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Abstract: This paper proposes a management strategy for the daily operation of an isolated
hybrid energy system (HES) using heuristic techniques. Incorporation of heuristic techniques
to the optimal scheduling in day-head basis allows us to consider the complex characteristics of
a specific battery energy storage system (BESS) and the associated electronic converter efficiency.
The proposed approach can determine the discharging time to perform the load peak-shaving in an
appropriate manner. A recently proposed version of binary particle swarm optimization (BPSO),
which incorporates a time-varying mirrored S-shaped (TVMS) transfer function, is proposed for
day-ahead scheduling determination. Day-ahead operation and greenhouse gas (GHG) emissions are
studied through different operating conditions. The complexity of the optimization problem depends
on the available wind resource and its relationship with load profile. In this regard, TVMS-BPSO
has important capabilities for global exploration and local exploitation, which makes it a powerful
technique able to provide a high-quality solution comparable to that obtained from a genetic algorithm.

Keywords: vanadium redox flow battery; genetic algorithm; binary particle swarm optimization;
time-varying mirrored S-shaped transfer function; greenhouse gas emissions

1. Introduction

Global warming and other environmental problems are driving the adoption of renewable energy
sources at the residential, commercial, and industrial levels. Estimating the impact of climate change
on the ecosystem involves the accurate knowledge of the carbon cycle and its associated uncertainty.
Calculating cumulative emissions in order to prevent an extreme warming level is a key step to guide
the manner in which industrial processes, including power generation, should be carried out. Actions
for reducing global warming are adjusted following the threshold of 1.5 or 2 °C as the critical limit
in a time interval between the years 2000 and 2050 or 2100. However, depending on the established
assumptions and scenarios, the risk of experiencing extreme conditions at the middle of the century
could be a realistic prospect [1].

Under these circumstances, many countries have been changing their energy mix from a fossil-fuel
based one to a renewable-based one, incorporating wind and solar photovoltaic energies, as well as
demand response programs [2]. In addition, financial tools such as mutual funds are also implemented
to provide economic support for these technologies [3].

As renewable energies are intrinsically variable, the power system requires a high degree of
flexibility to effectively manage the uncertainty introduced by these sources, and this could be achieved
by implementing demand side management or by installing any type of energy storage system (ESS).
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Incorporation of ESS can improve the accommodation of renewable generation while reducing
greenhouse gas (GHG) emissions. As an example, incorporation of renewable power combined with
ESS in California could reduce carbon dioxide (CO,) emissions from 90% to 72%, whereas renewable
power curtailment reduces from 33% to 9%. In the case of Texas, CO, emissions could be reduced from
58% to 54% and renewable power curtailment could be reduced from 3% to 0.3% [4]. Combination
of carbon capture and storage devices with conventional generation units is also an option to reduce
GHG emissions. However, the combination of renewable generation with ESS can be energetically
more effective [5].

Historically, the acquisition costs of a battery energy storage system (BESS) have been considerably
high, limiting their economic performance and consequently their mass adoption. However, when
very low GHG emissions are required, BESS can be a critical device to achieve such an ambitious goal.

In the case of energy provision for an isolated hybrid energy system (HES), incorporation of BESS
becomes profitable due to the fact that the fuel consumption and operating hours of a conventional
generator are considerably reduced. In the case of a grid-connected HES, retailing rates and feed-in
tariffs as well as favorable resources are crucial for their successful adoption [6].

Heuristic techniques are commonly used to carry out the optimal sizing of a specific HES.
Consequently, some of them have been implemented in computational programs such as HOMER
Pro® [7], iHOGA® [8], and Hybrid2® [9], among others. Dispatch strategies implemented in most
of these tools are based on load following and cycle charging concepts. Load following consists of
generating power from conventional units only to satisfy net load (NL), and this approach is frequently
suggested in a HES with high share of renewable power, which is much higher than load demand
over the year. Conversely, a cycle charging strategy forces conventional generator to operate at its
rating power when needed to charge BESS with the remaining energy, so this strategy is frequently
implemented when renewable generation is limited [10]. It is important to mention that these strategies
do not require any forecast of renewable generation or load demand. However, they are very effective
in the management of HES of small scale used on rural electrification projects.

In the case of a HES of larger scale, energy forecasts are frequently employed to optimize the daily
operation. This is a topic that has been widely studied and it is the focus of this work. A complete
literature review is presented in the next section.

1.1. Literature Review

Management of isolated HES considering the influence of renewable resources and their associated
variability has been treated by many authors. In this regard, Li et al. [11] developed a procedure
for sizing and management of wind-BESS units. Historical wind power time series is analyzed to
estimate the low-frequency component, which is the most prominent one. Using the resulting signal,
charging—discharging cycles of BESS are determined considering constant power levels. During the
charging period, the power to be provided by the wind-BESS unit is set to the minimum power
of low-frequency component within that period. Conversely, power generation is scheduled to the
highest power of low-frequency component during discharging periods. In theory, these mechanisms
ensure the existence of sequential charging—discharging intervals. However, power dispatch settings
could be modified to avoid the charging—discharging cycles at partial level. Other issues related to the
wind power forecasting error and BESS lifetime have also been incorporated.

Luo et al. [12] created a model for the operation and sizing of wind-BESS to compensate for
the forecasting error. Forecasting error is modeled by using a beta distribution, considering extreme
conditions related to pessimistic and optimistic perspectives. BESS dynamic behavior, as well as its
lifetime, have been also incorporated.

Mohammadi et al. [13] proposed a day-ahead scheduling model of a microgrid (MG) composed
of electrical as well as hydrogen and thermal energy storage technologies. Problem formulation was
based on a two-stage stochastic programming approach, while its solution was carried out using an
enhanced version of cuckoo optimization algorithm. The high flexibility of the studied configuration
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results is useful to deal with the fact that thermal and electrical energy consumption are typically
not synchronized.

O’Dwyer and Flynn [14] paid special attention to the power system operation on a daily basis,
using hourly and sub-hourly time steps, under high renewable energy integration and ESS. According to
the reported results, the traditional hourly analysis cannot properly estimate the ramping requirements,
the number of starts of conventional generators, as well as the role and potential of ESS on the cycling
reduction. Consequently, the interdependence between renewable power curtailment, CO, emissions,
and the cycling process of thermal units is not accurately described.

Wen et al. [15] presented an enhanced security-constrained unit commitment (SCUC) model, which
incorporates BESS to mitigate the negative effects of a sudden contingency and consequently to prevent
cascading outages. The methodology was formulated as a two-stage mixed integer programming
problem and solved by means of Benders decomposition. The same author in [16] introduced a model
based on frequency dynamic constrained unit commitment (UC) able to incorporate wind power
uncertainty. Interval optimization approach was combined with mixed integer linear programming
(MILP) to determine the appropriate unit schedule.

