
applied
sciences

Article

A Hybrid Machine Learning and Population
Knowledge Mining Method to Minimize Makespan
and Total Tardiness of Multi-Variety Products

Yongtao Qiu 1 , Weixi Ji 1,2,* and Chaoyang Zhang 1

1 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; qyt_jiangnan@163.com (Y.Q.);
zcy_jiangnan@outlook.com (C.Z.)

2 Key Laboratory of Advanced Manufacturing Equipment Technology, Jiangnan University,
Wuxi 214122, China

* Correspondence: jiweixi_jiangnan@outlook.com; Tel.: +86-139-2150-1567

Received: 6 November 2019; Accepted: 2 December 2019; Published: 4 December 2019
����������
�������

Abstract: Nowadays, the production model of many enterprises is multi-variety customized
production, and the makespan and total tardiness are the main metrics for enterprises to make
production plans. This requires us to develop a more effective production plan promptly with limited
resources. Previous research focuses on dispatching rules and algorithms, but the application of the
knowledge mining method for multi-variety products is limited. In this paper, a hybrid machine
learning and population knowledge mining method to minimize makespan and total tardiness for
multi-variety products is proposed. First, through offline machine learning and data mining, attributes
of operations are selected to mine the initial population knowledge. Second, an addition–deletion
sorting method (ADSM) is proposed to reprioritize operations and then form the rule-based initial
population. Finally, the nondominated sorting genetic algorithm II (NSGA-II) hybrid with simulated
annealing is used to obtain the Pareto solutions. To evaluate the effectiveness of the proposed method,
three other types of initial populations were considered under different iterations and population
sizes. The experimental results demonstrate that the new approach has a good performance in solving
the multi-variety production planning problems, whether it is the function value or the performance
metric of the acquired Pareto solutions.

Keywords: initial population; data mining; multi-variety; machine learning; production planning

1. Introduction

In recent years, digital integration and artificial intelligence have accelerated at an explosive
rate. This progress inevitably leads to the rapid development of two technologies: big data [1–3] and
intelligent algorithms [4]. For enterprise production planning or scheduling, although there are many
machine learning algorithms [5–9] for this problem, there are still not many data mining methods,
especially for multi-objective job shop scheduling problems (MOJSSP) [10].

MOJSSP is an important and critical problem for today’s enterprises. A MOJSSP model can
typically be described as a set of machines and jobs under multiple objectives, where each job has
different sequential operations and each job should be processed on machines in a given order. This
pattern is in line with the production planning problem for multi-variety products with different
routings. Herein, the problem is transformed into how to rationally arrange the order of operations of
multi-variety products on various machine tools, such that two or more objectives are optimal, e.g.,
makespan and total tardiness.

The characteristics of multi-objective problems increase the computational difficulty of traditional
single-objective scheduling, while data mining [11] could extract rules from a large dataset without

Appl. Sci. 2019, 9, 5286; doi:10.3390/app9245286 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8993-4277
http://dx.doi.org/10.3390/app9245286
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/24/5286?type=check_update&version=2

Appl. Sci. 2019, 9, 5286 2 of 21

too much professional scheduling knowledge, which has more research space in solving MOJSSP and
obtaining the optimal values of the objectives.

For the benefits of data mining, a multi-objective production planning method combining machine
learning and population knowledge mining is proposed. Through the relation hierarchies mapping [12],
attributes related to processing time and due date are selected. The machine learning algorithm used
here is a hybrid metaheuristic algorithm that combines nondominated sorting genetic algorithm II
(NSGA-II) and simulated annealing. It provides training data for the mining of population knowledge,
and the rules obtained can be used as the criterion for sorting operations. Each operation gets its priority
through rules, but it sometimes fails to meet the requirements of the rules (the number of operations per
priority is fixed). Besides, the sequence of operations should also be considered. Therefore, this paper
proposes a comprehensive priority assignment procedure called addition–deletion sorting method
(ADSM) which can meet not only the optimized priority but also the requirements of rules and the
order of operations. The main contributions of this paper are highlighted as follows:

(1) A hybrid machine learning and population knowledge mining method is proposed to solve
multi-objective job shop scheduling problems.

(2) Five attributes, namely operation feature, processing time, remaining time, due date, and priorities,
are selected to mine initial population knowledge.

(3) The ADSM method is designed to reprioritize operations after the population knowledge mining.
(4) Three populations (rules, mixed, and random) with different iterations and population sizes

are compared, and three performance metrics are defined to explore the effectiveness of the
proposed method.

2. Literature Review

MOJSSP is increasingly attracting scholars and researchers. Most methods are based on a
multi-objective evolutionary algorithm (MOEA) [13], which first generates an initial population of
production planning and then iterates continuously to obtain the best results. Huang [14] proposed
a hybrid genetic algorithm to solve the scheduling problem while considering transportation time.
Souier et al. [15] used NSGA-II for real-time scheduling under uncertainty and reliability constraints.
Ahmadi et al. [16] used NSGA-II and non-dominated ranking genetic algorithm (NRGA) to optimize
the makespan and stability under the disturbance of machine breakdown. Zhou et al. [17] presented
a cooperative coevolution genetic programming with two sub-populations to generate scheduling
policies. Zhang et al. [18] utilized a genetic algorithm combined with enhanced local search to solve
the energy-efficiency job shop scheduling problems. A high-dimensional multi-objective optimization
method was proposed by Du et al. [19]. To improve the robustness of scheduling, constrained
nondominated sorting differential evolution based on decision variable classification is developed to
acquire the ideal set.

In addition to the MOEA method, there are many other approaches to solve MOJSSP. Sheikhalishahi
et al. [20] studied the multi-objective particle swarm optimization method. In their paper, makespan,
human error, and machine availability are considered. Lu et al. [21] employed a cellular grey wolf
optimizer (GWO) for the multi-objective scheduling problem with the objectives of noise and energy,
while Qin et al. [22] tried to overcome the premature convergence of the GWO in solving MOJSSP
by combining an improved tabu search algorithm. Zhou et al. [23] proposed three agent-based
hyper-heuristics to solve scheduling policies with constrains of dynamic events. Fu et al. [24] designed
a multi-objective brain storm optimization algorithm to minimize the total tardiness and energy
consumption. Their goal is to minimize multiple objectives through MOEA or other metaheuristic
algorithms, without exploiting a data mining method to improve the performance of scheduling.

With the development of industrial intelligence, data mining could be applied to management
analysis and knowledge extraction. For MOJSSP, it could play a key role to solve the scheduling problem
in the future. Recently, some researchers are trying to apply data mining to overcome the difficulties
of job shop scheduling problems. Ingimundardottir and Runarsson [25] used imitation learning to

Appl. Sci. 2019, 9, 5286 3 of 21

discover dispatching rules. Li and Olafsson [26] introduced a method for generating scheduling rules
using the decision tree. In their research, data mining extracts the rules that the attributes of jobs
determine which one is better to be processed first. Similarly, Olafsson and Li [27] applied a decision
tree to learn directly from scheduling data where the selected instances are identified as preferred
training data. Jun et al. [28] proposed a random-forest-based approach to extract dispatching rules from
the best schedules. This approach includes schedule generation, rule learning, and discretization such
that they could minimize the average total weighted tardiness for job shop scheduling. Kumar and
Rao [29] applied data mining to extract patterns in data generated by the ant colony algorithm, which
generate a rule set scheduler that approximates the ant colony algorithm’s scheduler. Nasiri et al. [30]
gained a rule-based initial population via GES/TS method, and then employed PSO and GA to verify
the advantage of this method, but lacked the consideration of operations sequence. Most of them
considered data mining as a tool to extract dispatching rules, while only a few of them utilized a
data mining approach to generate the initial population of metaheuristic methods, not to mention
multi-objective job shop scheduling problem.

This paper uses data mining to generate the rule-based initial population for MOJSSP. The
operation sequence is considered and an addition–deletion sorting method is presented to reprioritize
the order of operations of each job. The advantage of the proposed method is reflected by the NSGA-II
with simulated annealing method of the random initial population under different criteria of iteration
numbers and different initial population sizes.

