had the intuition of stacking 1D convolutional layers one on top of the
other, and, at the same time, doubling the dilation rate per layer. The dilation rate can be considered
as the “distance” between each neuron’s input in the same layer, a sort of quantity of how much
spread apart every neuron input is. For example, if the dilation rate is 2, 4 and 8, then the first 1D
convolutional layer foresees two time-steps at time, while the second 1D convolutional layer foresees
four time-steps and the last one eight. This allows the capability of learning short-term patterns in the
lower layer and longer-term patterns in the higher layer. This is shown in Figure 7.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 13

The solution here proposed, named TrafficWave, is based on Wavenet [5]. Wavenet was
originally developed with the aim of producing (imitating) human voice. Wavenet uses a deep
generative model able to produce realistic sounds. It works by extracting patterns from human voice
recordings, in order to create sound waves able to reproduce a syllable sound. Wavenet calculates
the trend of the single wave: it merges knowledge of what has been produced before and knowledge
about how waves operate (the previously extracted patterns), therefore, it foresees the trend of the
wave (in terms of rise and fall) for each instance. In other words, at each instant, a value is generated
based on all the previous values and on rules learned from the analysis of many samples.

Van Den Oord et al. [5] had the intuition of stacking 1D convolutional layers one on top of the
other, and, at the same time, doubling the dilation rate per layer. The dilation rate can be considered
as the “distance” between each neuron’s input in the same layer, a sort of quantity of how much
spread apart every neuron input is. For example, if the dilation rate is 2, 4 and 8, then the first 1D
convolutional layer foresees two time-steps at time, while the second 1D convolutional layer foresees
four time-steps and the last one eight. This allows the capability of learning short-term patterns in
the lower layer and longer-term patterns in the higher layer. This is shown in Figure 7.

Figure 7. The wavenet architecture.

The system is a generative model: it can generate the sequences of real-valued data starting from
some conditional inputs. The behavior is mainly due to the dilated causal convolutions. A big number
of layers and large filters are used to increase the receptive field within the causal convolutions.

Dilated convolution allows to exponentially increase the receptive field which grows as a
function of the number of 1D CNN layers skipping inputs by a constant dilation rate. Casual dilated
convolutions allow to skip inputs at casual distance. This architecture allows the net to get a more in-
depth pattern extraction being able to output and add a new node with relatively low computation.
Just for comparison, a similar solution developed with several layers of CNN and 512 inputs would
require 511 CNN layers with respect to the 7 stacked casual dilated convolutions in Wavenet. Given
a specific dilation rate, it is possible to extract similar patterns with minutes, days and months lag.
This fits very well with traffic flow prediction. Similar architectures were used for predicting Uber
demand in NYC [26] and for predicting sales forecasting during a Kaggle competition [27]. Kaggle is
a private owned company that hosts competitions where students, researchers, and other experts
publish their solutions and accuracies for benchmarking purposes.

The TrafficWave network here proposed is a modified Wavenet network, where the number of
filters is 12 and each filter depth is defined by the lag of sliding window, which has been empirically
set to 5. The convolutions used are 1D convolutional layers. The filters depth is the number of
channels of the residual output for the 1D convolutional layer of the initial casual convolution.
Dilation rates used are {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048}. These dilation rates are used to increase, up to 2048 traffic data points, its receptive fields.

This allows to learn very recent trends (for small dilation rates) but also capturing events that
happened a long time back.

The resulting network is extremely complex and it would require several pages to be displayed.

Figure 7. The wavenet architecture.

The system is a generative model: it can generate the sequences of real-valued data starting from
some conditional inputs. The behavior is mainly due to the dilated causal convolutions. A big number
of layers and large filters are used to increase the receptive field within the causal convolutions.

Dilated convolution allows to exponentially increase the receptive field which grows as a function
of the number of 1D CNN layers skipping inputs by a constant dilation rate. Casual dilated convolutions
allow to skip inputs at casual distance. This architecture allows the net to get a more in-depth
pattern extraction being able to output and add a new node with relatively low computation. Just for
comparison, a similar solution developed with several layers of CNN and 512 inputs would require
511 CNN layers with respect to the 7 stacked casual dilated convolutions in Wavenet. Given a specific
dilation rate, it is possible to extract similar patterns with minutes, days and months lag. This fits
very well with traffic flow prediction. Similar architectures were used for predicting Uber demand in
NYC [26] and for predicting sales forecasting during a Kaggle competition [27]. Kaggle is a private
owned company that hosts competitions where students, researchers, and other experts publish their
solutions and accuracies for benchmarking purposes.