Nguyen and Crow [17] presented a scheduling model with probabilistic constraints based on
stochastic dynamic programming (DP). The proposed BESS-model is inspired by the functioning
of conventional fuel-based units. Thus, a detailed cost model was developed considering the
electrochemical process of BESS.

Khorramdel et al. [18] proposed a UC model based on cost-benefit analysis, in which a probabilistic
analysis based on a here-and-now approach was incorporated. Then, particle swarm optimization
(PSO) was implemented in order to minimize total generating costs.

Li et al. [19] developed a framework to quantify the benefits of ESS incorporation to HES.
The methodology is based on stochastic UC solved by means of MILP.

Jiang et al. [20] proposed a management model for a residential HES provided by wind generation,
micro-combined heat and power generation and smart appliances, enrolled in a real-time pricing
(RTP) program. Additionally, optimal behavior of several aggregated HESs is analyzed by means of a
day-ahead stochastic economic dispatch (ED) and UC model based on MILP.

Anand and Ramasubbu [21] presented a scheduling model of a system enrolled in a RTP program
composed of wind and photovoltaic generation, as well as a microturbine and a fuel cell, based on
anti-predatory PSO.

Wau et al. [22] proposed a methodology to solve ED and UC problems using the time-scaling
transformation combined with an auxiliary continuous vector.

Dui et al. [23] proposed a two-stage scheduling methodology for BESS performance evaluation.
In the first step, UC problem including the effects of thermal and wind generators is solved by means
of second-order cone programming. Then, in the second step, the management strategy for BESS is
designed and evaluated using a genetic algorithm (GA).

Psarros et al. [24] investigated the operation of HESs using a MILP. BESS sizing is deeply discussed,
concluding that this element is a key device for the provision of fast energy reserve. The same author
in [25] proposed a model able to consider different time resolutions, based on the combination of model
predictive control and MILP.

Ahmadi et al. [26] presented a model for the solution of SCUC including BESS. Aging cost
related to BESS operation is incorporated to the objective function. Then, MILP is combined with
information-gap decision theory so that the conservatism of the strategy to be implemented can be
adjusted by the system operator.

Saleh [27] created and experimentally tested the performance of an energy management system
(EMS) based on the solution of UC by Lagrangian relaxation. Thus, control values of permanent
magnet generator of the wind turbine and the power-electronic converter are obtained.

Gupta et al. [28] formulated a SCUC model including the effects of BESS in order to compensate
the variability of renewable power sources. The mathematical problem is solved by using Benders



Appl. Sci. 2019, 9, 5221 4 0f 30

decomposition, determining the locational marginal price, wind power curtailment, as well as the
line contingency.

Alvarez et al. [29] proposed a general purpose ESS model inspired by the behavior of hydraulic
reservoirs. Using the results obtained from stochastic dual DP, carried out to determine the long-term
energy schedule, the linear model of ESS cost is derived. Finally, stochastic UC, including the
aforementioned ESS model, was formulated.

Chen et al. [30] developed a scheduling model based on multi-agent system for the coordination
of multiple MGs. Such coordination is carried out by means of the alternating direction method of
multipliers, obtaining the optimal energy management of the multiple MGs. Additionally, the negative
effects of uncertainty sources are compensated by using day-in rolling.

Tanetal. [31] proposed a dispatch model able to incorporate different operating perspectives related
to fuel savings, carbon emissions, power generation costs, amount of renewable energy integrated, and
power generation efficiency. Uncertainty of renewable generation and forecasting of carbon-trading
price were included by using Monte Carlo simulations, while the associated optimization model was
solved by implementing the technique for order preference by similarity to ideal solution combined
with Grey relational analysis.

Yiwei et al. [32] presented a scheduling model for a HES based on renewable and thermal
generation, as well as cascade hydropower and pumped ESS. The model focuses on the economy
and security aspects of system operation. The optimization strategy is divided into three main stages.
During the first stage, integer variables are preprocessed using heuristic rules. Then, during the second
stage, ED and UC are solved. Finally, during stage three, power system feasibility was evaluated.

Once the literature review has been exposed, describing the state-of-the-art techniques used for
day-ahead scheduling, the main contribution and novelty of this work are carefully explained in the
next section.

1.2. Main Contributions

As can be observed from the presented literature review, a vast family of methodologies has been
created, some of them based on heuristic techniques such as GA and PSO, another group inspired by
DP, and most of them based on MILP combined with Benders decomposition.

In a general sense, the optimization technique to be selected strongly depends on the characteristics
and assumptions of the ESS model, as well as the context (isolated or grid-connected system) and the
information available.

To take advantage of the vast family of BESS models, a recently developed version of binary PSO
(BPSO), which incorporates a time-varying mirrored S-shaped (TVMS) transfer function, has been
adopted in this paper. Consequently, hourly behavior of charging—discharging efficiency as well as the
influence of charge controller on battery operation can be effectively incorporated. Additionally, the
influence of wind-speed daily profile on battery schedule and GHG emissions is deeply analyzed. The
impact of battery operation on the emissions of total hydrocarbons (THC), carbon monoxide (CO),
oxides of nitrogen (NOx), CO,, and particulate matter (PM) is investigated.

The remainder of the paper is organized as follows. Section 2 describes the mathematical models
of the system configuration under study. Section 3 explains the formulation of the optimization
problem and its solution by TVMS-BPSO. Then, problem formulation is tested in Section 4 through
a sensitivity analysis based on GA. As TVMS-BPSO is a novel version of BPSO, its performance is
compared with GA in Section 5. Finally, conclusions and main findings are discussed in Section 6.

2. Hybrid Energy System Model

The structure of the HES under analysis is shown in Figure 1. On one hand, the diesel generator
represents the controllable power source able to provide energy under any circumstance. Thus, energy
not supplied (ENS) is neglected. Due to the fact that the diesel generator has important operating
costs related to fuel consumption and overhauling, the incorporation of the wind generator combined
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with BESS and power converter allows us to reduce the number of operating hours of the diesel unit,
reducing the operating costs of the whole system.

Point of Common
Coupling

Wind
Turbine

_l Electricity

Demand
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[1 [ —

Ppt) v Pew

Battery Power
Bank Converter
Diesel
Generator —

Pp
Figure 1. Hybrid energy system (HES) under study.

Besides the wind generator, BESS, power converter, and diesel generator, the dump load (not
shown in Figure 1) allows us to consume all the energy surplus of the system in order to maintain the
energy balance. This could occur when BESS reaches its maximum capacity and a high magnitude of
wind power is available.

In the next sections, computational models of the wind generator, BESS, and diesel generator will
be carefully described.