3. Problem Description and Goal

The MOJSSP can be described as n jobs {J0, J1, . . . , Jn} under multiple objectives processed on
m machines {M0, M1, . . . , Mm} with different routes [31]. The processing order of each part and
the processing time of each operation oij on a machine is determined. To illustrate the problem, the
encoding of a benchmark of 10 × 10 job shop (LA18) [32] here can take an example as {9, 8, 5, 4, 2, 1, 3,
6, 7, 0, . . . ,5, 8, 9}. Each element in the operation sequence code represents a job. The ith occurrence of
the same value means the ith operation of this job. Here, the MOJSSP aims to find an order to optimize
the above two objectives simultaneously. The constraints include each job should be processed on only
one machine at a time, each machine can process only one job at a time, and the preemption is not
allowed [33].

Notations used are listed below:
i, h: index of jobs, i, h ∈ {0, 1, 2, . . . , n}
j, l: index of operations in a given job, j, l ∈ {0, 1, 2, . . . , o}
k, g: index of machines, k, g ∈ {0, 1, 2, . . . , m}
m: number of machines
n: number of jobs
o: number of operations in a given job
oij: the jth operation of the job i
Ci: the completion time of the job i
Tijk: the processing time of the jth operation of the job i on machine Mk
Eijk the completion time of the jth operation of the job i on machine Mk
Di: the due date of the ith job
Mij: set of available machines for the jth operation of job i
Index:

Xi jk =

{
1, if oi j is machined on Mk
0, otherwise

}
Two objective functions are simultaneously minimized:

min F1 = max{Ci|i = 0, 1, . . . , n} (1)

Appl. Sci. 2019, 9, 5286 4 of 21

F2 =
n∑

i=0

(Ci −Di) (2)

Subject to:
Ei jk > 0, i = 0, 1, . . . , n; j = 0, 1, . . . o; k = 0, 1, . . . , m (3)

Ei(j+1)g − Ei jk ≥ Xi(j+1)g × Ti(j+1)g, i = 0, 1, . . . , n; j = 0, 1, . . . , o− 1; k, g = 0, 1, . . . , m (4)

Ei jk − Ehlk ≥ Xi jk × Ti jk or Ehlk − Ei jk ≥ Xhlk × Thlk, i = 0, 1, . . . , n; j = 0, 1, . . . , o; k = 0, 1, . . . , m (5)

o∑
j=0

Xi jk = 1, i = 0, 1, . . . , n; k = 0, 1, . . . , m (6)

Equations (1) and (2) are used to minimize the makespan (F1) and total tardiness (F2), respectively.
Equation (3) is the variable restriction. Equation (4) ensures the sequence of operations. Equation (5) is
used to constrain operations so that they do not overlap. Equation (6) indicates an operation of a job
could only be processed on one machine, that is, an operation cannot be divided, and it can only be
processed on one machine from the beginning to completion.

4. The Hybrid Machine Learning and Population Knowledge Mining Method

The main process of the approach for MOJSSP (PAMOJSSP) is briefly illustrated in Figure 1.
The process is started from the operations’ attributes assignment. In this step, the attributes of
each operation are deduced from the optimized objective functions, corresponding to the process
information of each operation. These attributes’ information is embedded into the individual class and
then, under the calculation of metaheuristic algorithm, the Pareto frontier solutions presented as the
optimal results among these non-dominated solutions are obtained. This series of Pareto frontier can be
used as training data to obtain potential rules in these non-dominated solutions through data mining.
After the acquisition of rules, an operation priority table is obtained by the rule correspondence and
the ADSM. The rule-based initial population is eventually acquired by crossing the genes of the parent
individual in the operation priority table. In the last step, the rule-based initial population combined
with the hybrid metaheuristic algorithm obtains the new better Pareto frontier solutions for MOJSSP.

Appl. Sci. 2019, 9, 5286 4 of 21

min F1 = max{ | = 0, 1, ..., }iC i n (1)

= 0
F2 = (-)

n

i i
i

C D (2)

Subject to:

> 0, = 0, 1, ..., ; = 0, 1, ... ; = 0, 1, ...,ijkE i n j o k m (3)

1 1 1- , = 0, 1, ..., ; = 0, 1, ..., - 1; , = 0, 1, ..., i(j+)g ijk i(j+)g i(j+)gE E X T i n j o k g m (4)

- or - , = 0, 1, ..., ; = 0, 1, ..., ; = 0, 1,   ijk hlk ijk ijk hlk ijk hlk hlkE E X T E E X T i n j o k (5)

0
= 1, = 0, 1, ..., ; = 0, 1, ...,

=

o

ijk
j
X i n k m (6)

Equations (1) and (2) are used to minimize the makespan (F1) and total tardiness (F2),
respectively. Equation (3) is the variable restriction. Equation (4) ensures the sequence of operations.
Equation (5) is used to constrain operations so that they do not overlap. Equation (6) indicates an
operation of a job could only be processed on one machine, that is, an operation cannot be divided,
and it can only be processed on one machine from the beginning to completion.

4. The Hybrid Machine Learning and Population Knowledge Mining Method

The main process of the approach for MOJSSP (PAMOJSSP) is briefly illustrated in Figure 1. The
process is started from the operations’ attributes assignment. In this step, the attributes of each
operation are deduced from the optimized objective functions, corresponding to the process
information of each operation. These attributes’ information is embedded into the individual class
and then, under the calculation of metaheuristic algorithm, the Pareto frontier solutions presented as
the optimal results among these non-dominated solutions are obtained. This series of Pareto frontier
can be used as training data to obtain potential rules in these non-dominated solutions through data
mining. After the acquisition of rules, an operation priority table is obtained by the rule
correspondence and the ADSM. The rule-based initial population is eventually acquired by crossing
the genes of the parent individual in the operation priority table. In the last step, the rule-based initial
population combined with the hybrid metaheuristic algorithm obtains the new better Pareto frontier
solutions for MOJSSP.

Figure 1. Process of the proposed approach for MOJSSP.

The following part introduces the concrete implementation of the proposed method.

4.1. Attributes

On the basis of attribute-oriented induction [34], combined with the optimization objectives of
this problem, five attributes are finally determined: priority, operation feature, processing time,
remaining time, and due date. Each attribute is classified into two or more types and explained in the
following subsections.

4.1.1. Priorities

Priorities mean the position of each operation in the final sequence code. From the benchmark
of 10 × 10 job shop problem, 100 positions could be acquired and needed to be sequenced to optimize

Figure 1. Process of the proposed approach for MOJSSP.

The following part introduces the concrete implementation of the proposed method.

4.1. Attributes

On the basis of attribute-oriented induction [34], combined with the optimization objectives
of this problem, five attributes are finally determined: priority, operation feature, processing time,
remaining time, and due date. Each attribute is classified into two or more types and explained in the
following subsections.

4.1.1. Priorities

Priorities mean the position of each operation in the final sequence code. From the benchmark of
10 × 10 job shop problem, 100 positions could be acquired and needed to be sequenced to optimize
the makespan and total tardiness. Ten classes of priorities are divided, and each priority has ten
positions. That is, we divide the operation sequence code into 10 equal parts from front to back, with

Appl. Sci. 2019, 9, 5286 5 of 21

the priority of 0, 1, 2, . . . , 9, respectively. The number 0 indicates the highest priority level, while
number 9 indicates the lowest priority level.

4.1.2. Operation Feature

Operation feature means the position of each operation in its route process. Referring to
Nasiri et al. [30], the first operation is classified as “first”. The second and third operations are labeled
with “secondary”. The fourth, fifth and sixth operations are classified as “middle”. The seventh, eighth,
and ninth operations mean “later”. Finally, the tenth is labeled with “last”.

4.1.3. Processing Time

Processing time is the required processing time for each operation on its predetermined machine.
For LA18, we classified the processing time into three equal part as “short”, “middle”, and “long”.
As illustrated in Figure 2, the processing time with less than 37 is classified as “short”. The time
between 37 and 67 is “middle” and the left time is labeled with “long”.

Appl. Sci. 2019, 9, 5286 5 of 21

the makespan and total tardiness. Ten classes of priorities are divided, and each priority has ten
positions. That is, we divide the operation sequence code into 10 equal parts from front to back, with
the priority of 0, 1, 2, …, 9, respectively. The number 0 indicates the highest priority level, while
number 9 indicates the lowest priority level.