The TrafficWave network here proposed is a modified Wavenet network, where the number of
filters is 12 and each filter depth is defined by the lag of sliding window, which has been empirically set
to 5. The convolutions used are 1D convolutional layers. The filters depth is the number of channels
of the residual output for the 1D convolutional layer of the initial casual convolution. Dilation rates

Appl. Sci. 2019, 9, 5504 9 of 13

used are {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}.
These dilation rates are used to increase, up to 2048 traffic data points, its receptive fields.

This allows to learn very recent trends (for small dilation rates) but also capturing events that
happened a long time back.

The resulting network is extremely complex and it would require several pages to be displayed.

4. Dataset and Experimental Set-Up

Two datasets have been considered for experimental evaluation: Caltrans PeMS [28],
briefly Caltrans, and TRAP-2017 [29].

4.1. PeMS (Caltrans Performance Measurement System)

Caltrans is composed of five-minute interval traffic data on various freeways. It contains data
such as the vehicle flow, speed, occupancy, the ID of the Vehicle Detector Station (VDS), etc. Caltrans
dataset has been used in [9,15,19] for traffic flow prediction. According to the current state of the art
methodologies, traffic data from 1 January 2016 to 29 February 2016 have been aggregated, in this
work, every 5 min and then used as a training set, traffic data of March 2016 has been aggregated every
5 and used for the test. The lag of the sliding window has been set to 5 as in [9] for comparison aims.
SAEs, LST, GRU and TrafficWave have been tuned using Adam optimizer [30]. All algorithms have
been trained for 500 epochs with a batch size of 64.

4.2. TRAP-2017 (Traffic Mining Applied to Police Activities)

TRAP-2017 was released by the Italian National Police [30]. It was acquired using Number Plate
Reading Systems in 2016, from 1 January to 31 December, on 27 gates distributed over the Italian
highway. The dataset is composed of 365 commas separated values (CSV) files containing the following
data: plate number, gate, lane, timestamp and nationality (of the plate). The total number of rows is
111089717. Each gate represents a point of the highway network on which the traffic flow prediction
can be performed. In this study, the prediction has been done on gate 1 considering only the timestamp
field which uniquely represents the transit of a vehicle.

Data have been aggregated over a 5-min time window enumerating the number of vehicles that
have transited under the gate and successively normalized with min-max rule. The ∆ lag has been set
to 5 min for three reasons:

1. To be consistent with other authors implementations (comparison aims);
2. ∆ = 5 min produce the best accuracy for all models with respect to other solutions (i.e., 15, 30 and

45 min);
3. ∆ = 5 min implies a near real-time prediction, therefore it allows to promptly implement strategies

of traffic control.

The dataset has been preprocessed as follow:

1. Data have been aggregated over 5-min time window: the number of vehicles which have transited
under the gate 1 every 5 min are reported along with the time stamp captured of the last vehicle
belonging to the 5 min time window.

2. Time windows with 0 transited cars, have been reported as 0.
3. Data have been separated in months and days.
4. Data has been normalized with min-max rule within [0.1–1.0].
5. The sliding window approach has been then used on the normalized data (lag = 5).
6. Monday has been selected as the day of forecasting.
7. The preprocessed data is then fed to the various neural network architectures.

Appl. Sci. 2019, 9, 5504 10 of 13

The input to the various architectures are the following 5 min lag datapoints: T5, T10, T15, T20, T25.
These are used to do forecast T30 datapoint. The days used for training were 60 days for PeMS dataset
and 44 days for TRAP-2017.

5. Results

The following metrics have been used for results evaluation.
Mean absolute percentage error (MAPE), defined as:

100%
n

n∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣.
Mean absolute error (MAE), defined as:∑n

i=1|At − Ft|

n
.

Root mean square error (RMSE): √∑N
i=1(At − Ft)

2

N
,

where At is the actual value and Ft is the forecast value.
Experiments were performed using AMD Ryzen threadripper 1920x with 64GB RAM and Nvidia

Titan RTX with Nvidia CUDA and Keras with Tensorflow GPU backend.
Table 1 shows the results obtained on the Caltrans dataset.

Table 1. Performance on Caltrans dataset.

MAPE MAE RMSE TIME

TrafficWave 15.522% 6.229 8.668 5293s
LSTM 15.703% 6.274 8.734 820s
GRU 17.757% 6.323 8.637 641s
SAEs 16.742% 6.095 8.335 1163s

Wei et al. [19] NA 25.26 35.45 NA
Fu et al. [15] NA 17.211 25.86 NA
Lv et al. [9] NA 34.1.8 50.0 NA

Note: Bold is the solution proposed in this work. Normal have been calculated. Italics are just reported from
other works.