2.1. Wind Generator Model
Wind power generation has been modeled using a typical power curve described according to
Equations (1)—(4) [33,34]:
0;,0< SW(t) < S?/V
b 2,
PW ; SW < Sw(t)fﬁ SW
0; SW(t) > SW

Py =

1 S0 487 \3
P = — Sou(Siy + Siy) - 45%%(—@5% W ) ; ¢)
W~ Pw
1 0 r \3
b w oW .
P, = W 4(S9, + s;v)(w) — (385, + Siy) | 3)
W Cw
1 S0 g 3
Py =— 2—4(%) ; 4)
(59, - Siy) W

In this way, the relationship between the wind speed (S W(t)) at a determined time step () and the
corresponding wind power production (Pyy(;)) is clearly established.
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2.2. BESS and Power Converter Models

BESS is a crucial device for the appropriate operation of HES because it provides operational
flexibility to the whole system. The technology chosen in this work is the vanadium redox flow
battery (VRFB) due to its easy scalability, which makes it appropriate for large-scale integration.
The mathematical model adopted is shown in Equations (5)-(15), and it has been experimentally tested
and validated in [35-37].

Battery voltage (Up(;)) and efficiency (np(;)) are defined according to charging and discharging
processes using Equations (5) and (6), respectively.

uch/. B(t)>0
Ugpy =4 B0 Vi=1,...,T; ®)
(t> {ug(t); Py <0

Ta(n? P(t) >0
M =4 Vi=1,...,T. (6)
Y {'756 Poy <0

During charging process, when battery power (Pp(;)) is positive, battery voltage (U”h ) is related
to the state of charge (SOC) (SOCpy)) according to (7), while charging efficiency for Voltage ( ) and
energy (r] ) are related to SOC and battery power as shown in (8) and (9), respectively. Then global

efficiency of charging phenomena (r]B ( t)) can be estimated using (10).

h b d — .
g, = (U8,S0Cs) + Uf )Pay + U5, SOChy + Uf Vi =1,...,T; @)
f 8
o ue, Te(SOCy() — U2,) + LS, Vi1 T .
V() — h i ; — 4,04y
(U, SOC ) + U, )Py + U5, SOCy) + UL,
p q
o (UGSOCkq) + Uy )Py + Uj, SOCh) — UL, Vi1 T ©)
Mg = Pre) sy, T
Taiey = Mo Tegy ¥ £ = 1o T 10

During discharging process (Pp(;) < 0), battery voltage (l,[dis ) and SOC are related according to

the linear expression shown in (11). Voltage and energy eff1c1enc1es (nd’s and ndls )) depend on battery
power and SOC following (12) and (13), respectively. Thus, dlschargmg eff1c1ency (ndBl(s )) is estimated
through the product of these variables (1 dl? H and 17"115 ), as suggested in (14).
di .
uBZ(St) dls)PB | + udlssoCB(t) +U dls Vi= T (11)
f
dis dzs|PB | + u@ SOCB( t) + Udzs
= s - = Vi=1..T; (12)
udstE(SOCB( = udls) + Udzs
p
e, = Py —Vi=1,..,T, (13)
dzs)PB(f)| + udszOCB(t) (SOCB( )~ 1) + udzs
Moy = My eg Yt =1, T. (14)
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SOC at a determined time interval (t) is defined using (15), which depends on the battery power
and efficiency, calculated by following the equations previously described.

t
P
SOCp(y) = SOCp;_1) + f(%)dr Vi=1,...,T. (15)
B

Additionally, some operational constrains of VRFB have to be fulfilled. This idea is expressed in
(16) for the battery voltage, in (17) for the cell-stack power, and in (18) for SOC:

Uy < Upy <Up™Vt=1,...,T; (16)
— P <Py <PRVt=1,...,T; (17)
SOCE™ < SOCp ;) < SOCE™ Vit =1,...,T. (18)

Regarding the behavior of power converter, it has been represented through its variable efficiency
shown (19), which allows us to estimate the power according to (20).

e = P . Vi=1,. T (19)
Pe(Pe) + (1 + PPy
P _ pa pmax
pC(t):iMVt:L...,T. (20)

(7))

Regarding the parameters of the VRFB model previously described in (5-15), specifically the

parameters U?h - Uﬁlh, Ui - U?h, Llf W u?h for charging and Ugis - UZZ.S, Ut]il.s - U;’;s
can be found in [35-37]. Similarly, the parameters P and P’é related to the power converter efficiency

have been obtained from the experimental data published in [38].

for discharging; they

2.3. Diesel Generator Model

The diesel generator is in charge of satisfying the load that cannot be provided by the wind
generator, the battery bank, or both. In addition, this task has to be done considering the technical
constraints of the diesel unit. If only the effect of wind generator needs to be considered, NL is
calculated according to (21):

PN(t) :pL(t)_PW(t)Vt:L“-/T; (21)

On the other hand, if the joint effect of the wind generator and BESS needs to be considered, NL
can be defined using (22):

PN(t) :PL(t)_PW(t)+PB(t)Vt:Ln-,T- (22)

As aforementioned, the diesel generator has to supply NL as defined in (21) or (22), fulfilling the
constraint (23):
PR <Ppy <PpVt=1,..,T (23)

To determine the power dispatch of the diesel unit, the parameter P, is defined according to (24):

P4 = max(0, Pyy) VYt =1,...,T. (24)
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Then, depending on the value of P}, diesel generation (Pp;)), power surplus (Pgxc(;)), and power
not supplied (Pgys(s)) are determined by following (25-27), respectively,

prin; 4. > 0, P4 < piin
Ppyy =14 Ph; P >Ppin, pio <P yi=1,..,T; (25)
prax; pa > priex

Pj" — Ph; Pf, >0, P} < PR
Pexcy = 0; P, > Pagm, P:%f pp Vt=1,..,T; (26)
0; P4 > P

0; P% >0, P < prmin
Pensiy =4 0; P> PRin, pLo<prax yi=1,...,T. 27)
pe — puax; po s, e

Once the mathematical model of HES has been defined, the optimization technique proposed in
this paper will be clearly explained in the next section.

3. Optimization of Day-Ahead Operation

In this section, the optimization problem and the proposed methodology are carefully described.
Section 3.1 pays special attention to the objective function definition, whereas Section 3.2 explains how
TVMS transfer function is embedded into BPSO for the daily scheduling of BESS.

3.1. Problem Formulation

The focus of this work is on developing a methodology for load peak-shaving to be applied to the
management of autonomous HES. In this regard, EMS monitors the state variables of all the elements
connected to the point of common coupling (Figure 1). Then, using this information and the day-ahead
forecasts of wind power and load demand, determines how power sources should be dispatched
to minimize the operating costs of the system for the corresponding day. Note that the influence of
forecasting error on system operation has not been considered in this work.

In a general sense, BESS operation can be defined by means of three different states: charging,
discharging, and disconnection. These states can be represented by using integers: charging can be
represented as +1, discharging can be represented as —1, whereas 0 represents the battery disconnection.

