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Abstract: Throughout this paper, we describe an analytical solution for a three-qubit system characterized
by a finite temperature within a thermodynamic limit influenced by a quantum spin environment.
As applications to the presented solution, we investigate the effect of the temperature, the coupling
constant ε0 within the spin- qubit system and an external magnetic field on the three-particles residual
entanglement Nabc, the concurrence C(ρ), the information entropy H(σZ) and the linear entropy PP(t).
The results show an inverse relationship between the entanglement and entropy, where the degree of
both is controlled by controlling the temperature T and the coupling constant ε0.
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1. Introduction

Due to their significant role in quantum computation, the principles of open quantum schemes
have received increasing consideration in the latest years. Usually, these theories examine the evolution
concerning a quantum system in interaction with a specific nature which generally consists of bosons,
fermions or localized spins [1–3]. The characteristics of the quantum can be obtained through the average
of the degrees of freedom in the environment. Motivated by the progress in quantum information and
comp, there has been a growing interest in mathematical and physical exploration of highly entangled
states. This entanglement occurs when two or more particles are integrated and generated to the extent that
their quantum states become inseparable and can not be depicted independently. Entangling between both
near and remote pairs of qubits has yielded various applications in the quantum information processing,
such as the entanglement generation in nanophotonic architectures [4–10]. Recently, there has been a rising
curiosity in exploring the entanglement within the systems of quantum spin together with Heisenberg
interactions [11–16]. Being both a simple and at the same time solid system, the Heisenberg model was used
to visualize a quantum computer, and also to simulate nuclear and electronic spins [17,18], and quantum
dots [19,20]. Moreover, it has demonstrated a very vital applicability in quantum state transfer [21].
However, the previous studies were not essentially discussing the relationship between the system and
its surrounding environment as the pivotal point of interest, as any quantum system would naturally
interact with the surrounding environment. What is the most crucial, thus, is not the interaction itself, but,
practically speaking, the decoherence which that interaction leads to. Investigating the decoherence [22,23]
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process is undoubtedly fundamental for the theoretical basics. However, penetrating the process of
decoherence within the quantum system is more important for building strategies of error correction, by
which the collapse of quantum computers [24] can be detained. When interacting with an environment, the
components of a composite quantum system, such as a multi-qubit quantum computer, are disentangled
under the influence of the decoherence process. Qubits of a quantum computer may sometimes interact
with substantially independent environments. Yet, in some cases, those environments are not completely
independent, as the correlations within them are effectively significant.

Increasingly applied in quantum information theory and quantum computation [25], the dynamic
behavior of an individual spin or multi-spin system’s interaction with a spin bath has recently gained
much attention [26–29]. A study of three-qubit quantum state has special significance because a three-qubit
quantum state is the real start towards investigating multipartite entanglement [30]. Three-qubit quantum
entanglement can also exhibit more complex entanglement structure than the two-qubit quantum
entanglement [31]. However, in most cases of the non-Markovian process, it is quite tricky to get a specific
solution to the time evolution of the reduced density matrix which is traced over by the surrounding
environment. This casts more importance on our endeavor to study the case of the non-Markovian
three-qubit quantum system by employing an innovative operator procedure to reach a specific solution
to our system.

The problem we are introducing in this paper is a quantum system composed of three qubits
characterized by a finite temperature within a thermodynamic limit influenced by a quantum spin
environment. We obtained the situation of a two-qubit system through the tracing of a three-qubit case.
The article [32] was studying the two-qubit state, and our paper has studied a three-qubit, so our paper
is the extension of [32]. Through our case, we can reach the state of the two-qubit, and by changing
some parameters we get the results obtained in [32]; i.e., the results are consistent with the results of
reference [32]. Additionally, if we follow the same treatment, we can solve more atoms. We have calculated
the entanglement and entropy as applications on our problem. We calculated the three-particle residual
entanglement Nabc as a kind of entanglement on the case of a three-qubit system, while we calculated the
concurrence C(ρ) on a two-qubit quantum system. We calculated the information entropy H(σZ) and
the linear entropy PP(t) in both cases, two-qubit and three-qubit. The aim of these calculations was to
establish a relationship between the entanglement and entropy, determined by the change of parameters.

This paper is ordered according to the following arrangement: The Hamiltonian system, along
with the analytical solution of a three-qubit system characterized by a finite temperature within a
thermodynamic limit influenced by a quantum spin environment, is discussed in Section 2. In Section 3,
we discuss the three-particles residual entanglement Nabc, the concurrence C(ρ), the information entropy
H(σZ) and the linear entropy PP(t). Finally, Section 4 presents the conclusion.