The proposed architecture outperforms all other architectures in terms of MAPE. MAPE is a
percentage value so that it has a simple and intuitive understanding: in general, TrafficWave performs
better than other approaches. Results related to RMSE and MAE report that SAEs is able to perform,
in specific cases, an error lower than TrafficWave, however the distance (in terms of performance) is
little. SAEs are able to limit huge errors in general, but TrafficWave is able to suddenly capture trend
changes, this can be seen in Figures 8 and 9, but often at the cost of a major error.

It is worth noting that the training time is very high compared to other networks. However, this is
a minor limitation since training is usually performed off-line. Table 1 also reports results obtained by
other authors on the same dataset, however, it is important to state that these tests were performed on
different months and with different aggregations. This is the main point of this benchmark: compare
the state of art techniques plus a novel one (TrafficWave), on the exact same data and same conditions.

Appl. Sci. 2019, 9, 5504 11 of 13Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 13

Figure 8. Intraday flow prediction for Caltrans dataset.

Table 2 reports results obtained on the TRAP-2017 dataset. Results confirm that TrafficWave
outperforms all other approaches. Considerations are similar to those already reported for the
Caltrans dataset. Figure 9 confirms that the proposed architecture has the closest pattern with the
ground through data.

Table 2. Performance on the TRAP-2017 dataset.

 MAPE MAE RMSE TIME
TrafficWave 14.929% 35.406 50.902 893s

LSTM 15.991% 37.959 53.552 292s
GRU 15.964% 37.879 53.669 245s
SAEs 16.674% 36.374 51.267 198s

Figure 9. Intraday flow prediction for first Monday of November 2017 from TRAP-2017 dataset.

Once more, TrafficWave needs more computational time than other techniques. The reason
relies on the high complexity of the model. The architecture, being a generative one, it reaches 199
sequential hidden layers. It is more difficult to be trained if compared to sequential architecture. This
is caused by stacking dilated convolutions as previously explained.

Figure 8. Intraday flow prediction for Caltrans dataset.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 13

Figure 8. Intraday flow prediction for Caltrans dataset.

Table 2 reports results obtained on the TRAP-2017 dataset. Results confirm that TrafficWave
outperforms all other approaches. Considerations are similar to those already reported for the
Caltrans dataset. Figure 9 confirms that the proposed architecture has the closest pattern with the
ground through data.

Table 2. Performance on the TRAP-2017 dataset.

 MAPE MAE RMSE TIME
TrafficWave 14.929% 35.406 50.902 893s

LSTM 15.991% 37.959 53.552 292s
GRU 15.964% 37.879 53.669 245s
SAEs 16.674% 36.374 51.267 198s

Figure 9. Intraday flow prediction for first Monday of November 2017 from TRAP-2017 dataset.

Once more, TrafficWave needs more computational time than other techniques. The reason
relies on the high complexity of the model. The architecture, being a generative one, it reaches 199
sequential hidden layers. It is more difficult to be trained if compared to sequential architecture. This
is caused by stacking dilated convolutions as previously explained.

Figure 9. Intraday flow prediction for first Monday of November 2017 from TRAP-2017 dataset.

Figure 8 shows the prediction trend of the different neural networks over time.
Table 2 reports results obtained on the TRAP-2017 dataset. Results confirm that TrafficWave

outperforms all other approaches. Considerations are similar to those already reported for the Caltrans
dataset. Figure 9 confirms that the proposed architecture has the closest pattern with the ground
through data.

Table 2. Performance on the TRAP-2017 dataset.

MAPE MAE RMSE TIME

TrafficWave 14.929% 35.406 50.902 893s
LSTM 15.991% 37.959 53.552 292s
GRU 15.964% 37.879 53.669 245s
SAEs 16.674% 36.374 51.267 198s

Once more, TrafficWave needs more computational time than other techniques. The reason relies
on the high complexity of the model. The architecture, being a generative one, it reaches 199 sequential

Appl. Sci. 2019, 9, 5504 12 of 13

hidden layers. It is more difficult to be trained if compared to sequential architecture. This is caused by
stacking dilated convolutions as previously explained.

Table 3 shows the MAPE for all the weekdays. TrafficWave outperforms all the competition
achieving the lower error in all the weekdays, confirming results already observed for a single day.