4.1.2. Operation Feature

Operation feature means the position of each operation in its route process. Referring to Nasiri
et al. [30], the first operation is classified as “first”. The second and third operations are labeled with
“secondary”. The fourth, fifth and sixth operations are classified as “middle”. The seventh, eighth,
and ninth operations mean “later”. Finally, the tenth is labeled with “last”.

4.1.3. Processing Time

Processing time is the required processing time for each operation on its predetermined
machine. For LA18, we classified the processing time into three equal part as “short”, “middle”, and
“long”. As illustrated in Figure 2, the processing time with less than 37 is classified as “short”. The
time between 37 and 67 is “middle” and the left time is labeled with “long”.

Figure 2. Processing time attribute.

4.1.4. Remaining Time

Remaining time refers to the accumulative processing time for the remaining operations to be
processed after the current operation. As with the classification of processing time, its histogram is
shown in Figure 3. The remaining time with less than 202 is defined as “short”, the time between 202
and 402 is classified as “middle”, and the time with more than 402 is labeled as “long”.

Figure 2. Processing time attribute.

4.1.4. Remaining Time

Remaining time refers to the accumulative processing time for the remaining operations to be
processed after the current operation. As with the classification of processing time, its histogram is
shown in Figure 3. The remaining time with less than 202 is defined as “short”, the time between 202
and 402 is classified as “middle”, and the time with more than 402 is labeled as “long”.

Appl. Sci. 2019, 9, 5286 5 of 21

the makespan and total tardiness. Ten classes of priorities are divided, and each priority has ten
positions. That is, we divide the operation sequence code into 10 equal parts from front to back, with
the priority of 0, 1, 2, …, 9, respectively. The number 0 indicates the highest priority level, while
number 9 indicates the lowest priority level.

4.1.2. Operation Feature

Operation feature means the position of each operation in its route process. Referring to Nasiri
et al. [30], the first operation is classified as “first”. The second and third operations are labeled with
“secondary”. The fourth, fifth and sixth operations are classified as “middle”. The seventh, eighth,
and ninth operations mean “later”. Finally, the tenth is labeled with “last”.

4.1.3. Processing Time

Processing time is the required processing time for each operation on its predetermined
machine. For LA18, we classified the processing time into three equal part as “short”, “middle”, and
“long”. As illustrated in Figure 2, the processing time with less than 37 is classified as “short”. The
time between 37 and 67 is “middle” and the left time is labeled with “long”.

Figure 2. Processing time attribute.

4.1.4. Remaining Time

Remaining time refers to the accumulative processing time for the remaining operations to be
processed after the current operation. As with the classification of processing time, its histogram is
shown in Figure 3. The remaining time with less than 202 is defined as “short”, the time between 202
and 402 is classified as “middle”, and the time with more than 402 is labeled as “long”.

Figure 3. Remaining time attribute.

Appl. Sci. 2019, 9, 5286 6 of 21

4.1.5. Due Date

Due date is the time when a job must be delivered. For optimizing the total tardiness, it is a critical
attribute which needs to be considered as an important input of data mining. Because the benchmark
LA18 only provides the processing time information, here we add the due date for each job. According
to the benchmark, the shortest makespan is 848. Therefore, we could set the due date of Jobs 0–9 as
a random number from 1100 to 1290 and arrange them in order. The due date for Job 0 is the most
urgent and the due dates of the remaining jobs increase in order, which means that the due dates for
jobs become looser. Table 1 shows the values of due date attribute for jobs.

Table 1. Due date attribute.

Job No. Due Date Class

0 1100 tight
1 1150 tight
2 1150 tight
3 1180 tight
4 1180 tight
5 1200 slack
6 1200 slack
7 1250 slack
8 1250 slack
9 1290 slack

4.2. Data Preparation

First, the operation feature, processing time, remaining time, and due date of each operation in
LA18 are matched one by one using the above methods. Table 2 lists some of its sample data. The
difference of attributes can be obtained by the significant test (α = 0.05) [35]. The null hypothesis is that
the significant difference of each column (each attribute) does not exist. The number of samples before
matching is 100, while the p-value is 0.000, which is much less than 0.05. That is, the difference between
columns is significant. After this, in the 9088 datasets obtained by 30 independent runs of NSGA-II
combined with simulated annealing, 6645 non-dominated solutions were obtained after removing the
repeated solutions. Among them, 493 sets of Pareto frontier solutions were obtained, and 66 sets of
solutions were finally selected for the computational complexity, which forms 6600 transactions in a
relational database. Table 3 shows the sample data of the trained data.

Table 2. Samples of partial data for operation attributes.

Operation Machine Processing
Time

Remaining
Time

Operation
Feature

Processing
Time

Remaining
Time Due Date

00 6 54 507 first middle long tight
01 0 87 420 secondary long long tight
02 4 48 372 secondary middle middle tight
03 3 60 312 middle middle middle tight
04 7 39 273 middle middle middle tight
05 8 35 238 middle short middle tight
. .
97 9 85 105 later long short slack
98 5 46 59 later middle short slack
99 0 59 0 last middle short slack

Appl. Sci. 2019, 9, 5286 7 of 21

Table 3. Sample data of the trained data.

ID Operation Operation
Feature

Processing
Time

Remaining
Time Due Date Priority

0 40 first long middle tight 0
1 40 first long middle tight 0
2 90 first middle long slack 0
3 90 first middle long slack 0
4 90 first middle long slack 0
5 40 first long middle tight 0
6 40 first long middle tight 0
7 80 first short long slack 0
8 80 first short long slack 0
9 00 first middle long tight 0
. .

6594 99 last middle short slack 9
6595 79 last middle Short slack 9
6596 99 last middle short slack 9
6597 89 last short short slack 9
6598 69 last long short slack 9
6599 69 last long short slack 9

4.3. Rule Mining

Rule mining refers to mining association rules between attribute set {operation feature, processing
time, remaining time, due date} and attribute {priority}. The decision tree is an effective means
of mining classification. Here, we can get 33 rules from the theory of entropy, which is shown in
Supplementary Materials File S1. However, the mined rules may have different priorities for the
same attribute set. To discriminate this difference and enhance the richness of excellent populations,
the weight of a priority class [12] in this paper is used to mine the rules behind the training data.
The minimum value of the weight we set here is 0.01, which is the lower bound of the weight of the
priority class. When the weight of a rule set under a priority class is less than this value, the rule set is
considered not to belong to the priority class. The obtained 37 dominant rules are shown in Table 4.

The rules also could be expressed in the form of “if-then”. For example, Rule 3 is given as:
If (operation feature = “first”, and processing time = “middle”, and remaining time = “long”, and

due date = “slack”)
Then, (priority = “0”, weight = “0.71”; priority = “1”, weight = “0.28”; priority = “2”,

weight = “0.01”)
It should be mentioned that there may be a case where the sum of weights is not equal to 1, which

is due to rounding and does not affect the results of rules.

Table 4. Dominant rules obtained from knowledge mining.

Id Rule Set
Priority

0 1 2 3 4 5 6 7 8 9

0 first long long slack 0.67 0.15 0.14 0.05
1 first long middle tight 0.80 0.20
2 first middle long slack 0.71 0.28 0.01
3 first middle long tight 0.98 0.02
4 first middle middle tight 0.82 0.18
5 first short long slack 1.00
6 first short long tight 0.33 0.48 0.12 0.07
7 last long short slack 0.02 0.01 0.09 0.11 0.78
8 last long short tight 0.08 0.76 0.17 0.00 0.00
9 last middle short slack 0.07 0.02 0.17 0.75
10 last middle short tight 0.08 0.21 0.39 0.32
11 last short short slack 0.03 0.27 0.70
12 last short short tight 0.06 0.16 0.02 0.14 0.63
13 later long short slack 0.01 0.08 0.09 0.06 0.19 0.39 0.19

Appl. Sci. 2019, 9, 5286 8 of 21

Table 4. Cont.