2. The Model

We study a quantum system composed of three qubits characterized by a finite temperature within a
thermodynamic limit influenced by a quantum spin environment. The Hamiltonian we are studying is the
extension of the Hamiltonian studied in the reference [32]. Here, we consider that the anisotropy and the
magnetic field are not homogeneous, yet the spin environment remains without change. The Hamiltonian
system can be written as:



Appl. Sci. 2019, 9, 5222 3 of 16

H = HP + HPQ + HQ, (1)

HP = ε0(Sz
01 + Sz

02 + Sz
03) + ω(S+

01S−02 + S−01S+
02 + S+

02S−03 + S−02S+
03 (2)

+S+
01S−03 + S−01S+

03),

HQ =
q
M

M

∑
r 6=j

(S+
r S−j + S−r S+

j ), (3)

HPQ =
q0√
M

[(S+
01 + S+

02 + S+
03)

M

∑
r=1

S−r ] +
q0√
M

[(S−01 + S−02 + S−03)
M

∑
r=1

S+
r ], (4)

where HP, HQ and HPQ are the system Hamiltonian, bath and system–bath interaction. S+
0r and S−0r

(r = 1, 2, 3) denote the spin system operators’ [33–36].
Through the substitution of the operator of the collective angular momentum, J± = ∑M

r=1 S±r ,
the Hamiltonian of Equations (3) and (4) can be written as follows:

HPQ =
q0√
M

[(S+
01 + S+

02 + S+
03)J−] +

q0√
M

[(S−01 + S−02 + S−03)J+], (5)

HQ =
q
M

M

∑
r 6=j

(J+ J− + J− J+)− q. (6)

We apply the Holstein–Primakoff transformation in order to transform the infinite-dimensional
Fock space of boson creation and annihilation operators to finite-dimensional subspaces of the spin
operators [37].

The transformation of Holstein–Primakoff can be expressed as:

J+ = b†(
√

M− b†b), J− = (
√

M− b†b)b, with
[
b†, b

]
= 1. (7)

The Hamiltonian in Equations (5) and (6) can be written as:

HPQ = q0[(S+
01 + S+

02 + S+
03)(

√
1− b†b

M
)b] + q0[(S−01 + S−02 + S−03)b

†(

√
1− b†b

M
)], (8)

HQ = q[b†(1− b†b
M

)b + (

√
1− b†b

M
)bb†(

√
1− b†b

M
)]− q. (9)

If M −→ ∞ (when the system characterized by a finite temperature within a thermodynamic limit),
HPQ and HQ can be written as follows:

HPQ = q0[(S+
01 + S+

02 + S+
03)b + (S−01 + S−02 + S−03)b

†], (10)

HQ = 2qb†b. (11)

Here, we find the approximation that b†b
M approaches zero, due to the deficient energy of the elementary

excitations according to the interconnection between the system and the bath. Accordingly, we deduce
the time evolution of the density operator of the spin quantum system. Taking into consideration that the
Hamiltonian is time-independent, we can present the density matrix as follows:

ρ(t) = exp(−iHt)ρ(0) exp(iHt). (12)
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We suppose that ρ(0) = ρP(0)⊗ ρQ, i.e., ρ(0) is separable between the bath and system. The initial

state of the spin system can be described by ρP(0), and ρQ =
exp(

−HQ
KT )

R defines the spin environment,
where R = 1

1−exp(−2q
T )

is the separation function, T is the temperature and K is the Boltzmann constant

(K = 1). The reduced density matrix of scheme is attained by deriving the trace over the spin system; i.e.,
ρP(t) = TrQ(ρ(t)).

By taking the initial state |ψ〉 = cos α cos β |− −+〉+ cos α sin β |−+−〉+ sin α |+−−〉, 0 ≤ α ≺ π,
0 ≤ β ≺ π, ρP(0) = |ψ〉 〈ψ|. Therefore, the reduced density matrix of the scheme can be written as follows:

ρP(t) =
1
R

cos2 α cos2 βTrQ[exp(−iHt) |− −+〉 exp(
−HQ

T
) 〈+−−| exp(iHt)] +

1
R

cos2 α sin2 βTrQ[exp(−iHt) |−+−〉 exp(
−HQ

T
) 〈−+−| exp(iHt)] +

1
R

sin2 αTrQ[exp(−iHt) |+−−〉 exp(
−HQ

T
) 〈− −+| exp(iHt)]+

{ 1
R

cos2 α cos β sin βTrQ[exp(−iHt) |− −+〉 exp(
−HQ

T
) 〈−+−| exp(iHt)] +

1
R

cos α cos β sin αTrQ[exp(−iHt) |− −+〉 exp(
−HQ

T
) 〈− −+| exp(iHt)] +

1
R

cos α sin β sin αTrQ[exp(−iHt) |−+−〉 exp(
−HQ

T
) 〈− −+| exp(iHt)]

+h.c}. (13)

To calculate exp(−iHt) |− −+〉, for example, we assume

exp(−iHt) |− −+〉 = U |− −−〉+ V |− −+〉+ X |−+−〉+ Y |−++〉+ G |+−−〉+
J |+−+〉+ L |++−〉+ F |+++〉 , (14)

where U, V, X, Y, G, J, L and F are functions of operators b, b†, and time t. Here, we adopt the Schrödinger
equation because it is considered to be a special case of the master equation in Lindblad form [38].
By applying the identity of Schrödinger equation

i
d
dt
(exp(−iHt) |− −+〉) = H(exp(−iHt) |− −+〉), (15)

and Equation (14), we get the following equations
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i
dU
dt

= (−3
2

ε0 + 2qb†b)U + q0b†(V + X + G),

i
dV
dt

= (−1
2

ε0 + 2qb†b)V + q0bU + q0b†(Y + J) + ω(X + G),

i
dX
dt

= (−1
2

ε0 + 2qb†b)X + q0bU + q0b†(Y + L) + ω(V + G),

i
dY
dt

= (
1
2

ε0 + 2qb†b)Y + q0b†F + q0b(V + X) + ω(J + L),

i
dG
dt

= (−1
2

ε0 + 2qb†b)G + q0bU + q0b†(J + L) + ω(V + X),

i
dJ
dt

= (
1
2

ε0 + 2qb†b)J + q0b†F + q0b(V + G) + ω(Y + L),

i
dL
dt

= (
1
2

ε0 + 2qb†b)L + q0b†F + q0b(X + G) + ω(Y + J),

i
dF
dt

= (
3
2

ε0 + 2qb†b)F + q0b(Y + J + L), (16)

with the consideration that the initial conditions U(0) = X(0) = ......... = F(0) = 0, and V(0) = 1, from
Equation (14), the pervious differential equations, are unsolvable by any traditional methods for ordinary
variables, because the differential equations are composed of non-commuting operator variables. So, we
can use the following transformation:

U = b† exp(−i2q(b†b + 1)t)U1, V = exp(−i2q(b†b + 1)t)V1,

X = exp(−i2q(b†b + 1)t)X1, Y = b exp(−i2q(b†b + 1)t)Y1,

G = exp(−i2q(b†b + 1)t)G1, J = b exp(−i2q(b†b + 1)t)J1,

L = b exp(−i2q(b†b + 1)t)L1, F = bb exp(−i2q(b†b + 1)t)F1. (17)

Then the Equation (16) becomes, from Equation (17), as follows:

i
dU1

dt
= −3

2
ε0U1 + q0(V1 + X1 + G1),

i
dV1

dt
= (−1

2
ε0 − 2q)V1 + q0(n + 1)U1 + nq0(Y1 + J1) + ω(X1 + G1),

i
dX1

dt
= (−1

2
ε0 − 2q)X1 + q0(n + 1)U1 + nq0(Y1 + L1) + ω(V1 + G1),

i
dY1

dt
= (

1
2

ε0 − 4q)Y1 + q0(n− 1)F1 + q0(V1 + X1) + ω(J1 + L1),

i
dG1

dt
= (−1

2
ε0 − 2q)G1 + q0(n + 1)U1 + nq0(J1 + L1) + ω(V1 + X1),

i
dJ1

dt
= (

1
2

ε0 − 4q)J1 + q0(n− 1)F1 + q0(V1 + G1) + ω(Y1 + L1),

i
dL1

dt
= (

1
2

ε0 − 4q)L1 + q0(n− 1)F1 + q0b(X1 + G1) + ω(Y1 + J1),

i
dF1

dt
= (

3
2

ε0 − 6q)F1 + q0(Y1 + J1 + L1), (18)