Table 3. MAPE results for TRAP-2017 on various weekdays of November 2016.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

TrafficWave 14.929% 17.354% 14.998% 12.190% 14.779% 14.891% 17.439%
LSTM 15.991% 18.041% 16.835% 12.394% 14.884% 23.253% 17.483%
GRU 15.964% 22.478% 17.119% 12.212% 15.463% 16.591% 17.950%
SAEs 16.674% 18.620% 15.593% 21.260% 14.986% 15.895% 17.580%

6. Conclusions and Future Research

TrafficWave net has been proposed in this work. It has been used for the weekday traffic flow
prediction problem on two different datasets. The approaches outperform other state-of-the-art
techniques in terms of MAPE. Results have been confirmed over two different datasets. Other metrics,
such as MAE and RMSE, have been inspected too. Considering these metrics, SAEs is able to limit
huge errors in general, but TrafficWave is able to suddenly capture trend changes.

Due to its complexity, TrafficWave results in increased training time, however, this is a minor limit
since training is generally performed off-line in real scenarios and, more in general, it can be speeded
up with more performing architectures.

Future research will focus on considering also contour conditions as, for example, weather [11].

Author Contributions: Conceptualization, D.I. and G.P.; Data curation, V.D. and L.S.; Investigation, D.I., V.D., G.P.
and L.S.; Methodology, D.I., G.P. and L.S.; Software, V.D. and L.S.; Supervision, D.I. and G.P.; Visualization, V.D.
and L.S.; Writing—original draft, D.I. and V.D.; Writing—review & editing, V.D. and D.I. project administration,
D.I.; funding acquisition, D.I.

Funding: This work is within the “YourStreetLight” project funded by POR Puglia FESR-FSE 2014–2020 - Fondo
Europeo Sviluppo Regionale—Asse I—Azione 1.4—Sub-Azione 1.4.b—Avviso pubblico “Innolabs”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization. Global Status Report on Road Safety 2015; World Healt Organization: Geneva,
Switzerland, 2015.

2. Cavallaro, F. Policy implications from the economic valuation of freight transport externalities along the
Brenner corridor. Case Stud. Transp. Policy 2018, 6, 133–146. [CrossRef]

3. Askari, H.; Hashemi, E.; Khajepour, A.; Khamesee, M.B.; Wang, Z.L. Towards self-powered sensing using
nanogenerators for automotive systems. Nano Energy 2018, 53, 1003–1019. [CrossRef]

4. Impedovo, D.; Balducci, F.; Dentamaro, V.; Pirlo, G. Vehicular Traffic Congestion Classification by Visual
Features and Deep Learning Approaches: A Comparison. Sensors 2019, 19, 5213. [CrossRef] [PubMed]

5. Oord, A.V.D.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.;
Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499.

6. Nicholls, H.; Rose, G.; Johnson, M.; Carlisle, R. Cyclists and Left Turning Drivers: A Study of Infrastructure
and Behaviour at Intersections. In Proceedings of the 39th Australasian Transport Research Forum (ATRF
2017), Auckland, New Zealand, 27–29 November 2017.

7. Perez-Murueta, P.; Gómez-Espinosa, A.; Cardenas, C.; Gonzalez-Mendoza, M., Jr. Deep Learning System for
Vehicular Re-Routing and Congestion Avoidance. Appl. Sci. 2019, 9, 2717. [CrossRef]

8. Ni, D. Traffic Flow Theory: Characteristics, Experimental Methods, and Numerical Techniques;
Butterworth-Heinemann: Oxford, UK, 2015.

9. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic flow prediction with big data: A deep learning approach.
IEEE Trans. Intell. Transp. Syst. 2014, 16, 865–873. [CrossRef]

http://dx.doi.org/10.1016/j.cstp.2017.11.008
http://dx.doi.org/10.1016/j.nanoen.2018.09.032
http://dx.doi.org/10.3390/s19235213
http://www.ncbi.nlm.nih.gov/pubmed/31795080
http://dx.doi.org/10.3390/app9132717
http://dx.doi.org/10.1109/TITS.2014.2345663

Appl. Sci. 2019, 9, 5504 13 of 13

10. Chen, Y.; Shu, L.; Wang, L. Traffic flow prediction with big data: A deep learning based time series
model. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Atlanta, GA, USA, 1–4 May 2017; pp. 1010–1011.

11. Koesdwiady, A.; Soua, R.; Karray, F. Improving Traffic Flow Prediction with Weather Information in
Connected Cars: A Deep Learning Approach. IEEE Trans. Veh. Technol. 2016, 65, 9508–9517. [CrossRef]

12. Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Smarter traffic prediction using
big data, in-memory computing, deep learning and GPUs. Sensors 2019, 19, 2206. [CrossRef] [PubMed]

13. Huang, W.; Song, G.; Hong, H.; Xie, K. Deep architecture for traffic flow prediction: Deep belief networks
with multitask learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2191–2201. [CrossRef]

14. Wu, Y.; Tan, H.; Qin, L.; Ran, B.; Jiang, Z. A hybrid deep learning based traffic flow prediction method and its
understanding. Transp. Res. Part C Emerg. Technol. 2018, 90, 166–180. [CrossRef]

15. Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction.
In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation
(YAC), Wuhan, China, 11–13 November 2016; pp. 324–328.