Id Rule Set
Priority

0 1 2 3 4 5 6 7 8 9

14 later long short tight 0.12 0.13 0.16 0.29 0.13 0.18
15 later middle middle slack 0.05 0.26 0.05 0.26 0.39
16 later middle short slack 0.12 0.18 0.27 0.24 0.19
17 later middle short tight 0.01 0.06 0.08 0.17 0.13 0.43 0.12
18 later short short slack 0.05 0.13 0.12 0.18 0.37 0.15
19 later short short tight 0.18 0.53 0.10 0.15 0.04
20 middle long middle slack 0.01 0.16 0.24 0.24 0.14 0.13 0.07
21 middle long middle tight 0.14 0.37 0.04 0.08 0.36 0.02
22 middle long short tight 0.05 0.27 0.40 0.21 0.08
23 middle middle middle slack 0.01 0.19 0.22 0.13 0.17 0.14 0.11 0.02
24 middle middle middle tight 0.02 0.24 0.39 0.26 0.09
25 middle middle short tight 0.30 0.36 0.15 0.18
26 middle short middle slack 0.14 0.14 0.52 0.14 0.07
27 middle short middle tight 0.07 0.18 0.15 0.11 0.08 0.22 0.17 0.02
28 middle short short slack 0.18 0.26 0.03 0.48 0.05
29 middle short short tight 0.36 0.12 0.30 0.06 0.15
30 secondary long long slack 0.03 0.62 0.17 0.05 0.04 0.05 0.05 0.01
31 secondary long long tight 0.03 0.82 0.15
32 secondary middle long slack 0.38 0.39 0.22 0.02
33 secondary middle middle slack 0.14 0.39 0.30 0.02 0.06 0.04 0.06
34 secondary middle middle tight 0.11 0.23 0.34 0.21 0.08 0.03 0.01
35 secondary short long slack 0.38 0.42 0.20
36 secondary short middle tight 0.18 0.33 0.39 0.10

4.4. Initial Population Generated Using ADSM

In this section, a rule-based initial population is finally obtained through the proposed ADSM.
First, each operation obtains its possible position according to the mined rules. For example, from
Table 2, attributes of Operation 00 are first, middle, long, and tight, which are consistent with the
rule set with ID 3 in Table 4. It means that the priority weight of the first operation of the Job 0
is {priority = 0, weight = 0.98; priority = 1, weight = 0.02}. The highest priority level is initially
defined as the possible position of the operation. Therefore, the initial priority of Operation 00 is 0.
In Supplementary Materials File S2, these maximum values are labeled and all other priority weights
can be obtained by traversing all operations. Next, the operations in each priority are readjusted to
satisfy the requirement of ten operations per priority. To gain this purpose, ADSM is proposed to
overcome problems that may arise during the sorting process.

As shown in Figure 4, we define the marked weight as the priority class of each operation. In the
process, there are three main situations. The first situation is that the priority order of operations may
be incorrect because operations are processed sequentially. That is, the weight of the marked class
of the previous operation may be higher than the next operation. While confronting this problem,
these two marked weights of the operations should be compared. Through calculating the difference
between the marked weight of each operation and the weight of the current row corresponding to the
column of the other marked class, the smaller one should remove the mark from the current weight to
the new weight of the current row where the column corresponds to the other marked weight.

After adjusting the order of all operations, the next problem is to assign the operations between
each adjacent priority group to meet the requirement of ten operations per priority. There are two
situations, namely “>10” and “<10”, which are the remaining two situations mentioned above. The
second situation (the number of marked class in the current priority column >10) takes the deletion
sorting method, that is removing the extra marked weights to the next priority column. The mark
with the smallest difference is removed, which here refers to the difference between the weight of the
last marked operation for each job in the current column and the adjacent weight in the next priority
column. In the third situation (the number of marked class in the current priority column <10), the
addition sorting method is used to add marked classes from the next priority column to the current
priority column. The mark with the smallest difference is added first, and the standard is the difference
between the weight of the first marked operation for each job in the next column and the corresponding

Appl. Sci. 2019, 9, 5286 9 of 21

weight in the current priority column. In the cases that the minimum difference is the same, the
deletion sorting method first removes the marked operations with the higher encoded number, while
the addition sorting method first provides the marked operations with the smaller encoded number.

Appl. Sci. 2019, 9, 5286 9 of 21

4.4. Initial Population Generated Using ADSM

In this section, a rule-based initial population is finally obtained through the proposed ADSM.
First, each operation obtains its possible position according to the mined rules. For example, from
Table 2, attributes of Operation 00 are first, middle, long, and tight, which are consistent with the rule
set with ID 3 in Table 4. It means that the priority weight of the first operation of the Job 0 is {priority
= 0, weight = 0.98; priority = 1, weight = 0.02}. The highest priority level is initially defined as the
possible position of the operation. Therefore, the initial priority of Operation 00 is 0. In Appendix ІІ
(in the Supplementary Materials), these maximum values are labeled and all other priority weights
can be obtained by traversing all operations. Next, the operations in each priority are readjusted to
satisfy the requirement of ten operations per priority. To gain this purpose, ADSM is proposed to
overcome problems that may arise during the sorting process.

As shown in Figure 4, we define the marked weight as the priority class of each operation. In the
process, there are three main situations. The first situation is that the priority order of operations may
be incorrect because operations are processed sequentially. That is, the weight of the marked class of
the previous operation may be higher than the next operation. While confronting this problem, these
two marked weights of the operations should be compared. Through calculating the difference
between the marked weight of each operation and the weight of the current row corresponding to
the column of the other marked class, the smaller one should remove the mark from the current
weight to the new weight of the current row where the column corresponds to the other marked
weight.

Figure 4. Framework of ADSM.

After adjusting the order of all operations, the next problem is to assign the operations between
each adjacent priority group to meet the requirement of ten operations per priority. There are two
situations, namely “>10” and “<10”, which are the remaining two situations mentioned above. The

Figure 4. Framework of ADSM.

5. Experiment

The proposed method was applied to a well-known multi-objective metaheuristic algorithm,
which runs 10 times per calculation in Eclipse. To better explain this method, a rule-based initial
population and a mixed initial population mined by this method were compared with the random
population under different criteria based on the benchmark LA18.

5.1. Selected Algorithm

For the multi-objective scheduling problem, the most popular algorithm is NSGA-II. However, it
lacks a better local search capability. It means that, when solving some cases, its results usually fall
into a locally optimal solution. To make experimental results more accurate and better, this study used
the NSGA-II combined with simulated annealing (SA). The following introduces the NSGA-II and SA
algorithm and the parameters used.

1. Nondominated sorting genetic algorithm II (NSGA-II)

Based on NSGA, developed by Deb et al. [36], NSGA-II has the advantage of fast running
speed, good robustness, and fast convergence. The encoding method is consistent with the above
described. Each gene means an operation. Each chromosome/individual represents a solution or
a sequence of all the operations waiting to be scheduled. NSGA-II combines parent and offspring

Appl. Sci. 2019, 9, 5286 10 of 21

into a new population and then obtains the non-dominated solutions by fast non-dominated
sorting. The parent is generated by disrupting genes in the chromosome. The offspring is
generated by the crossover and mutation method. The parameters are shown in Table 5.

2. Simulated annealing (SA)

Simulated annealing is an approximate method based on Monte Carlo design. It was first
introduced by Kirkpatrick et al. [37] to solve the optimization problem. SA accepts a solution that
is worse than the current solution by the Metropolis criterion, thus it is possible to jump out of
this local optimal solution to reach the global optimal solution. Table 6 lists the parameters used
in SA.

Table 5. Parameters used in NSGA-II.

Parameters Values

population size 25, 50, 100
mutation rate 0.002
crossover rate 0.9
size of tournament selection 10
number of iterations 100, 300

Table 6. Parameters used in SA.

Parameters Values

population size 25, 50, 100
initial temperature 100
end temperature 0.01
cooling rate 0.001
number of iterations 100, 300

The non-dominated solutions were obtained by NSGA-II, and then SA was used to local search.
Because of the multi-objective reasons, an objective function was randomly selected as the direction
of a search, and the obtained non-dominated solutions were stored in the external archive. SA was
applied to local search every 50 generations in this experiment.