with n = b†b and the initial conditions U1(0) = X1(0) = ......... = F1(0) = 0, and V1(0) = 1. Numerically
we can solve the differential Equation (18). Therefore, we can obtain the variables U1, V1, X1, Y1, G1, J1, L1

and F1 as functions of n and t, which commute with each other. Hence, we can obtain U, V, X, Y, G, J, L
and F, from Equation (17).
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In the same way, we can calculate exp(−iHt) |−+−〉 and exp(−iHt) |+−−〉, so we suppose

exp(−iHt) |−+−〉 = χ |− −−〉+ Γ |− −+〉+ γ |−+−〉+ δ |−++〉
+λ |+−−〉+ µ |+−+〉+ ν |++−〉+ η |+++〉 ,

exp(−iHt) |+−−〉 = χ̃ |− −−〉+ Γ̃ |− −+〉+ γ̃ |−+−〉+ δ̃ |−++〉
+λ̃ |+−−〉+ µ̃ |+−+〉+ ν̃ |++−〉+ η̃ |+++〉 , (19)

but here the initial conditions are χ1(0) = Γ1(0) = ... = η1(0) = 0, and γ1(0) = 1, χ̃1(0) = Γ̃1(0) = ... =
η̃1(0) = 0, and λ1(0) = 1.

After the same transformation in Equation (17), we get eight differential equations—Equation (17),
that can be solved numerically. Hence, we can obtain the variables χ1, Γ1, ..., η1 and χ̃1, Γ̃1, ..., η̃1 as
functions of n and t, which commute with each other. So, we can obtain χ, Γ, ..., η and χ̃, Γ̃, ..., η̃. Then
(ρP(t) = TrQ(ρ(t))) can be expressed in the basis {|1〉 = |− −−〉 , |2〉 = |− −+〉 , |3〉 = |−+−〉 , |4〉 =
|−++〉 , |5〉 = |+−−〉 , |6〉 = |+−+〉 , |7〉 = |++−〉 , |8〉 = |+++〉}.

ρ11 =
1
Z

∞

∑
n=0

(cos2 α cos2 βU1U†
1 + cos2 α sin2 βχ1χ†

1 + sin2 αχ̃†
1χ̃1 +

cos2 α cos β sin β(U1χ†
1 + χ1U†

1 ) + cos α sin α cos β(U†
1 χ̃1 + χ̃1U†

1 )

+ cos α sin α sin β(χ†
1χ̃1 + χ̃1χ†

1))(n + 1) exp(
−2qn

T
),

ρ22 =
1
Z

∞

∑
n=0

(cos2 α cos2 βV1V†
1 + cos2 α sin2 βΓ1Γ†

1 + sin2 αΓ̃†
1Γ̃1 +

cos2 α cos β sin β(V1Γ†
1 + Γ1V†

1 ) + cos α sin α cos β(V†
1 Γ̃1 + Γ̃1V†

1 )

+ cos α sin α sin β(Γ1Γ̃†
1 + Γ̃1Γ†

1)) exp(
−2qn

T
),

ρ33 =
1
Z

∞

∑
n=0

(cos2 α cos2 βX1X†
1 + cos2 α sin2 βγ1γ†

1 + sin2 αγ̃1γ̃†
1 +

cos2 α cos β sin β(X1X†
1 + γ1γ†

1) + cos α sin α cos β(X1γ̃†
1 + γ̃1X†

1)

+ cos α sin α sin β(γ1γ̃†
1 + γ̃1γ†

1)) exp(
−2qn

T
),

ρ44 =
1
Z

∞

∑
n=0

(cos2 α cos2 βY1Y†
1 + cos2 α sin2 βδ1δ†

1 + sin2 αδ̃†
1 δ̃1 +

cos2 α cos β sin β(Y1δ†
1 + δ1Y†

1 ) + cos α sin α cos β(Y1δ̃†
1 + δ̃1Y†

1 )

+ cos α sin α sin β(δ1δ̃†
1 + δ̃1δ†

1))n exp(
−2qn

T
),

ρ55 =
1
Z

∞

∑
n=0

(cos2 α cos2 βG1G†
1 + cos2 α sin2 βλ1λ†

1 + sin2 αλ̃1λ̃†
1 +

cos2 α cos β sin β(G1λ†
1 + λ1G†

1) + cos α sin α cos β(G1λ̃†
1 + λ̃1G†

1)