The goal of the management strategy proposed in this paper consists of finding out the appropriate
pattern (charging, discharging, and disconnection) of usage of BESS during the day in order to reduce
NL-peak. This is carried out by means of a heuristic optimization algorithm in which each individual
or agent is represented as shown in Figure 2. If NL is negative, it means that BESS should be charged
in order to store the energy surplus during periods of high wind speed. On the contrary, when NL is
positive, it is not evident whether BESS should be discharged or disconnected from HES. Thus, a set of
I individuals, who take into account different operational conditions (discharging and disconnection)
during different hours, is considered.
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Figure 2. Structure of a single individual.

The structure of a single individual (i = 1,...,I) at a determined iteration (k) of the heuristic
optimization algorithm can be described according to (28):

g(i,k) = [ g(i,l,k) . g(i,t,k) . g(i,T,k) ] Vi= 1,...,1; (28)
where each element g; ;) is an integer between —1 and +1, depending on the time () and NL value

(PN(#))- Similarly, the population or group of agents of the optimization algorithm for iteration k can be
expressed as a matrix according to (29):

8(1,k)

Gy = §(i,k) : (29)

—

8 (1)

Considering a determined individual i, the value of its objective function (O(;})) during a
determined iteration (k), which has to be minimized, is calculated according to (30):

T

Oy = Y PnioPeiian Vi="1...,Lk=1,...K (30)
t=1

where the pattern Pc(; 1) corresponds to that obtained from the application of the model previously
described in Section 2 (Equation (20)), considering the influence of power converter (P¢(;+x) = Pc(y))-
In other words, Pc(; ) is calculated according to (20), the indexes i and k have been introduced to
represent the fact that it is calculated for a specific individual (i) during a determined iteration (k).

The magnitude presented in (30) does not have any physical meaning. Indeed, this has been
taken from previous experience of BESS operating in RTP programs [39], where sold and purchased
power all over the day is considered as the optimization variable. Following this analogy, Pc; ) can
be considered as the transaction power of BESS (sold and purchased power), whereas Py ;) could be
considered as linearly related to the fuel-consumption curve of the diesel generator. In other words,
in the analogy with selling and purchasing prices under RTP, the variable Py;;) could be considered as
a linear function of fuel-consumption costs.

The main conclusion of this reasoning is that, the hour at which BESS should be discharged,
in order to maximize profits from energy trading with the RTP scheme, is exactly the same hour at
which BESS should be discharged in order to reduce NL-peak in an autonomous HES.
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3.2. Optimization by TVMS-BPSO

PSO is an optimization algorithm based on the dynamic behavior of a group of agents interacting
with each other. Important variables such as the position (g; +)) and velocity (v(;x)) of each agent (i)
are considered during the evolution of the algorithm (k). Using constriction factor approach, the agent
velocity can be expressed using (31):

O(itk+1) = X[v(i,t,k) + C??SOR??SO(g( no 8t k)) + Cpso pso(g(Gl)3 . 8(itk) )] (31)

a
where C 550

and C?JSO are coefficients selected so that the condition (32) is fulfilled,
@ = Clhey+ Chey @ >4 (32)

The coefficient @ is then used to calculate the factor x required in (31),

2
2-o- Vo?—1g|

X= (33)

Using the coefficient 0, the convergence of the algorithm can be managed.

TVMS transfer function has been recently proposed by Beheshti [40] to improve the capabilities of
BPSO. TVMS-BPSO uses two sigmoid functions during the conversion of reals to binaries, and these
functions are shown in (34) and (35):

1

a .
SPSO(z tk+1) 1+ 70 Virken) (34)
1
b .
SPSO(z bk+1) T 1+ 0 @ik (35)
where the coefficient o ;) varies during the algorithm evolution according to (36):
k
Oy = (Omax = Omin) X + Omin- (36)
Once the variables 5* PSO(i k1) and SZS Olitk+1) have been calculated, they are evaluated on (37)
and (38) to get the binary variables ]1”,S O(itk+1) and Jb PSO(itk+1)" which are a preliminary result of the
algorithm.
Jr { L Rpso < Spso(itrin) . 37)
PSO(i tk+1 4
R ) 05 Rbso 2 Shoo i)

d b
b _ { L Rgso < Sgso(ztk-&-l) (38)
PSO(ith+1) = '

(bHk+L) 0 Rbso 2 Shsoitri1)

The definitive result from the conversion of reals to binaries is based on the value of the objective

a b : ; a b
function O ik and Oz’,k obtained from the evaluation of | PSO(itk11) and PSO(i k1)

Then, the positions to be considered during the next iteration (k + 1) are defined by using (39):

previously estimated.

b

_ PSO(ztk+1) » Obso(ixs1) < Opsoiks1) (39)
8(itk+1) b .07 Ssob .
PSO(itk+1)" ~PSO(ik+1) ~ = PSO(ik+1)

Once the principles of TVMS-BPSO have been exposed. The problem of day-ahead BESS
scheduling on a daily basis and the TVMS-BPSO performance to solve this problem are analyzed in
Sections 4 and 5, respectively.
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4. Testing the Problem Formulation

To evaluate the mathematical formulation previously presented in Section 3.1, the performance of
HES of Figure 1 is analyzed using a GA and a typical system with a wind generator of 75 kW (Pi™* =
75 kW), and the load profile of Figure 3 has been used. Cut-in, rated, and cut-out wind speeds equal to
3,12, and 25 m/s, respectively, have been assumed.

100 , 3 .
N P W AW

] R ORI R RORN SR s .

R R et C T SRR -

Load (kW)

Time (h)

Figure 3. Load profile.

Regarding the fuel-based generator, a diesel unit of 100 kW (P7* = 100 kW) with minimum
operating power of 50% (P7}" = 50 kW) has been assumed.

As the effects of wind generation and BESS management on the reduction of fuel consumption
have been deeply studied in the technical literature [41], special attention to the influence of these
devices on GHG emissions has been paid in this work. Thus, the GHG-emission measurements
published in [42] have been adopted.

During the GA implementation, the initial population is randomly initialized, so that an operator
has to be incorporated in order to fix the elements of the matrix G, to +1 at those hours at which
NL is negative (Figure 2). Additionally, such operator has to be included after the application of
mutation operator.

Regarding the GA parameters, a population with 75 individuals, 100 generations, a crossover rate
of 90%, and a mutation rate of 5% were considered.

Wind speed profile has been modeled by using the general purposes profile of (40) [7,10], which
depends on the average wind speed (S7,), diurnal pattern strength (Sg\/), and the hour of peak wind
speed (59,)-

Swey = Sf1+ S?,vcos[(z%z)(t =sy)|fve=1T (40)

Different values of average wind speed and diurnal pattern strength have been considered.
Specifically, S?/v =0,0.1,0.2,0.3,0.4 and S?/v = 15 h were evaluated through the analysis of three case
studies. These are typical values for places located in the United States. In this way, different values of
Sl{/v allow us to evaluate the wind speed profile with high or low oscillation, and consequently their
impact on the operation of BESS.

