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Abstract: Quadrotor unmanned aerial vehicles have become increasingly popular in several
applications, and the improvement of their control performance has been documented in several
studies. Nevertheless, the design of a high-performance tracking controller for aerial vehicles
that reliably functions in the simultaneous presence of model uncertainties, external disturbances,
and control input saturation still remains a challenge. In this paper, we present a robust backstepping
trajectory tracking control of a quadrotor with input saturation. The controller design accounts
for both parameterized uncertainties and external disturbances, whereas a new auxiliary system is
proposed to cope with control input saturation. Taking into account that only the position and attitude
of the quadrotor are measurable, we devise an extended state observer to supply the estimations of
unmeasured states, model uncertainties, and external disturbances. We strictly prove the stability
of the closed-loop system by using the Lyapunov theory and demonstrate the effectiveness of the
proposed algorithm through numerical simulations.

Keywords: robust control; trajectory tracking control; backstepping; quadrotor; extended state
observer; input saturation

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have been used in a broad range of applications
that include scientific research, civil engineering, military applications, aerial mapping, search and
rescue operations, and risk zone inspections [1]. Quadrotors are an important class of UAVs that has
attracted a great deal of attention from scientists and engineers due to their numerous advantages such
as rapid maneuverability, diverse applicability, reliability, and economy [2–4]. However, the quadrotor
is a typical example of a coupled underactuated system, as it has six degrees of freedom but only
four control inputs. In addition, there are parameterized uncertainties in the quadrotor’s rigid body
dynamics and aerodynamics which further complicate the design of a high-performance controller.
Furthermore, the presence of external disturbances and control input saturation pose a significant
challenge to solving the quadrotor’s trajectory tracking control (TTC) problem. Meanwhile, the TTC
is pivotal to many quadrotor’s applications including multi-agent coordination [5], efficient obstacle
avoidance [6], and autonomous docking. Therefore, the design of a robust adaptive trajectory tracking
controller for quadrotors has become a pressing issue in the scientific community.

Several studies have aimed at improving the performance of the quadrotor trajectory
tracking control. In [7], the authors proposed a hierarchical flight control scheme using multiple
proportional-integral-derivative (PID) controller loops to address the three dimensional (3D) TTC
problem. The authors of [8] designed a tracking controller by combining a PID controller and a

Appl. Sci. 2019, 9, 5184; doi:10.3390/app9235184 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5632-9399
http://www.mdpi.com/2076-3417/9/23/5184?type=check_update&version=1
http://dx.doi.org/10.3390/app9235184
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 5184 2 of 23

backstepping controller. The backstepping control technique was also applied in [9,10] to accomplish
the TTC of quadrotors. The H∞ control method was applied in [11] to solve the output tracking control
problem. Another approach was taken in [12], where the authors employed a state space predictive
controller to track some predefined trajectories in combination with an H∞ controller to stabilize the
vehicle’s rotational movements. In [13,14], TTC was achieved by applying the sliding mode control
(SMC) technique. Yet another tracking controller based on the model-predictive control method was
investigated in [15].

Although all the above approaches employ advanced control techniques, they all suffer from
the same shortcoming: they all have system parameters and unknown external disturbances that are
unaccounted for. To overcome this problem, several quadrotor control methods were investigated
such as fuzzy, intelligent control, dynamic surface control, backstepping control, etc. [16,17]. In [18],
the authors presented a novel approximate dynamic programming deep learning algorithm for
enabling a quadrotor systems to perform a trajectory tracking in the presence of adversarial inputs.
In [19], a neurobiologically inspired intelligent algorithm for quadrotor systems was introduced to
achieve the TTC under the presence of uncertain system dynamics and disturbances. Another neural
network based intelligent control method was also developed in approach [20] to stabilize a
quadrotor system under complex environment including system uncertainties and/or disturbances.
These methods [18–20] can deliver a satisfactory control performance, but require considerable
computational resources. Meanwhile, many studies have focused on disturbance–observer (DO)-based
tracking controllers to accomplish a robust control performance. Although the authors of [21–23]
investigated backstepping controllers based on a DO and demonstrated good tracking performance,
the authors of [24–26] devised DO-based tracking sliding mode controllers. High gain observers and
robust controllers to deal with the tracking problem have also been presented in [27,28]. However, all
the control strategies in [21–28], especially with regard to the backstepping controllers, require full-state
measurements that may not be possible due to insufficient sensor numbers and/or sensor faults.