+ cos α sin α sin β(λ1λ̃†
1 + λ̃1λ†

1)) exp(
−2qn

T
),

ρ66 =
1
Z

∞

∑
n=0

(cos2 α cos2 βJ1 J†
1 + cos2 α sin2 βµ1µ†

1 + sin2 αµ̃1µ̃†
1 +

cos2 α cos β sin β(J1µ†
1 + µ1 J†

1 ) + cos α sin α cos β(J1µ̃†
1 + µ̃1 J†

1 )

+ cos α sin α sin β(µ1µ̃†
1 + µ̃1µ†

1))n exp(
−2qn

T
),
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ρ77 =
1
Z

∞

∑
n=0

(cos2 α cos2 βL1L†
1 + cos2 α sin2 βν1ν†

1 + sin2 αν̃1ν̃†
1 +

cos2 α cos β sin β(L1ν†
1 + ν1L†

1) + cos α sin α cos β(L1ν̃†
1 + ν̃1L†

1)

+ cos α sin α sin β(ν1ν̃†
1 + ν̃1ν†

1 ))n exp(
−2qn

T
),

ρ88 =
1
Z

∞

∑
n=0

(cos2 α cos2 βF1F†
1 + cos2 α sin2 βη1η†

1 + sin2 αη̃1η̃†
1 +

cos2 α cos β sin β(F1η†
1 + η1F†

1 ) + cos α sin α cos β(F1η̃†
1 + η̃1F†

1 )

+ cos α sin α sin β(η1η̃†
1 + η̃1η†

1))n(n− 1) exp(
−2qn

T
),

ρ23 =
1
Z

∞

∑
n=0

(cos2 α cos2 βV1X†
1 + cos2 α sin2 βΓ1γ†

1 + sin2 αΓ̃1γ̃†
1 +

cos2 α cos β sin β(V1γ†
1 + Γ1X†

1) + cos α sin α cos β(V1γ̃†
1 + Γ̃1X†

1)

+ cos α sin α sin β(Γ1γ̃†
1 + Γ̃1γ†

1)) exp(
−2qn

T
),

ρ25 =
1
Z

∞

∑
n=0

(cos2 α cos2 βV1G†
1 + cos2 α sin2 βΓ1λ†

1 + sin2 αΓ̃1λ̃†
1 +

cos2 α cos β sin β(V1λ†
1 + Γ1G†

1) + cos α sin α cos β(V1λ̃†
1 + Γ̃1G†

1)

+ cos α sin α sin β(Γ1λ̃†
1 + Γ̃1λ†

1)) exp(
−2qn

T
),

ρ35 =
1
Z

∞

∑
n=0

(cos2 α cos2 βX1G†
1 + cos2 α sin2 βγ1λ†

1 + sin2 αγ̃1λ̃†
1 +

cos2 α cos β sin β(X1λ†
1 + γ1G†

1) + cos α sin α cos β(X1λ̃†
1 + γ̃1G†

1)

+ cos α sin α sin β(γ1λ̃†
1 + γ̃1λ†

1)) exp(
−2qn

T
),

ρ46 =
1
Z

∞

∑
n=0

(cos2 α cos2 βY1 J†
1 + cos2 α sin2 βδ1µ†

1 + sin2 αδ̃1µ̃†
1 +

cos2 α cos β sin β(Y1µ†
1 + δ1 J†

1 ) + cos α sin α cos β(Y1µ̃†
1 + δ̃1 J†

1 )

+ cos α sin α sin β(δ1µ̃†
1 + δ̃1µ†

1)) exp(
−2qn

T
),

ρ47 =
1
Z

∞

∑
n=0

(cos2 α cos2 βY1L†
1 + cos2 α sin2 βδ1ν†

1 + sin2 αδ̃1ν̃†
1 +

cos2 α cos β sin β(Y1ν†
1 + δ1L†

1) + cos α sin α cos β(Y1ν̃†
1 + P̃1L†

1)

+ cos α sin α sin β(δ1ν̃†
1 + P̃1ν†

1 )) exp(
−2qn

T
),

ρ67 =
1
Z

∞

∑
n=0

(cos2 α cos2 βJ1L†
1 + cos2 α sin2 βµ1ν†

1 + sin2 αµ̃1ν̃†
1 +

cos2 α cos β sin β(J1ν†
1 + µ1L†

1) + cos α sin α cos β(J1ν̃†
1 + µ̃1L†

1)