To obtain better initial population rules, the data source of data mining must be the optimal or
near-optimal solution set, so that accurate and reliable rules can be discovered. In Tables 7 and 8, we
can see that the data obtained by NSGA-II hybrid with SA are more effective, thus the results obtained
by this algorithm were selected as the data source of knowledge mining. More comparisons between
this algorithm and other algorithms can be seen in [38].

To verify the knowledge mining method, three different initial populations of NSGA-II combined
with simulated annealing were considered as follows:

• Knowledge mining heuristic optimization method (rule)
The initial population was generated using the proposed hybrid machine learning and population
knowledge mining method.

• Heuristic optimization method (random)
The initial population of this method was completely randomized.

• Hybrid population optimization method (mixed)
Half of the initial population was generated by knowledge mining and the other half was
randomly generated.

Appl. Sci. 2019, 9, 5286 11 of 21

Table 7. Makespan of the NSGA-II and NSGA-II + SA.

IP IT NSGA-II NSGA-II + SA

25
100

best 933 853
average 974 909

300
best 895 848

average 947 910

50
100

best 895 854
average 941 912

300
best 865 848

average 931 915

100
100

best 898 848
average 938 919

300
best 861 848

average 912 943

Table 8. Total tardiness of the NSGA-II and NSGA-II + SA.

IP IT NSGA-II NSGA-II + SA

25
100

best −3860 −4529
average −3350 −4338

300
best −4001 −4524

average −3757 −4537

50
100

best −4241 −4630
average −3743 −4400

300
best −4279 −4815

average −3982 −4569

100
100

best −4273 −4698
average −3703 −4495

300
best −4539 −4698

average −4229 −4587

5.2. Performance Metrics

Three popular metrics were employed to evaluate the performance of the proposed method for
MOJSSP: Relative Error (RE), Coverage of two sets (Cov) [39], and Spacing [40]. They can be expressed
as follows:

1. Relative Error (RE)

Extending the method of Arroyo and Leung [41], we analyzed the performance of the two
acquired objectives using the relative error (RE) metric. The formulation is as follows:

RE =
F− Fbest

Fbest
× 100 (7)

where F is the mean value of makespan or total tardiness and Fbest is the best makespan or total
tardiness obtained among the iterations.

2. Coverage of Two Sets (Cov)

This indicator was used to measure the dominance between two sets of solutions. The definition
is as follows:

Cov(X, Y) =

∣∣∣{y ∈ Y;∃x ∈ X : x ≺= y
}∣∣∣

|Y|
(8)

Appl. Sci. 2019, 9, 5286 12 of 21

where X and Y are two non-dominated sets to be compared. x and y are subsets of X and Y,
respectively. “x ≺= y” represents x dominates y or x = y. The value Cov(X, Y) = 1 means that all
solutions in Y are dominated by or equal to solutions in X. The opposite, Cov(X, Y) = 0 represents
that no solutions in Y are dominated by the set X. It should be mentioned that there is not
necessarily a relationship between Cov(X, Y) and Cov(Y, X). Therefore, these two values should be
calculated independently. Cov(X, Y) > Cov(Y, X) means the set X is better than the set Y.

3. Spacing

It measures the standard deviation of the minimum distance from each solution to other solutions.
The smaller the Spacing value is, the more uniform the solution set is. The expression is as follows:

Spacing =

√√
1

n− 1

n∑
1

(d− di)
2

(9)

where n is the number of solutions in the obtained Pareto frontier, di is the minimum distance
between the solution and its nearest solution, and d is the average value of all di.

5.3. Results and Discussion

In this section, we first compare the new rule method, mixed method, and traditional random
method under different iteration times with the same initial population size. Then, under the same
number of iterations and different initial population sizes, the performance of the three methods are
compared. Finally, compared with Nasiri’s rule-based initial population [30], the effectiveness of the
ADSM is proved.

To analyze the values of the two objective functions and the average distribution from the optimal
solution, the result of different iterations of 100 initial population is shown in Table 9, where F1 and F2
represent the values of makespan and total tardiness, respectively, and the bold contents are better
values. The rules method represents the new approach for population knowledge mining applied
to the hybrid NSGA-II to solve MOJSSP. The traditional random method is the NSGA-II combined
with SA for MOJSSP. The mixed method is a combination of the two methods. Figure 5 shows the box
distribution of its function values of which the values in the rule method and the mixed method are
overall smaller than the traditional method. To some extent, the smaller are the values, the better is the
performance. Similarly, the results of different iterations of 50 and 25 initial population are shown in
Tables 10 and 11. Figures 6 and 7 are the box diagrams of the respective function values. From the
results, we can find that the population mining method has more excellent results than the traditional
random method because the rule population contains more excellent information than the traditional
random population. Although the new method has no absolute advantage in the test of 25 initial
population, it should be explained that, when the initial population size is too small, the performance
of the method will inevitably be reduced. In general, there is no obvious advantage or disadvantage
between rule method and mixed method in terms of function values, but, in term of the index RE, the
rule method is superior to the mixed method, and both are superior to the random method. That is, the
more rule-based individuals there are in the population, the more excellent information they contain,
and thus it is easier to obtain excellent solutions under a limited number of iterations.

Appl. Sci. 2019, 9, 5286 13 of 21

Table 9. Values of makespan, total tardiness, and RE of 100 initial population.

Methods Iteration F1 F2 RE

rules
100

best 848 −4696 7.5|4
average 912 −4500 /

300
best 848 −4717 6.7|2

average 905 −4622 /

mixed
100

best 848 −4618 8.1|2.7
average 916.3 −4492 /

300
best 848 −4846 10.7|4.3

average 939 −4639 /

random
100

best 848 −4698 8.4|4.3
average 919 −4495 /

300
best 848 −4698 11.2|2.4

average 940 −4587 /Appl. Sci. 2019, 9, 5286 14 of 21

 (a) (b)

 (c) (d)

Figure 5. Distribution of makespan and total tardiness of 100 initial population sizes under different
iteration numbers: (a) makespan under 100 iterations; (b) total tardiness under 100 iterations; (c)
makespan under 300 iterations; and (d) total tardiness under 300 iterations.

Table 10. Values of makespan, total tardiness, and RE of 50 initial population.

Methods Iteration F1 F2 RE

rules

100
best 852 −4568 5.94|3.27

average 902.6 −4418.4 /

300
best 848 −4835 8.54|4.87

average 920.4 −4599.3 /

mixed

100
best 848 −4618 6.03|3.52

average 899.1 −4455.6 /

300
best 848 −4868 10.74|6.04

average 939.1 −4573.8 /

random

100
best 854 −4630 6.77|4.97

average 911.8 −4400 /

300
best 848 −4815 7.88|5.12

average 914.8 −4568.5 /

Table 11. Values of makespan, total tardiness, and RE of 25 initial population.

Methods Iteration F1 F2 RE

rules
100

best 852 −4693 8.49|6.58

average 924.3 −4384.3 /

300 best 848 −4731 5.83|4.34

Figure 5. Distribution of makespan and total tardiness of 100 initial population sizes under different
iteration numbers: (a) makespan under 100 iterations; (b) total tardiness under 100 iterations;
(c) makespan under 300 iterations; and (d) total tardiness under 300 iterations.

Appl. Sci. 2019, 9, 5286 14 of 21

Appl. Sci. 2019, 9, 5286 15 of 21

average 897.4 −4525.9 /

mixed

100
best 855 −4593 5.38|5.11

average 901 −4358.2 /

300
best 848 −4810 7.63|5.59

average 912.7 −4540.9 /

random

100
best 853 −4529 6.58|4.22

average 909.1 −4337.8 /

300
best 848 −4824 7.28|5.94

average 909.7 −4537.4 /

 (a) (b)

 (c) (d)

Figure 6. Distribution of makespan and total tardiness of 50 initial population sizes under different
iteration numbers: (a) makespan under 100 iterations; (b) total tardiness under 100 iterations; (c)
makespan under 300 iterations; and (d) total tardiness under 300 iterations.

 (a) (b)

Figure 6. Distribution of makespan and total tardiness of 50 initial population sizes under different
iteration numbers: (a) makespan under 100 iterations; (b) total tardiness under 100 iterations;
(c) makespan under 300 iterations; and (d) total tardiness under 300 iterations.