A typical VRFB of 5 kW/20 kWh (Pg™* = 5 kW/ EF™* = 20 kWh) has been considered. Minimum
and maximum SOC were assumed as 15 and 90% (SOCy" = 0.15 and SOCE™ = 0.9), respectively, and
minimum and maximum voltage were assumed as 42 and 56.5 V (Ug"" = 42V and U?’”‘ =56.5V),
respectively. The entire bank is composed of 10 of these batteries connected in parallel.

The simulation and optimization analysis were implemented in MATLAB®, using a personal
computer with i7-3630QM CPU at 2.4 GHz, 8 GB of memory and a 64-bit operating system.

The previously mentioned cases are carefully discussed in the next subsections.
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4.1. Case I: Low Wind Speed with Fully Charged Battery

Conditions of low wind speed and fully charged BESS were simulated by considering an average
speed of 4 m/s (5, = 4 m/s) and an initial SOC equal to 85% (SOCp/g) = 0.85).

Figure 4 presents the wind speed (left) and wind power (right) obtained from the evaluation of
(40) for the aforementioned values of Sl",\,. Because the average speed is close to the cut-in one, high
wind speed oscillations (S’;v = 0.4) are directly reflected in the wind power profile.

w

Wind speed (m/s)
'
Wind power (kW)

Time (h) 20 25’ 04 & Time (h) 20 25 04 &
Figure 4. Wind speed and wind power (Case I).

Figure 5 shows the GA-convergence, which takes around 20 iterations to establish a
near-optimal schedule.

Objective function

0 20 40 60 80 100
Generations

Figure 5. Genetic algorithm (GA) evolution (Case I).

Figure 6 presents the day-ahead schedule of BESS for this case. As can be observed, BESS remains
disconnected during the morning, between t =1 h and ¢ = 10 h in all cases. Then, BESS is discharged
between t = 11 h and ¢ = 15 h for most of the cases, followed by some disconnection periods, so as
to be later discharged during the last hours of the day, between t = 20 h and t = 24 h. These resting
intervals or periods of battery disconnection allow us to improve the management of the stored energy
by moving it towards the NL-peak hours.



Appl. Sci. 2019, 9, 5221 13 of 30

BESS Management

Time (h)
Figure 6. Battery management (Case I).

Figure 7 shows the power (left) and SOC (right) of VRFB, where it is possible to observe how
battery power is gradually reduced in order to fulfill the operating conditions (16) and (17) for battery
voltage and SOC, respectively.

BESS power (kW)
BESS SOC

N
D
Time (h) 20 25 04 & Time (h)

Figure 7. Battery power and state of charge (SOC) (Case I).

Figure 8 presents NL considering the entire architecture of Figure 1 (left) and only considering the
wind and diesel generators (right), calculated using (22) and (21), respectively. According to these
results, the proposed peak-shaving strategy is effective at discharging the energy initially stored on
BESS during those hours of high electricity demand.

—

(=3

S
)

90"
801"

704"

604"

Net load (wind and battery) (kW)
Net load (wind only) (kW)

Time (h) : 25 S Time (h) 050 3
Figure 8. Net load with and without battery (Case I).

Figure 9 presents THC (left) and CO (right) emissions. By comparing NL considering the effect
of wind and BESS previously shown in Figure 8 (left) with THC emissions shown in Figure 9 (left),
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it is possible to observe how NL has a convex shape, whereas THC emissions have concave behavior,
which clearly suggests that THC emissions could increase as NL is reduced. Regarding the relationship
between NL (Figure 8 left) and CO emissions (Figure 9 right), concave behavior of both surfaces is
clearly observed, which means that CO emissions can be reduced with the corresponding limitation of

the NL to be supplied by diesel generator.

]
o
J

70

o
o
L

w
o
L

THC emissions (g)

N
o
|

(=

Time (h) 25 04 & Time (h)

Figure 9. THC and CO emissions (Case I).

Figure 10 shows NOy (left) and CO; (right) emissions, and Figure 11 presents PM emissions. It is
possible to observe how all of them slightly increase at the end of the day, due to the fact that BESS

management strongly focuses on NL-peak mitigation.

—
n [S]

—

NOx emissions (kg)

R 3
Time () 0 g0 04 Time () 0 g5 04 &
Q <
Figure 10. NOx and CO, emissions (Case I).
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Figure 11. PM emissions (Case I).
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Figure 12 verifies that there is no energy surplus (left) or energy not supplied (right) because
renewable generation is very low and the diesel generator is able to supply all electricity demand.

Energy not supplied (kW)

Excess of power ge

Time (h) 20 25~ 04 §‘
S

&
Time (h) 20 25 04 Qo\(\
S

Figure 12. Excess and energy not supplied (ENS) (Case I).

Tables 1-4 summarize the daily results related to GHG emissions and diesel generation.
By comparing the second columns of Tables 1 and 2, it is possible to observe how THC emissions
increase as previously discussed. In the contrary case, a reduction on CO, NOy, CO;, and PM is
clearly observed.

Table 1. Total GHG emissions without battery (Case I).

st THC (kg) CO (kg) NOx (kg) CO; (kg) PM (kg)
0 1.37 7.18 31.18 1444.12 0.49
0.1 1.38 7.08 31.13 1442.31 0.48
0.2 1.38 6.94 30.98 1438.01 0.48
0.3 1.39 6.75 30.76 1431.30 0.47
0.4 1.40 6.53 30.47 1422.96 0.46

Table 2. Total GHG emissions with battery (Case I).

st THC (g) CO (g) NOx (kg) CO; (kg) PM (g)
0 1.57 3.51 24.70 1261.25 0.32
0.1 1.57 3.50 24.65 1260.11 0.32
0.2 1.58 3.36 2457 1257.46 0.32
0.3 1.58 3.30 24.36 1251.68 0.31
0.4 1.58 3.22 24.09 1244.37 0.31

Table 3. Reduction of GHG emissions (Case I).

st THC (%) CO (%) NOx (%) CO; (%) PM (%)
0 -14.43 51.19 20.79 12.66 33.54
0.1 -14.10 50.61 20.79 12.63 32.98
0.2 -13.97 51.54 20.68 12.56 33.37
03 -13.48 51.09 20.80 12.55 32.72

0.4 -12.92 50.66 20.95 12.55 32.00




Appl. Sci. 2019, 9, 5221 16 of 30

Table 4. Diesel power generation (Case I).

b Without BESS With BESS
/st
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 04