+ cos α sin α sin β(µ1ν̃†
1 + µ̃1ν†

1 )) exp(
−2qn

T
); (20)

the unmentioned elements ρij are equal zero.
Depending on the previous treatments, we calculate the three-particles’ residual entanglement Nabc,

the information entropy H(σZ) and the linear entropy PP(t).
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The (ρij(t) = Trk(ρP(t)), i, j and k are equal a, b, c, i 6= j 6= k ) and can be expressed on the basis
{|1〉 = |−−〉 , |2〉 = |−+〉 , |3〉 = |+−〉 , |4〉 = |++〉};

ρ11 =
1
Z

∞

∑
n=0
{cos2 α cos2 β[U1U†

1 (n + 1) + V1V†
1 ] + cos2 α sin2 β[χ1χ†

1(n + 1)

+Γ1Γ†
1] + sin2 α[χ̃1χ̃†

1(n + 1) + Γ̃1Γ̃†
1] + {cos2 α cos β sin β

[U1χ†
1(n + 1) + V1Γ†

1] + cos α sin α cos β[U1χ̃†
1(n + 1) + V1Γ̃†

1]

+ cos α sin α sin β[χ1χ̃†
1(n + 1) + Γ1Γ̃†

1] + h.c}} exp(
−2qn

T
),

ρ22 =
1
Z

∞

∑
n=0
{cos2 α cos2 β[X1X†

1 + Y1Y†
1 n] + cos2 α sin2 β[γ1γ†

1 + δ1δ†
1 n]

+ sin2 α[γ̃1γ̃†
1 + δ̃1δ̃†

1 n] + {cos2 α cos β sin β[X1γ†
1 + Y1δ†

1 n] +

cos α sin α cos β[X1γ̃†
1 + Y1δ̃†

1 n] + cos α sin α sin β[γ1γ̃†
1 + δ1δ̃†

1 n]

+h.c}} exp(
−2qn

T
),

ρ33 =
1
Z

∞

∑
n=0
{cos2 α cos2 β[G1G†

1 + J1 J†
1 n] + cos2 α sin2 β[λ1λ†

1 + µ1µ†
1n]

+ sin2 α[λ̃1λ̃†
1 + µ̃1µ̃†

1n] + {cos2 α cos β sin β[G1λ†
1 + J1µ†

1n]

+ cos α sin α cos β[G1λ̃†
1 + J1µ̃†

1n] + cos α sin α sin β[λ1λ̃†
1 + µ1µ̃†

1n]

+h.c}} exp(
−2qn

T
),

ρ44 =
1
Z

∞

∑
n=0
{cos2 α cos2 β[L1L†

1 + F1F†
1 (n− 1)]n + cos2 α sin2 β[ν1ν†

1

+η1η†
1(n− 1)]n + sin2 α[ν̃1ν̃†

1 + η̃1η̃†
1(n− 1)]n + {cos2 α cos β sin β

[L1ν†
1 + F1η†

1 (n− 1)]n + cos α sin α cos β[L1ν̃†
1 + F1η̃†

1(n− 1)]n

+ cos α sin α sin β[ν1ν̃†
1 + η1η̃†

1(n− 1)]n + h.c}} exp(
−2qn

T
),

ρ23 =
1
Z

∞

∑
n=0
{cos2 α cos2 β[X1G†

1 + Y1 J†
1 n] + cos2 α sin2 β[γ1λ†

1 + δ1µ†
1n]

+ sin2 α[γ̃1λ̃†
1 + δ̃1µ̃†

1n] + {cos2 α cos β sin β[γ1G†
1 + δ1 J†

1 n]

+ cos α sin α cos β[γ̃1G†
1 + δ̃1 J†

1 n] + cos α sin α sin β[γ̃1λ†
1 + δ̃1µ†

1n]

+h.c}} exp(
−2qn

T
), ρij = 0 in case i 6= j 6= 2 or 6= 3. (21)

Also here, through the previous calculations of the two-qubit system, we calculate the concurrence
C(ρ), the information entropy H(σZ) and the linear entropy PP(t).