Table 10. Values of makespan, total tardiness, and RE of 50 initial population.

Methods Iteration F1 F2 RE

rules
100

best 852 −4568 5.94|3.27
average 902.6 −4418.4 /

300
best 848 −4835 8.54|4.87

average 920.4 −4599.3 /

mixed
100

best 848 −4618 6.03|3.52
average 899.1 −4455.6 /

300
best 848 −4868 10.74|6.04

average 939.1 −4573.8 /

random
100

best 854 −4630 6.77|4.97
average 911.8 −4400 /

300
best 848 −4815 7.88|5.12

average 914.8 −4568.5 /

Appl. Sci. 2019, 9, 5286 15 of 21

Table 11. Values of makespan, total tardiness, and RE of 25 initial population.

Methods Iteration F1 F2 RE

rules
100

best 852 −4693 8.49|6.58
average 924.3 −4384.3 /

300
best 848 −4731 5.83|4.34

average 897.4 −4525.9 /

mixed
100

best 855 −4593 5.38|5.11
average 901 −4358.2 /

300
best 848 −4810 7.63|5.59

average 912.7 −4540.9 /

random
100

best 853 −4529 6.58|4.22
average 909.1 −4337.8 /

300
best 848 −4824 7.28|5.94

average 909.7 −4537.4 /

Appl. Sci. 2019, 9, 5286 15 of 21

average 897.4 −4525.9 /

mixed

100
best 855 −4593 5.38|5.11

average 901 −4358.2 /

300
best 848 −4810 7.63|5.59

average 912.7 −4540.9 /

random

100
best 853 −4529 6.58|4.22

average 909.1 −4337.8 /

300
best 848 −4824 7.28|5.94

average 909.7 −4537.4 /

 (a) (b)

 (c) (d)

Figure 6. Distribution of makespan and total tardiness of 50 initial population sizes under different
iteration numbers: (a) makespan under 100 iterations; (b) total tardiness under 100 iterations; (c)
makespan under 300 iterations; and (d) total tardiness under 300 iterations.

 (a) (b)

Appl. Sci. 2019, 9, 5286 16 of 21

 (c) (d)

Figure 7. Distribution of makespan and total tardiness of 25 initial population sizes under different
iteration numbers: (a) makespan under 100 iterations; (b) total tardiness under 100 iterations; (c)
makespan under 300 iterations; and (d) total tardiness under 300 iterations.

Since this paper optimizes two objectives at the same time, the values of makespan or total
tardiness cannot be separately compared. Thus, the efficiency of the method was determined by the
performance metrics of the acquired Pareto solutions, especially the dominance metric (Cov). Here,
the performance metrics of the three methods are compared under different initial population sizes
with the same number of iterations, as shown in Tables 12–14, where IP represents the size of the
initial population and the bold contents are the better values. In Table 12, the Cov value of the rule
method is generally higher than that of the traditional method. The larger is the Cov value, the higher
is the dominant ability. That is, in terms of dominance, the rule method is superior to the traditional
random method in comparing the size of different initial populations. At the same time, the Spacing
values of the new method is generally smaller than that of the traditional method. From Equation (9),
it can be seen that the distribution of the rule method is also superior to the random method in
considering the initial population size as a variable. Figure 8 shows the box diagram of the Cov of the
rule method vs. the random method. From the box diagram, we can find more intuitively that the
Pareto solution of the rule method is superior to that of the traditional random method. Similarly,
from the results in Tables 13 and 14, we can conclude that the performance of rule method in Cov is
also “rules > mixed > random”. For Spacing performance, the mixed method is better than the rule
method, which shows that the mixed method can more easily obtain a uniformly distributed solution
set with a limited number of iterations. Overall, the Spacing metrics of both the rule and mixed
methods are superior to the random method.

Table 12. Values of Cov and Spacing (rules vs. random).

Methods IP
IT100 IT300

Cov Spacing Cov Spacing

rules

25
best 1

37
1

8.8
average 0.54 0.4

50
best 1

25
1

39
average 0.59 0.38

100
best 1

29
1

22
average 0.56 0.47

random

25
best 0.75

76
1

50.5
average 0.19 0.35

50
best 0.9

65
1

45
average 0.21 0.43

Figure 7. Distribution of makespan and total tardiness of 25 initial population sizes under different
iteration numbers: (a) makespan under 100 iterations; (b) total tardiness under 100 iterations;
(c) makespan under 300 iterations; and (d) total tardiness under 300 iterations.

Since this paper optimizes two objectives at the same time, the values of makespan or total
tardiness cannot be separately compared. Thus, the efficiency of the method was determined by the
performance metrics of the acquired Pareto solutions, especially the dominance metric (Cov). Here,
the performance metrics of the three methods are compared under different initial population sizes
with the same number of iterations, as shown in Tables 12–14, where IP represents the size of the initial
population and the bold contents are the better values. In Table 12, the Cov value of the rule method

Appl. Sci. 2019, 9, 5286 16 of 21

is generally higher than that of the traditional method. The larger is the Cov value, the higher is the
dominant ability. That is, in terms of dominance, the rule method is superior to the traditional random
method in comparing the size of different initial populations. At the same time, the Spacing values of
the new method is generally smaller than that of the traditional method. From Equation (9), it can be
seen that the distribution of the rule method is also superior to the random method in considering the
initial population size as a variable. Figure 8 shows the box diagram of the Cov of the rule method vs.
the random method. From the box diagram, we can find more intuitively that the Pareto solution of
the rule method is superior to that of the traditional random method. Similarly, from the results in
Tables 13 and 14, we can conclude that the performance of rule method in Cov is also “rules > mixed >

random”. For Spacing performance, the mixed method is better than the rule method, which shows
that the mixed method can more easily obtain a uniformly distributed solution set with a limited
number of iterations. Overall, the Spacing metrics of both the rule and mixed methods are superior to
the random method.

Table 12. Values of Cov and Spacing (rules vs. random).

Methods IP
IT100 IT300

Cov Spacing Cov Spacing

rules

25
best 1

37
1

8.8average 0.54 0.4

50
best 1

25
1

39average 0.59 0.38

100
best 1

29
1

22average 0.56 0.47

random

25
best 0.75

76
1

50.5average 0.19 0.35

50
best 0.9

65
1

45average 0.21 0.43

100
best 0.8

37
0.86

18average 0.19 0.29

Table 13. Values of Cov and Spacing (mixed vs. random).

Methods IP
IT100 IT300

Cov Spacing Cov Spacing

mixed

25
best 1

19
1

48average 0.63 0.31

50
best 1

24
0.86

37average 0.45 0.35

100
best 1

16
0.92

20average 0.41 0.45

random

25
best 0.27

76
1

50.5average 0.11 0.43

50
best 1

65
1

45average 0.33 0.4

100
best 1

37
1

18average 0.39 0.33

Appl. Sci. 2019, 9, 5286 17 of 21

Table 14. Values of Cov and Spacing (rules vs. mixed).

Methods IP
IT100 IT300

Cov Spacing Cov Spacing

rules

25
best 1

37
1

8.8average 0.24 0.46

50
best 1

25
1

39average 0.47 0.44

100
best 1

29
1

22average 0.53 0.41

mixed

25
best 1

19
0.8

48average 0.41 0.24

50
best 1

24
0.88

37average 0.31 0.41

100
best 1

16
1

20average 0.21 0.37

Appl. Sci. 2019, 9, 5286 17 of 21

100
best 0.8

37
0.86

18
average 0.19 0.29

 (a) (b) (c)

 (d) (e) (f)

Figure 8. Box diagram of Cov of the rule method vs. random method with different sizes of initial
population under 100 and 300 iterations: (a) IP = 25 under 100 iterations; (b) IP = 50 under 100
iterations; (c) IP = 100 under 100 iterations; (d) IP = 25 under 300 iterations; (e) IP = 50 under 300
iterations; and (f) IP = 100 under 300 iterations.

Table 13. Values of Cov and Spacing (mixed vs. random).