1 66.8 67.3 67.5 67.6 67.6 66.8 67.3 67.5 67.6 67.6
2 60.8 61.3 61.5 61.5 61.5 60.8 61.3 61.5 61.5 61.5
3 574 57.9 58.2 58.2 58.2 574 57.9 58.2 58.2 58.2
4 55.7 56.2 56.5 56.5 56.5 55.7 56.2 56.5 56.5 56.5
5 56.2 56.6 56.9 56.9 56.9 56.2 56.6 56.9 56.9 56.9
6 57.6 58.0 58.3 58.4 58.4 57.6 58.0 58.3 58.4 58.4
7 63.9 64.2 64.4 64.6 64.6 63.9 64.2 64.4 64.6 64.6
8 71.0 71.2 71.3 71.4 71.5 71.0 71.2 71.3 71.4 71.5
9 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6
10 89.2 89.0 88.8 88.6 88.3 89.2 89.0 88.8 88.6 88.3
11 95.7 95.3 94.9 94.3 93.7 58.4 58.0 57.6 57.0 56.4
12 96.7 96.2 95.5 94.6 93.6 61.6 61.0 60.3 59.5 58.4
13 97.8 97.1 96.2 95.0 93.6 64.7 64.0 63.0 61.9 60.5
14 99.2 98.4 97.4 96.0 94.4 68.1 67.3 66.2 64.9 63.2
15 96.1 95.3 94.1 92.7 91.0 66.9 66.0 64.9 63.4 61.7
16 91.9 91.1 90.0 88.7 87.0 64.4 63.6 62.6 61.2 87.0
17 89.4 88.7 87.8 86.6 85.2 89.4 887 878 86.6 85.2
18 89.6 89.1 88.4 87.5 86.5 63.8 63.2 88.4 87.5 86.5
19 89.4 89.0 88.6 88.1 87.4 67.4 67.0 88.6 88.1 60.0
20 89.4 89.2 89.0 88.8 88.5 79.5 79.3 63.2 62.9 62.7
21 98.6 98.6 98.6 98.6 98.6 94.3 94.3 76.6 76.6 76.6
22 98.2 98.4 98.5 98.6 98.7 95.9 96.0 88.6 88.8 88.9
23 88.8 89.1 89.3 89.5 89.5 87.2 87.6 85.0 85.2 85.2
24 77.3 77.7 77.9 78.0 78.0 76.1 76.6 75.6 75.7 75.7

Table 3 shows the change on GHG emissions based on the results reported in Tables 1 and 2.
The increment of THC emissions is between 12.92% and 14.43%, whereas the reduction of CO, NOy,
COg, and PM are approximately 51.02%, 20.80%, 12.59%, and 32.92%, respectively.

Table 4 shows in bold those hours at which power generation is reduced as a result of BESS
incorporation, especially during the peak-load of the afternoon and night.

4.2. Case 1I: High Wind Speed with Empty Battery

In this case, conditions of high wind speed with an empty battery are studied. Specifically, an
average wind speed of 14 m/s (S}, = 14 m/s) and an initial SOC of 15% (SOCp(g) = 0.15) are considered.
Wind speed and wind power under these conditions are shown in Figure 13, in the left and right sides,
respectively, for S’I’,v between 0 and 0.4, as previously specified.

Wind speed (m/s)

Wind power (KW)

, N >
Time (h) 00 a5 04 & Time (h) 20 g5 04 ¢

Figure 13. Wind speed and wind power (Case II).
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According to the wind power profile (Figure 13 right), rating power is reached in almost all cases,
except when a high wind speed oscillation (S’{,v — 0.4) is observed, resulting in a wind power reduction
during the morning.

GA evolution is shown in Figure 14, where it can be observed how fast the algorithm converges
due to the influence of the high wind speed. In other words, in the presence of high wind speed,
the energy surplus forces BESS to be charged, limiting the number of possible operational combinations,
and consequently speeding up the convergence.

0 T T T T

500 f-nneeennneadeeee s - S L :

B R e e g

P17 OSSR NS S R S— ]

22000 [---snsaneanseeaneanennansd o Rttt SRS 1

Objective function

22500 f-eneeennennde s oo T SR E
23000 [-+--smramranrneaneaneanane e e S g

T R e e S .

-4000 i i i
0 20 20 60 80 100

Generations

Figure 14. GA evolution (Case II).

BESS management is shown in Figure 15, where the battery is charged during the morning in
most situations. However, discharging actions are also advised sometimes in the morning, and this is
observed when wind generation reduces as a consequence of wind speed profile oscillations. Initially,
the battery is empty, so that discharging the battery in this situation does not result in any load
satisfaction, because the battery is not able to provide any power. In other words, battery discharge
when SOCp;) = SOCZ”"’ is equivalent to the battery disconnection obtained by setting g(; ;1) < 0.

--------

BESS Management

Time (h) 20

Figure 15. Battery management (Case II).

Figure 16 shows the results obtained from the simulation of the management signal previously
shown in Figure 15. Battery power (Figure 16 left) and SOC (Figure 16 right) are presented, and the
battery is charged during the morning and then discharged during the afternoon. The situations of
high wind speed oscillations result in a reduction of energy surplus, and consequently less power is
available to be used in the peak-shaving process during the afternoon.
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‘‘‘‘‘‘

BESS power (kW)
BESS SOC

S D
Time (h) 20 25 04 _\\\o" Time (h) 20 25~ 04 _\\\6"

Figure 16. Battery power and SOC (Case II).

Figure 17 shows the NL profile depending on if the effects of BESS are considered (left) or not
(right), calculated by using (22) and (21), respectively. By comparing these results, it is possible to
observe how NL-peak is reduced.

Net load (wind and battery) (kW)
Net load (wind only) (kW)

- N ) . >
Time (h) 20 25 04 \Q@’" Time (h) 20 25 04 \Q@*

Figure 17. Net load with and without battery (Case II).

As NL is so low when BESS is incorporated, energy surplus is produced because the diesel
generator is forced to operate at its minimum capacity in order to satisfy a very low load. This operating
mode produces a fixed amount of GHG emissions. This reasoning can be verified in Figure 18 for THC
(left) and CO (right), in Figure 19 for NOx (left) and CO, (right), and in Figure 20 for PM.

40
30
0 . )
» 10 s
& o
e &

Time (h) 20 25 04 Time (h) 20 25 04 &
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Figure 18. THC and CO emissions (Case II).
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Figure 19. NOx and CO, emissions (Case II).

PM emissions (g)
'S
1

-----------

Time (h) 20 25
Figure 20. PM emissions (Case II).

Figure 21 shows the daily profiles of energy surplus (left) and ENS (right), respectively. As wind
generation is abundant from the high wind speed, energy excess is observed at almost any time.

Conversely, there is no ENS.