3. Results and Discussion

Since we calculated the three-particles residual entanglement Nabc, the concurrence C(ρ),
the information entropy H(σZ) and the linear entropy PP(t) as applications to the previous solutions we
reached, we now review the definitions and laws of these applications.
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4. Three-Particle Residual Entanglement

The three-particle residual entanglement Nabc can be defined as the following [39]:

Nabc = Na−bc(ρabc)− Na−b(ρab)− Na−c(ρac), (22)

where,

Na−bc(ρabc) =
∥∥∥ρTa

abc

∥∥∥
1
− 1,

Na−b(ρab) =
∥∥∥ρTa

ab

∥∥∥
1
− 1 =

∥∥∥ρ
Tb
ab

∥∥∥
1
− 1,

Na−c(ρac) =
∥∥∥ρTa

ac

∥∥∥
1
− 1 =

∥∥∥ρTc
ab

∥∥∥
1
− 1. (23)

The term Na−bc(ρabc) quantifies the strengths of quantum correlations between the atom “a” and the
other two atoms. The term Na−b(ρab) (Na−c(ρac)) quantifies the pairwise entanglement between the atom
“a” and “b” (“c”).

And, ∥∥∥ρT
∥∥∥

1
= (∑

i
|µi| −∑

i
µi) + 1, (24)

where ρTA is the fractional transpose of a state ρ according to subsystem A, and ‖.‖1 is the trace norm;
∑
i
|µi| is the summation of the absolute value for each eigenvalue of ρTA .

5. The Information Entropy and the Linear Entropy

The information entropy H(σZ) of the atomic operator σz can be written as follows [40,41]:

H(σZ) = −
ε

∑
j=1

Pj(σZ) ln Pj(σZ), (25)

where the probability distribution Pj(σZ) for ε probable outcomes of measurements for a random quantum
state of an atomic operator σZ is

Pj(σZ) =
〈
ΦZj

∣∣ ρ
∣∣ΦZj

〉
, (26)

where ρ represents the density matrix of the total quantum system and
∣∣ΦZj

〉
eigenvector of the

atomic operator σZ:

σZ
∣∣ΨZj

〉
= υZj

∣∣ΨZj
〉

, j = 1, 2, ..., ε, (27)

where υZj is the eigenvalue of the atomic operator σβ shown in Equation (27).
For a two-qubit, ε = 4, but in the case of the three-qubit ε = 8.
The evolution of the linear entropy PP(t) is given by

PP(t) = 1− TrP(ρ
2
P(t)), (28)

where ρP(t) = TrQ ρ(t) denotes the reduced density matrix for bipartite system.
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6. Concurrence

In the case of the proposed system, which consists of two quantum bits, the concurrence of the
system can be calculated as proposed in [42] to calculate the quantum correlation. Firstly, in the pure
state case, we can write the concurrence is as follows:C(ρ) = max{0,

√
ξ1 −

√
ξ2 −

√
ξ3 −

√
ξ4}, where

ξk are the eigenvalues of the matrix $ = ρρ̃ = ρ(σ1
y ⊗ σ2

y )ρ
ᵀ(σ1

y ⊗ σ2
y ), an arrangement in descending

order. Furthermore, the transposition of density matrix ρ is denoted by ρᵀ. It is obvious that the value of
concurrence is bounded between zero and one.

We are now explaining the results we have been able to deduce through the figures we have made.
We discuss the effect of changing parameters on the applications we are studying. In Figure 1, we discuss
the case of a system that consists of three quantum bits under the influence of a quantum spin environment.
We study the effects of the temperature T on the behavior of the three-particle residual entanglement Nabc,
the information entropy H(σZ) and the linear entropy PP(t) in case of ε0 = 2, q = q0 = 1, ω = 0, α = 0
and β = π

2 . We study this case at T = 0.1, T = 1 and T = 3. The curves of entanglement Nabc at T = 0.1
and T = 1 have regular and periodic oscillations while at T = 3, they lose their regularity. The maximum
values of the entanglement decrease with increasing temperature T, while the minimum value remains
unchanged. In the case of the information entropy H(σZ) and the linear entropy PP(t), we also notice
the regularity of the curves and their periodicity, and then they are irregular at T = 3. But it is clear here
that both the maximum and the minimum value of the information entropy H(σZ) and the linear entropy
PP(t) increases with increasing temperature T. That is, we note that by increasing the temperature the
purity of the atoms and the degree of entanglement between the atoms and some decrease. So it is normal
and expected that the increase will occur for the entropy. In Figures 2 and 3, we discuss the case of a
two-qubit system, where we get to the case of the two atoms by taking the trace of the density matrix
operator ρP, (ρij(t) = Trk(ρP(t)); i, j and k are equal; a, b, c, i 6= j 6= k, ρP = ρabc). In Figure 2, we study the
influence of the temperature T on the behavior of the concurrence C(ρ), the information entropy H(σZ)

and the linear entropy PP(t) in case of ε0 = 2, q = q0 = 1, ω = 0, α = 0 and β = π
2 . We study this case at