In response, quadrotor researchers have proposed many solutions that either maintain the control
performance or reduce the mass and cost of the vehicle by utilizing only partial state measurements.
In [29,30], based on a reduced-order observer, the authors presented robust TTC algorithms without
using linear velocity measurements.The authors of [31] introduced an active disturbance rejection and
predictive control strategy to deal with the tracking problem in the presence of disturbances in six
degrees of freedom. The controller can guarantee a smooth tracking performance while employing only
position and attitude measurements. Tracking controllers based on the hierarchical control strategy
without linear velocity and angular velocity measurements are presented in [32,33]. Yet another robust
backstepping tracking controller using an extended state observer (ESO) to estimate unmeasurable
states and disturbances from only position measurements was proposed in [34]. In [35], an ESO
was used to supply estimations of internal states and external disturbances that are used by a target
tracking backstepping controller and an attitude stabilized controller. The ESO has also been used in
the design of controllers for a helicopter [36], fixed-wing airplane [37], spacecraft [38], and missile [39].

From a practical point of view, control input saturation occurs frequently and has a significant
effect on a system’s control performance degradation. To address this problem, the authors of [40]
presented a quadrotor backstepping-based controller under input saturation. However, this approach
cannot achieve TTC as it considers only attitude stabilization. Two different approaches to solve the
tracking problem used a hierarchical inner–outer loop controller [41] or a linear quadratic regulator
(LQR) [42]. However, both approaches are not sufficiently robust against disturbances. Once it was
realized that input saturation further exacerbates the control problem of perturbed systems, the robust
adaptive control problem with input saturation has been investigated. For example, in [43], the authors
proposed an adaptive and robust saturated control to achieve the TTC of quadrotors under the presence
of disturbances. Robust saturated tracking controllers were also presented in [44–46], with [44,45]
using a backstepping-based controller, whereas the work in [46] is based on the SMC technique.
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However, these studies [43–46] require the full-state information from the sensor systems, which is not
always possible to achieve.

From the above observations, it is seen that the backstepping control technique plays important
roles in solving the TTC of quadrotors. In addition, the references indicate that most of the
previous studies are only capable of solving the TTC partially under the comprehensive presence of
parameterized uncertainties, external disturbances, and control input saturation. The TTC still needs
to be addressed to meet the higher control performance requirements posed by real-world applications.
In this paper, we propose a novel ESO-based robust backstepping trajectory tracking controller for
quadrotor under control input saturation which advances the current state of the art in three ways:

(i) Unlike previous saturated control studies in [43,44,46], our method does not require full-state
information of the system: partial state knowledge is sufficient. In addition, our approach can
account for the presence of lumped disturbances (consisting of parameterized uncertainties and
external disturbances) in both the translational and rotational dynamics of the quadrotor. In several
studies of quadrotor [47,48], achieving the TTC mission is difficult, as only the vehicle’s position and
attitude are provided by sensors. Based on the assumption that only the position and attitude of the
quadrotor are known, we devise an ESO to supply estimations of velocity, angular rate states, and the
lumped disturbances.

(ii) We devise a robust backstepping TTC algorithm to achieve the tracking control task in the
presence of lumped disturbances and control input saturation. This contribution is clearly superior to
the reduced-order observer based control approaches presented in [30–42], which can only achieve a
partial solution of the robust adaptive saturated tracking control problem. To overcome the problem of
“explosion of complexity”, which is generally problematic in integrator backstepping control, dynamic
filters (also referred to as linear tracking differentiator [49]) are applied to compute the derivative of
virtual control signals.

(iii) We use the Lyapunov theory to verify the stability of the closed-loop system and prove that
both the ESO estimation errors as well as tracking errors are ultimately bounded, despite the presence
of lumped disturbances and control input saturation.

The remainder of this paper is organized as follows. Section 2 presents the quadrotor dynamics
model and problem formulation. Section 3 contains the design and stability analysis of an ESO. Based
on the devised ESO, a robust trajectory backstepping saturated controller is proposed in Section 4.
The stability of the closed-loop system is analyzed in Section 5. Numerical simulation results and
discussions are provided in Section 6, before ending with overall conclusions in Section 7.

2. Quadrotor Dynamics Model and Problem Formulation

In this section, we briefly present the quadrotor dynamics model, as it was clearly introduced and
verified in many previous studies [34,43,50,51].