05

05

Energy not supplied (kW)

R .
Time (h) 20 25 04 & Time (h) 20 25 04 &
2 & - &

Figure 21. Excess and ENS (Case II).

Tables 5 and 6 report the cumulative daily values of GHG emissions for different wind speed
profiles. Then, the reduction on the emitted pollutants as a consequence of BESS integration is reported
in Table 7. Because the diesel generator is operating at its minimum allowed power (Pp ;) = Pgi"), the
reduction of GHG emissions is the same for all the factors considered, up to 12.5%.

To improve understanding of the HES operation, Table 8 presents the output power of the diesel
generator with and without considering the BESS operation. In bold are shown those situations where
the diesel unit is disconnected, all of them during the first peak betweent =12h and ¢t = 13 h.
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Table 5. Total GHG emissions without battery (Case II).

st THC (kg) CO (kg) NOx (kg  CO; (kg) PM (kg)
0 1.17 0.62 8.48 629.60 0.14
0.1 1.17 0.62 8.48 629.60 0.14
0.2 1.17 0.62 8.48 629.60 0.14
0.3 1.53 0.82 11.13 826.35 0.19
0.4 1.68 0.90 12.19 905.05 0.21
Table 6. Total GHG emissions with battery (Case II).
st THC (kg) CO (kg) NOx (kg) CO; (kg) PM (kg)
0 1.02 0.55 7.42 550.90 0.13
0.1 1.02 0.55 742 550.90 0.13
0.2 1.10 0.59 7.95 590.25 0.14
0.3 1.53 0.82 11.13 826.35 0.19
0.4 1.68 0.90 12.19 905.05 0.21
Table 7. Reduction of GHG emissions (Case II).
st THC (%) CO (%) NOx (%) CO; (%) PM (%)
0 12.5 12.5 12.5 12.5 12.5
0.1 12.5 12.5 12.5 12.5 12.5
0.2 6.25 6.25 6.25 6.25 6.25
0.3 0 0 0 0 0
0.4 0 0 0 0 0
Table 8. Diesel power generation (Case II).
t/Sb Without BESS With BESS
w
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
1 0 0 0 50 50 0 0 0 50 50
2 0 0 0 50 50 0 0 0 50 50
3 0 0 0 50 50 0 0 0 50 50
4 0 0 0 50 50 0 0 0 50 50
5 0 0 0 50 50 0 0 0 50 50
6 0 0 0 0 50 0 0 0 0 50
7 0 0 0 0 50 0 0 0 0 50
8 0 0 0 0 0 0 0 0 0 0
9 50 50 50 50 50 50 50 50 50 50
10 50 50 50 50 50 50 50 50 50 50
11 50 50 50 50 50 50 50 50 50 50
12 50 50 50 50 50 0 0 50 50 50
13 50 50 50 50 50 0 0 0 50 50
14 50 50 50 50 50 50 50 50 50 50
15 50 50 50 50 50 50 50 50 50 50
16 50 50 50 50 50 50 50 50 50 50
17 50 50 50 50 50 50 50 50 50 50
18 50 50 50 50 50 50 50 50 50 50
19 50 50 50 50 50 50 50 50 50 50
20 50 50 50 50 50 50 50 50 50 50
21 50 50 50 50 50 50 50 50 50 50
22 50 50 50 50 50 50 50 50 50 50
23 50 50 50 50 50 50 50 50 50 50
24 50 50 50 50 50 50 50 50 50 50

20 of 30
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4.3. Case 11I: Very High Wind Speed with Empty Battery

In this case, conditions of extreme wind speed are analyzed by setting the average speed to 24 m/s
(8}y = 24 m/s), while the battery remains empty (SOCp(g) = 0.15).

Figure 22 shows the wind speed (left) and wind power (right) for this case. As wind speed
becomes higher than the cut-out speed (25 m/s) for those cases with wind speed oscillation, the wind
turbine is taken out of service in order to preserve it. Thus, NL suddenly increases during the afternoon.

35 M i 80—
2309 Z 60
E =
< 25+ 5
H £ 40+
5 20+ L oy
£ 0 £ 50
2151 e ® =
DY
104 & 0
0 0

. 3
Time (h) 20 25 04 \\g& Time (h) 20 25 04
S

Figure 22. Wind speed and wind power (Case III).

GA evolution is shown in Figure 23, where a fast convergence is observed due to the fact that
the battery has to be charged during the first hours of the day, reducing the number of possible
combinations of the optimization problem.
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Figure 23. GA evolution (Case III).

Management signal is shown in Figure 24. According to these results, battery should be charged
during the morning. Then, a short resting period is advised so that enough energy is available to be
discharged during the peak-load hours.
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Figure 24. Battery management (Case III).

Charging and discharging cycles are represented by means of the battery power and SOC shown
in Figure 25 at the left and right sides, respectively.

BESS power (kW)
BESS SOC

Time (h) 2 25 04 & ' Time (b) s 04 &
Figure 25. Battery power and SOC (Case III).

The reduction of NL as a result of BESS integration can be observed at the left side of Figure 26.
NL without considering the influence of BESS is presented at the right side of Figure 26, where the
increment of load demand during the afternoon can be clearly observed.

—
(=3
o

50

Net load (wind and battery) (kW)
Net load (wind only) (kW)

Time (h) 20 25 04 \\s\*\ Time (h) 20 25 04 &
Figure 26. Net load with and without battery (Case III).

GHG emissions are fully described in Figures 27-29, where the lack of wind generation during
the afternoon, as a result of the extremely high wind speed, directly influences the behavior of all
emission factors.
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Figure 28. NOx and CO, emissions (Case III).
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Figure 29. PM emissions (Case III).

Energy surplus and ENS are reported in the left and right sides of Figure 30, respectively,
where the energy excess is directly related to the operation of the diesel generator during the
afternoon. As expected, there is no ENS because the diesel generator is able to supply any value of

electricity demand.
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Excess of power generation (kW)

Time (h)

Energy not supplied (kW)

Time (h)

Figure 30. Excess and ENS (Case III).
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Tables 9-12 summarize the GHG emissions and diesel generation for this case. By comparing
Tables 9 and 10, it is possible to observe that, in some situations, THC emissions can increase when
BESS reduces NL in a considerable manner. Regarding the wind speed oscillation, as Si’,\, increases,
wind speed in the hours close to 15 h (§),, = 15 h) increases to a value higher than cut-out speed (25
m/s), removing the wind power generation. Thus, BESS supplies a part of the required power, but
essentially most of it is provided by the diesel generator, increasing even more the emissions of CO,
NOy, CO,, and PM to the atmosphere.