Methods IP
IT100 IT300

Cov Spacing Cov Spacing

mixed

25
best 1

19
1

48
average 0.63 0.31

50
best 1

24
0.86

37
average 0.45 0.35

100
best 1

16
0.92

20
average 0.41 0.45

random

25
best 0.27

76
1

50.5
average 0.11 0.43

50
best 1

65
1

45
average 0.33 0.4

100
best 1

37
1

18
average 0.39 0.33

Table 14. Values of Cov and Spacing (rules vs. mixed).

Methods IP IT100 IT300

Figure 8. Box diagram of Cov of the rule method vs. random method with different sizes of initial
population under 100 and 300 iterations: (a) IP = 25 under 100 iterations; (b) IP = 50 under 100 iterations;
(c) IP = 100 under 100 iterations; (d) IP = 25 under 300 iterations; (e) IP = 50 under 300 iterations; and
(f) IP = 100 under 300 iterations.

To better illustrate the proposed ADSM, here we compare it with the Nasiri’s method. Compared
with the operation sequence and knowledge constraints that are not considered, Table 15 shows that the
proposed ADSM has an impact on the value of the single objective function. Although the advantage
of the ADSM is not obvious in terms of single objective value, this is because the influence of local
adjustment of operations on a single objective value is relatively small under multiple iterations. From
the perspective of multi-objective, it significantly improves the performance metrics of dominance
and distribution, as shown in Table 16. The results show that, under different iterations and initial
population sizes, the Cov values and Spacing values of the ADSM are better, which demonstrates that
it is more effective in solving multi-objective problems. On the other hand, the validity of the method

Appl. Sci. 2019, 9, 5286 18 of 21

ADSM is proved, which shows that the new proposed method can overcome the problem of sequencing
the operations under knowledge mining as well as meet the requirement of high performance.

Table 15. Comparison of function values of two rule-based populations.

Methods IP IT F1 F2 RE

ADSM

25
100

best 852 −4693 8.49|6.58
average 924.3 −4384.3 /

300
best 848 −4731 5.83|4.34

average 897.4 −4525.9 /

50
100

best 852 −4568 5.94|3.27
average 902.6 −4418.4 /

300
best 848 −4835 8.54|4.87

average 920.4 −4599.3 /

100
100

best 848 −4696 7.5|4
average 912 −4500 /

300
best 848 −4717 6.7|2

average 905 −4622 /

Nasiri’s

25
100

best 853 −4587 4|5.8
average 887 −4319 /

300
best 848 −4810 8.84|5.51

average 923 −4545 /

50
100

best 848 −4558 7.8|1.34
average 914.2 −4497 /

300
best 848 −4822 7.1|5.4

average 908 −4561.5 /

100
100

best 848 −4642 6|3.8
average 896.3 −4467 /

300
best 848 −4799 12.7|4.6

average 956 −4576 /

Table 16. Comparison of Cov and Spacing of two rule-based populations.

Methods IP
IT100 IT300

Cov Spacing Cov Spacing

ADSM

25
best 1

37
1

8.8average 0.54 0.42

50
best 1

25
1

39average 0.59 0.47

100
best 1

29
1

22average 0.55 0.39

Nasiri’s

25
best 0.75

41
1

44average 0.19 0.35

50
best 0.9

46
1

29average 0.21 0.33

100
best 0.8

71
1

64average 0.16 0.37

6. Conclusions

This paper presents a population knowledge mining approach combined with a hybrid machine
learning algorithm to solve the MOJSSP with makespan and total tardiness criteria. The purpose

Appl. Sci. 2019, 9, 5286 19 of 21

of this method is to find a rule-based initial population from good production planning, which can
produce better Pareto solutions than the traditional stochastic methods. Many optimal or near-optimal
solutions are created by the method of NSGA-II integrated with SA on a benchmark of 10 × 10 job
shop problem (LA18), and a training dataset with selected operations’ attributes is therefore acquired.
For mining knowledge, the weight of priority is used to extract 37 potential rules, which map the
relationship between the attribute set and priority.

To form the rule-based initial population, a complicated ADSM is proposed to assign each
operation a priority class. This sorting method overcomes the problem of misalignment of the sequence
of operations and overcomes the problem of insufficient or overflowing operations owned by the
priority class. After generating an initial population set based on the data mining and ADSM, we
compared it with the NSGA-II hybrid SA method of the mixed, random, and Nasiri’s initial population.
Considering the different numbers of iterations and the sizes of the initial population, a series of
comparative and computational experiments were conducted. The results show that the new proposed
method is better than the traditional method in terms of the magnitude and relative error of each
objective function, and the Cov and Spacing performance index of Pareto solutions.

The future works of our study will mainly focus on other methods of initial population
formation and the application of the proposed method to other cases. Besides, considering other
multi-objective problems and how to choose a mining algorithm to better improve the effect of rules
need further research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/24/5286/s1.

Author Contributions: Conceptualization, Y.Q.; data curation, Y.Q.; methodology, Y.Q.; project administration,
W.J.; investigation, C.Z.; writing—original draft preparation, Y.Q.; writing—review and editing, Y.Q.

Funding: This research was funded by the Natural Science Foundation of Jiangsu Province, grant
number BK20170190.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big
Data–evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [CrossRef]

2. Dai, H.; Wang, H.; Xu, G.; Wan, J.; Imran, M. Big data analytics for manufacturing internet of things:
Opportunities, challenges and enabling technologies. Enterp. Inf. Syst. 2019, 1–25. [CrossRef]

3. Kuo, Y.; Kusiak, A. From data to big data in production research: The past and future trends. Int. J. Prod. Res.
2019, 57, 4828–4853. [CrossRef]

4. Lin, S.; Dong, C.; Chen, M.; Zhang, F.; Chen, J. Summary of new group intelligent optimization algorithms.
Comput. Eng. Appl. 2018, 54, 1–9.

5. Gao, L.; Pan, Q. A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained
flexible job shop scheduling problem. Inf. Sci. 2016, 372, 655–676. [CrossRef]

6. Ruiz, R.; Pan, Q.; Naderi, B. Iterated Greedy methods for the distributed permutation flowshop scheduling
problem. Omega 2019, 83, 213–222. [CrossRef]

7. Dao, T.; Pan, T.; Nguyen, T.; Pan, J. Parallel bat algorithm for optimizing makespan in job shop scheduling
problems. J. Intell. Manuf. 2018, 29, 451–462. [CrossRef]

8. Fan, B.; Yang, W.; Zhang, Z. Solving the two-stage hybrid flow shop scheduling problem based on mutant
firefly algorithm. J. Ambient Intell. Humaniz. Comput. 2019, 10, 979–990. [CrossRef]

9. Li, M.; Lei, D.; Cai, J. Two-level imperialist competitive algorithm for energy-efficient hybrid flow shop
scheduling problem with relative importance of objectives. Swarm Evol. Comput. 2019, 49, 34–43. [CrossRef]

10. Gong, G.; Deng, Q.; Chiong, R.; Gong, X.; Huang, H. An effective memetic algorithm for multi-objective
job-shop scheduling. Knowl. Based Syst. 2019, 182, 104840. [CrossRef]

11. Wiemer, H.; Drowatzky, L.; Ihlenfeldt, S. Data mining methodology for engineering applications (DMME)—A
holistic extension to the CRISP-DM model. Appl. Sci. 2019, 9, 2407. [CrossRef]

http://www.mdpi.com/2076-3417/9/24/5286/s1
http://dx.doi.org/10.1016/j.ijinfomgt.2019.01.021
http://dx.doi.org/10.1080/17517575.2019.1633689
http://dx.doi.org/10.1080/00207543.2018.1443230
http://dx.doi.org/10.1016/j.ins.2016.08.046
http://dx.doi.org/10.1016/j.omega.2018.03.004
http://dx.doi.org/10.1007/s10845-015-1121-x
http://dx.doi.org/10.1007/s12652-018-0903-3
http://dx.doi.org/10.1016/j.swevo.2019.05.006
http://dx.doi.org/10.1016/j.knosys.2019.07.011
http://dx.doi.org/10.3390/app9122407

Appl. Sci. 2019, 9, 5286 20 of 21

12. Koonce, D.A.; Tsai, S.C. Using data mining to find patterns in genetic algorithm solutions to a job shop
schedule. Comput. Ind. Eng. 2000, 38, 361–374. [CrossRef]