16. Polson, N.G.; Sokolov, V.O. Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg.
Technol. 2017, 79, 1–17. [CrossRef]

17. Huang, W.; Hong, H.; Li, M.; Hu, W.; Song, G.; Xie, K. Deep architecture for traffic flow prediction.
In International Conference on Advanced Data Mining and Applications; Springer: Berlin/Heidelberg, Germany,
December 2013; pp. 165–176.

18. Albertengo, G.; Hassan, W. Short term urban traffic forecasting using deep learning. ISPRS Ann. Photogramm.
Remote Sens. Spat. Inf. Sci. 2018, 4, 3–10. [CrossRef]

19. Wei, W.; Wu, H.; Ma, H. An AutoEncoder and LSTM-Based Traffic Flow Prediction Method. Sensors
2019, 19, 2946. [CrossRef] [PubMed]

20. Liu, P.; Zhang, Y.; Kong, D.; Yin, B. Improved Spatio-Temporal Residual Networks for Bus Traffic Flow
Prediction. Appl. Sci. 2019, 9, 615. [CrossRef]

21. Choi, Y.Y.; Shon, H.; Byon, Y.J.; Kim, D.K.; Kang, S. Enhanced Application of Principal Component Analysis
in Machine Learning for Imputation of Missing Traffic Data. Appl. Sci. 2019, 9, 2149. [CrossRef]

22. Zhang, S.; Yao, Y.; Hu, J.; Zhao, Y.; Li, S.; Hu, J. Deep autoencoder neural networks for short-term traffic
congestion prediction of transportation networks. Sensors 2019, 19, 2229. [CrossRef] [PubMed]

23. Li, J.; Wang, J. Short term traffic flow prediction based on deep learning. In Proceedings of the International
Conference on Robots & Intelligent System (ICRIS), Haikou, China, 15–16 June 2019; pp. 466–469.

24. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

25. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y.
Learning phrase representations using RNN encoder-decoder for statistical machine translation.
arXiv 2014, arXiv:1406.1078.

26. Chen, L.; Ampountolas, K.; Thakuriah, P. Predicting Uber Demand in NYC with Wavenet. In Proceedings
of the Fourth International Conference on Universal Accessibility in the Internet of Things and Smart
Environments, Athens, Greece, 24–28 February 2019; p. 1.

27. Kechyn, G.; Yu, L.; Zang, Y.; Kechyn, S. Sales forecasting using WaveNet within the framework of the Kaggle
competition. arXiv 2018, arXiv:1803.04037.

28. Caltrans, Performance Measurement System (PeMS). 2014. Available online: http://pems.dot.ca.gov
(accessed on 13 December 2019).

29. TRAP 2017. TRAP 2017: First European Conference on Traffic Mining Applied to Police Activities. Available online:
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=64497©ownerid (accessed on 14 October 2019).

30. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVT.2016.2585575
http://dx.doi.org/10.3390/s19092206
http://www.ncbi.nlm.nih.gov/pubmed/31086055
http://dx.doi.org/10.1109/TITS.2014.2311123
http://dx.doi.org/10.1016/j.trc.2018.03.001
http://dx.doi.org/10.1016/j.trc.2017.02.024
http://dx.doi.org/10.5194/isprs-annals-IV-4-W7-3-2018
http://dx.doi.org/10.3390/s19132946
http://www.ncbi.nlm.nih.gov/pubmed/31277390
http://dx.doi.org/10.3390/app9040615
http://dx.doi.org/10.3390/app9102149
http://dx.doi.org/10.3390/s19102229
http://www.ncbi.nlm.nih.gov/pubmed/31091802
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://pems.dot.ca.gov
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=64497
ownerid
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Mathematical Properties of Traffic Flow
	State of the Art on Deep Learning for Vehicular Traffic Flow Prediction
	Deep Learning Techniques
	SAEs (Stacked Auto Encoders)
	LSTM (Long–Short Term Memory)
	GRU (Gated Recurrent Unit)

	TrafficWave Architecture
	Dataset and Experimental Set-Up
	PeMS (Caltrans Performance Measurement System)
	TRAP-2017 (Traffic Mining Applied to Police Activities)

	Results
	Conclusions and Future Research
	References