Table 9. Total GHG emissions without battery (Case III).

st THC (kg) CO (kg) NOx (kg) CO; (kg) PM (kg)
0 1.17 0.62 8.48 629.60 0.14
0.1 0.94 4.59 18.35 899.93 0.32
0.2 0.90 5.28 20.30 953.02 0.35
0.3 0.90 5.28 20.30 953.02 0.35
0.4 0.90 5.28 20.30 953.02 0.35
Table 10. Total GHG emissions with battery (Case III).
st THC (kg) CO (kg NOx (kg) CO, (kg) PM (kg)
0 1.02 0.55 7.42 550.90 0.13
0.1 1.02 2.89 16.05 833.17 0.24
0.2 0.98 3.59 18.01 886.27 0.27
0.3 0.98 3.59 18.01 886.27 0.27
0.4 0.98 3.59 18.01 886.27 0.27
Table 11. Reduction of GHG emissions (Case III).
S?,v THC (%) CO (%) NOx (%) CO; (%) PM (%)
0 12.50 12.50 12.50 12.50 12.50
0.1 -9.30 36.98 12.51 7.42 23.93
0.2 -9.73 32.12 11.31 7.00 21.86
0.3 -9.73 32.12 11.31 7.00 21.86
0.4 -9.73 32.12 11.31 7.00 21.86

In Table 12, it can be observed how the diesel generator reduces its power production or is
disconnected. This happens in those hours between t = 12 h and t = 20 h, when BESS has an active role

in mitigating NL.

From the sensitivity analysis of Cases I-11], it is possible to conclude that the objective function
defined in (30) offers reasonable results in terms of BESS management for peak-shaving. The next section
studies the performance of TVMS-BPSO implemented to minimize this already tested objective function.
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Table 12. Diesel power generation (Case III).

) Without BESS With BESS
/st
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 50 50 50 50 5 5 5 5 50 50
10 50 50 90 90 90 50 50 90 90 90
11 50 96.4 96.4 96.4 96.4 50 96.4 96.4 96.4 96.4
12 50 97.5 97.5 97.5 97.5 0 70.2 70.2 70.2 70.2

—_
w
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14 50 100 100 100 100 50 79.7 79.7 79.7 79.7
15 50 96.9 96.9 96.9 96.9 50 87.9 87.9 87.9 87.9
16 50 92.7 92.7 92.7 92.7 50 88.7 88.7 88.7 88.7
17 50 90.2 90.2 90.2 90.2 50 88 90.2 90.2 90.2
18 50 90.4 90.4 90.4 90.4 50 88.9 88.2 88.2 88.2
19 50 90.2 90.2 90.2 90.2 50 89.1 88.7 88.7 88.7
20 50 50 90.2 90.2 90.2 50 50 89.1 89.1 89.1
21 50 50 50 50 50 50 50 50 50 50
22 50 50 50 50 50 50 50 50 50 50
23 50 50 50 50 50 50 50 50 50 50
24 50 50 50 50 50 50 50 50 50 50

5. Performance of TVMS-BPSO

To evaluate the capabilities of TVMS-BPSO presented in Section 3.2 for day-ahead BESS scheduling,
the conditions of Case I (low wind speed with fully charged battery) previously described in Section 4.1
have been considered. This case has been chosen because the number of optimization variables to be
determined is the highest. Regarding the number of agents and iterations, these have been set equal to
the population size and generations of GA previously implemented in Section 4 (75 agents and 100
iterations), and this guarantees a fair comparison between both methods. Other parameters of BPSO
have been adjusted as follows; C??so =2.05, C??so =2.05, 0,in = 0.1, and 00 = 1.

Figures 31-33 show the comparison between GA and TVMS-BPSO for different wind speed
profiles, whereas Table 13 shows the value of the objective function. As can be observed, TVMS-BPSO
employs global exploration during the first iterations, analyzing solutions with high objective function
value. As the algorithm evolves, exploitation has the relevant role of guiding the algorithm to a high

quality solution, comparable to that obtained from GA implementation, according to Table 13.

Table 13. Comparison of objective function values.

S"’N GA BPSO Difference (%)
0 —24,680.21 —24,679.41 0.00326

0.1 —24,528.93 —24,520.42 0.03469

0.2 —24,348.18 —24,331.04 0.07039

0.3 —-24,134.06 -24,116.79 0.07154

0.4 —23,877.54 —-23,877.54 0
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Figure 31. TVMS-BPSO evolution for diurnal pattern strength equal to 0.
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Figure 33. X. TVMS-BPSO evolution for diurnal pattern strength equal to 0.3 and 0.4.

6. Conclusions and Remarks

100

The results obtained from the analysis of the aforementioned cases offer us important lessons
about the mitigation of GHG emissions by integrating a BESS managed from a purely economic
perspective. The proposed approach is based on the solution of an optimization problem in which the
number of possible combinations varies with the available wind speed profile.

As NL becomes negative, the management signal of BESS is directly set to the charging process
(8(itx) = +1). In the contrary case, when NL is positive, the optimization approach has to determine
whether the BESS should be discharged (g(;+x) = —1) or disconnected (g(;;x) = 0) to reduce the

daily NL-peak.
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Let T be the number of hours during which NL is positive (Case I Section 4.1), the number of
decision variables to be determined is defined as 27. In Case I, the wind speed profile was so low that
no energy surplus was observed. However, the initial SOC was high, so that the proposed approach
had to determine how to use that stored energy in order to reduce NL-peak. Under these circumstances,
T = 24 and the number of possible combinations is 16,777,216. That is why GA and TVMS-BPSO
require some iterations to get a near-optimal solution (Figures 5 and 31-33). Conversely, as wind speed
increases, as studied in Case II and Case 11, energy surplus increases and the number of combinations
is reduced, making the management problem easier to solve. This is why an extremely fast convergence
is observed in Figures 14 and 23, for Case Il and Case III, respectively. With respect to TVMS-BPSO
performance, its important capabilities for global exploration and local exploitation offer a high quality
solution similar to that obtained from GA implementation (Table 13).

Regarding GHG emissions, the highest reduction was observed in Case I, in which wind power
generation was very low, but available energy from BESS was optimally allocated. As Table 3, Table 7,
and Table 11 were calculated using the wind-diesel system as reference, Case I presents the highest
percentage of reduction. As long as wind speed increases, the diesel generator must be committed to
its minimum capacity so that GHG emissions cannot be totally eliminated, and this is important for
the optimal sizing of HES. In the presence of an extremely high wind speed, when the wind turbine is
disconnected, the reduction of GHG emissions highly depends on how BESS is managed, which can be
observed in the results of Case III (Table 11), specifically. Another relevant result is that THC emissions
do not always increase with the partial operation of the diesel unit: in Case II, THC emissions were
reduced, perhaps because the diesel generator was disconnected in some operational circumstances.
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Parameter of diesel power calculation (kW).

Power surplus at time ¢ (kW).
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Minimum and maximum diesel power (kW).

Battery voltage during charge at time ¢ (V).
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