T = 0.1, T = 1 and T = 2. At T = 0.1 and T = 1, the curves of the concurrence C(ρ) are almost regular,
but at T = 2, the regularity of curves is slightly decreased. The maximum values of the concurrence C(ρ)
decrease from C(ρ) = 0.7 to C(ρ) = 0.3 and the minimum value keeps its stability. For the information
entropy H(σZ) and the linear entropy PP(t), at T = 0.1 the curves are regular, and then the regularity of
the curves gradually decreases by increasing the temperature T to T = 1 and then to T = 2. Both the
maximum and minimum values increase significantly with increasing temperature T. We also notice
an increase in the number of peaks for the linear entropy PP(t). In Figure 3, we study the influence of
the coupling constant ε0 between the spin- qubit system, and an external magnetic field along the Z
direction on the behavior of the concurrence C(ρ), the information entropy H(σZ) and the linear entropy
PP(t) in case of T = 1, q = q0 = 1, ω = 0, α = 0 and β = π

2 . We study this case at ε0 = 2, ε0 = 4 and
ε0 = 6. We observe the state of regularity and periodicity of all curves at any value for ε0. By increasing
the coupling constant ε0, we notice that the number of oscillations of the concurrence C(ρ) increases
significantly; i.e., the interconnections between the atoms increase, and the numbers of oscillations of both
the information entropy H(σZ) and the linear entropy PP(t) are also significantly reduced. The maximum
values of the concurrence C(ρ) increase but the minimum value tends to persist. The increase in the
maximum value for the information entropy H(σZ) and the linear entropy PP(t) is minor. Additionally,
the number of peaks of the linear entropy PP(t) in this case increases.
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Figure 1. The time evolution of the entanglement Nabc, the information entropy H(σZ) and the linear
entropy PP(t) in the case of three-qubit for parameters ε0 = 2, ω = 0, q = q0 = 1, α = 0 and β = π

2 . Where
solid green, red dots and blue curves correspond, respectively, to T = 0.1, 1 and 3.
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Figure 2. The time evolution of the concurrence C(ρ), the information entropy H(σZ) and the linear entropy
PP(t) in the case of two-qubit for parameters ε0 = 2, ω = 0, q = q0 = 1, α = 0 and β = π

2 . Solid green,
red dots and blue curves correspond, respectively, to T = 0.1, 1 and 2.
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Figure 3. The time evolution of the concurrence C(ρ), the information entropy H(σZ) and the linear entropy
PP(t) in the case of two-qubit for parameters T = 2, ω = 0, q = q0 = 1, α = 0 and β = π

2 , where solid
green, red dots and blue curves correspond, respectively, to ε0 = 2, 4 and 6.
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From the above-mentioned discussion, we can observe that oscillations in the results always take
indefinite forms. That is because we have chosen an initial entangled state, and this, as we observed,
reduces the effect of the surrounding environment, in addition to changing the values of parameters which
we control. Thus, the oscillations would continue to take the indefinite appearance, rather than a steady
state, in the figures.

7. Conclusions

We analytically solved a quantum system composed of three qubits characterized by a finite
temperature within a thermodynamic limit influenced by a quantum spin environment. The case of
the two-qubit was obtained by deriving the trace for the density matrix. We studied the effect of the
temperature T and the coupling constant ε0 between the spin-qubit system and an external magnetic field
on the three-particle residual entanglement Nabc, the concurrence C(ρ), the information entropy H(σZ)

and the linear entropy PP(t). Our work is considered to be an extension of a previous study [32], yet with
much larger calculations to reach an exact solution of a non-Markovian case of three-qubit quantum system
by using a novel operator technique. We observed that all curves, whether in the case of three-qubit
or two-qubit, are regular and periodic at low temperatures T, but at high temperatures T tend to be
irregular. We also noticed a significant change in the number of oscillations, increasing or decreasing,
for the concurrence C(ρ), the information entropy H(σZ) and the linear entropy PP(t) when the coupling
constant ε0 changed. Also note the strong relationship between the entanglement, Nabc and C(ρ), and the
entropy, H(σZ) and PP(t). When we saw an increase in the entanglement between the atoms, there was
a marked decrease in entropy and vice versa. From there, we proved an inverse relationship between
the entanglement and the entropy, that we controlled the degree of entanglement, and subsequently,
the degree of entropy by controlling the temperature T and the coupling constant ε0.
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