13. Wu, B.; Hao, K.; Cai, X.; Wang, T. An integrated algorithm for multi-agent fault-tolerant scheduling based on
MOEA. Future Gener. Comput. Syst. 2019, 94, 51–61. [CrossRef]

14. Huang, X. A hybrid genetic algorithm for multi-objective flexible job shop scheduling problem considering
transportation time. Int. J. Intell. Comput. Cybern. 2019, 12, 154–174. [CrossRef]

15. Souier, M.; Dahane, M.; Maliki, F. An NSGA-II-based multiobjective approach for real-time routing selection
in a flexible manufacturing system under uncertainty and reliability constraints. Int. J. Adv. Manuf. Technol.
2019, 100, 2813–2829. [CrossRef]

16. Ahmadi, E.; Zandieh, M.; Farrokh, M.; Emami, S.M. A multi objective optimization approach for flexible job
shop scheduling problem under random machine breakdown by evolutionary algorithms. Comput. Oper.
Res. 2016, 73, 56–66. [CrossRef]

17. Zhou, Y.; Yang, J.; Zheng, L. Hyper-heuristic coevolution of machine assignment and job sequencing rules
for multi-objective dynamic flexible job shop scheduling. IEEE Access 2019, 7, 68–88. [CrossRef]

18. Zhang, R.; Chiong, R. Solving the energy-efficient job shop scheduling problem: A multi-objective genetic
algorithm with enhanced local search for minimizing the total weighted tardiness and total energy
consumption. J. Clean. Prod. 2016, 112, 3361–3375. [CrossRef]

19. Du, W.; Zhong, W.; Tang, Y.; Du, W.; Jin, Y. High-dimensional robust multi-objective optimization for
order scheduling: A decision variable classification approach. IEEE Trans. Ind. Inform. 2019, 15, 293–304.
[CrossRef]

20. Sheikhalishahi, M.; Eskandari, N.; Mashayekhi, A.; Azadeh, A. Multi-objective open shop scheduling by
considering human error and preventive maintenance. Appl. Math. Model. 2019, 67, 573–587. [CrossRef]

21. Lu, C.; Gao, L.; Pan, Q.; Li, X.; Zheng, J. A multi-objective cellular grey wolf optimizer for hybrid flowshop
scheduling problem considering noise pollution. Appl. Soft Comput. 2019, 75, 728–749. [CrossRef]

22. Qin, H.; Fan, P.; Tang, H.; Huang, P.; Fang, B.; Pan, S. An effective hybrid discrete grey wolf optimizer for the
casting production scheduling problem with multi-objective and multi-constraint. Comput. Ind. Eng. 2019,
128, 458–476. [CrossRef]

23. Zhou, Y.; Yang, J.; Zheng, L. Multi-agent based hyper-heuristics for multi-objective flexible job shop
scheduling: A case study in an aero-engine blade manufacturing plant. IEEE Access 2019, 7, 21147–21176.
[CrossRef]

24. Fu, Y.; Wang, H.; Huang, M. Integrated scheduling for a distributed manufacturing system: A stochastic
multi-objective model. Enterp. Inf. Syst. 2019, 13, 557–573. [CrossRef]

25. Ingimundardottir, H.; Runarsson, T.P. Discovering dispatching rules from data using imitation learning: A
case study for the job-shop problem. J. Sched. 2018, 21, 413–428. [CrossRef]

26. Li, X.; Olafsson, S. Discovering dispatching rules using data mining. J. Sched. 2005, 8, 515–527. [CrossRef]
27. Olafsson, S.; Li, X. Learning effective new single machine dispatching rules from optimal scheduling data.

Int. J. Prod. Econ. 2010, 128, 118–126. [CrossRef]
28. Jun, S.; Lee, S.; Chun, H. Learning dispatching rules using random forest in flexible job shop scheduling

problems. Int. J. Prod. Res. 2019, 3290–3310. [CrossRef]
29. Kumar, S.; Rao, C.S.P. Application of ant colony, genetic algorithm and data mining-based techniques for

scheduling. Robot. Comput. Integr. Manuf. 2009, 25, 901–908. [CrossRef]
30. Nasiri, M.M.; Salesi, S.; Rahbari, A.; Salmanzadeh Meydani, N.; Abdollai, M. A data mining approach for

population-based methods to solve the JSSP. Soft Comput. 2019, 23, 11107–11122. [CrossRef]
31. Hillier, F.S.; Lieberman, G.J. Introduction to Operations Research, 7th ed.; McGraw-Hill Science: New York, NY,

USA, 2001.
32. Lawrence, S. An Experimental Investigation of Heuristic Scheduling Techniques; Carnegie-Mellon University:

Pittsburgh, PA, USA, 1984.
33. Fu, Y.; Wang, H.; Tian, G.; Li, Z.; Hu, H. Two-agent stochastic flow shop deteriorating scheduling via a hybrid

multi-objective evolutionary algorithm. J. Intell. Manuf. 2019, 30, 2257–2272. [CrossRef]
34. Cai, Y. Attribute-Oriented Induction in Relational Databases, Knowledge Discovery in Databases. Ph.D.

Thesis, Simon Fraser University, Burnaby, BC, Canada, 1989.
35. González-Briones, A.; Prieto, J.; De La Prieta, F.; Herrera-Viedma, E.; Corchado, J. Energy optimization using

a case-based reasoning strategy. Sensors 2018, 18, 865. [CrossRef]

http://dx.doi.org/10.1016/S0360-8352(00)00050-4
http://dx.doi.org/10.1016/j.future.2018.11.001
http://dx.doi.org/10.1108/IJICC-10-2018-0136
http://dx.doi.org/10.1007/s00170-018-2897-6
http://dx.doi.org/10.1016/j.cor.2016.03.009
http://dx.doi.org/10.1109/ACCESS.2018.2883802
http://dx.doi.org/10.1016/j.jclepro.2015.09.097
http://dx.doi.org/10.1109/TII.2018.2836189
http://dx.doi.org/10.1016/j.apm.2018.11.015
http://dx.doi.org/10.1016/j.asoc.2018.11.043
http://dx.doi.org/10.1016/j.cie.2018.12.061
http://dx.doi.org/10.1109/ACCESS.2019.2897603
http://dx.doi.org/10.1080/17517575.2018.1545160
http://dx.doi.org/10.1007/s10951-017-0534-0
http://dx.doi.org/10.1007/s10951-005-4781-0
http://dx.doi.org/10.1016/j.ijpe.2010.06.004
http://dx.doi.org/10.1080/00207543.2019.1581954
http://dx.doi.org/10.1016/j.rcim.2009.04.015
http://dx.doi.org/10.1007/s00500-018-3663-2
http://dx.doi.org/10.1007/s10845-017-1385-4
http://dx.doi.org/10.3390/s18030865

Appl. Sci. 2019, 9, 5286 21 of 21

36. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2002, 2, 182–197. [CrossRef]

37. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 4598, 671–680.
[CrossRef] [PubMed]

38. Cobos, C.; Erazo, C.; Luna, J.; Mendoza, M.; Gaviria, C.; Arteaga, C.; Paz, A. Multi-objective memetic
algorithm based on NSGA-II and simulated annealing for calibrating CORSIM micro-simulation models
of vehicular traffic flow. In Conference of the Spanish Association for Artificial Intelligence; Springer: Cham,
Switzerland, 2016.

39. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength
pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]

40. Schott, J.R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization; Massachusetts
Institute of Technology: Cambridge, MA, USA, 1995.

41. Arroyo, J.E.C.; Leung, J.Y.T. An effective iterated greedy algorithm for scheduling unrelated parallel batch
machines with non-identical capacities and unequal ready times. Comput. Ind. Eng. 2017, 105, 84–100.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1016/j.cie.2016.12.038
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Problem Description and Goal
	The Hybrid Machine Learning and Population Knowledge Mining Method
	Attributes
	Priorities
	Operation Feature
	Processing Time
	Remaining Time
	Due Date

	Data Preparation
	Rule Mining
	Initial Population Generated Using ADSM

	Experiment
	Selected Algorithm
	Performance Metrics
	Results and Discussion

	Conclusions
	References