Figure 1 illustrates the quadrotor configuration. The four rotors of the quadrotor generate four
thrust forces Fi(i = 1, ..., 4) that have relationship with the control inputs as

u1 = F1 + F2 + F3 + F4

u2 = F2 − F4

u3 = F3 − F1

u4 = −F1 + F2 − F3 + F4

(1)

The cascaded dynamics model of the quadrotor is described as{
mP̈ = −Λ1Ṗ−G + B1u1 + d1(t)

JΘ̈ = −Λ2Θ̇ + B2U2 + d2(t)
(2)
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where P = [x, y, z]T and Θ = [φ, θ, ψ]T , respectively, denote the position and attitude of quadrotor in
the inertial frame E. m ∈ R+ the mass. G = [0, 0, mg]T with g being the gravitational acceleration.
J = diag(J1, J2, J3) ∈ R3×3 the nominal inertia momentum matrix. Λ1 = diag(λx, λy, λz) and
Λ2 = diag(λφ, λθ , λψ) represent the damping matrices, with λi(i = x, y, ..., ψ) being nominal
drag coefficients. B1 = [c(φ)s(θ)c(ψ) + s(φ)s(ψ), s(φ)s(θ)c(ψ) − c(φ)s(ψ), c(φ)c(θ)]T the input
matrix of position subsystem, where s(x), c(x) is an abbreviation for sin(x), cos(x), respectively.
B2 = diag(l, l, cd) is a symmetric positive definite constant matrix, where l, cd are the quadrotor
arm length and nominal force-to-moment coefficients, respectively. u1 ∈ R and U2 = [u2, u3, u4]

T the
control inputs. d1(t) and d2(t) are the lumped disturbances, including parameterized uncertainties
and external disturbances, in position and orientation dynamics, respectively.

To take the control input saturation into account, the control input vector [u1, u2, u3, u4]
T is

restricted by sat(u) with

sat(u) =


sat(u1)

sat(u2)

sat(u3)

sat(u4)

 (3)

where

sat(ui) =


umax

i , ui > umax
i

ui, −umax
i ≤ ui ≤ umax

i , (i = 1, ..., 4)

−umax
i , ui < −umax

i

(4)

with umax
i being the maximum control authority in the i-th component that can be provided by

the actuators.
To address the observer and controller design, the quadrotor dynamics model (2) is transformed

into the augmented dynamics in translational and rotational loops as

Ẋ1 = X2

Ẋ2 = −Λ1X2/m + (B1u1 −G)/m + X3

Ẋ3 = hp

Ẋ4 = X5

Ẋ5 = −J−1Λ2X5 + J−1B2U2 + X6

Ẋ6 = hθ

(5)

where the system state variables are denoted as X1 = P, X2 = Ṗ, X4 = Θ, and X5 = Θ̇. We extend the
lumped disturbances as additional state variables of the system with X3 = d1(t)/m and X6 = J−1d2(t).
In addition, we define Ẋ3 = hp and Ẋ6 = hθ , with hp and hθ representing the bounded derivative
of the lumped disturbances and satisfying ‖ hp ‖≤ H1 and ‖ hθ ‖≤ H2, where ‖ • ‖ represents the
2-norm, and H1 and H2 are some positive numbers.

For the sake of simplicity, let us present the following notations before moving forward.

f2(X2) = −Λ1X2/m, F(X4) = (B1u1 −G)/m, f5(X5) = −J−1Λ2X5, B5 = J−1B2

Here, note that F becomes a virtual control vector to be designed later.



Appl. Sci. 2019, 9, 5184 5 of 23

Then, we can rewrite Equation (5) as

Ẋ1 = X2

Ẋ2 = X3 + f2(X2) + F(X4)

Ẋ3 = hp

Ẋ4 = X5

Ẋ5 = X6 + f5(X5) + B5U2

Ẋ6 = hθ

(6)

In the matrix form, system Equation (6) can be rewritten as

Ẋ = A0X + Φ(X) + U + ∆ (7)

where, we use the following notations,

X =



X1

X2

X3

X4

X5

X6


, A0 =



0 I3 0 0 0 0
0 0 I3 0 0 0
0 0 0 0 0 0
0 0 0 0 I3 0
0 0 0 0 0 I3

0 0 0 0 0 0


, Φ(X) =



0
f2(X2)

0
0

f5(X5)

0


, U =



0
F(X5)

0
0

B5U2

0


, ∆ =



0
0

hp

0
0
hθ


where I3 ∈ R3×3 stands for an identity matrix, and 0 is a zero matrix or zero vector with
proper dimensions.

Figure 1. Quadrotor configuration.

Now, the control goal is to design a robust backstepping trajectory tracking controller to steer
the quadrotor to a given trajectory reference Pd and a desired heading angle ψd using only the
measurements of position and attitude, i.e., X1 and X4, despite the presence of both control input
saturation and the lumped disturbances.

3. Extended State Observer

As only the vehicle’s position and attitude are known, an ESO is devised to supply estimates
of velocity, angular rate states, and the lumped disturbances. Following the principle of high-gain
observer design [52], the ESO is formulated as

˙̂X = A0X̂ + Φ(X̂) + Û + H

[
X1 − X̂1

X4 − X̂4

]
(8)
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with

X̂ =
[

X̂1 X̂2 X̂3 X̂4 X̂5 X̂6

]T
,

Φ(X̂) =
[
0 f2(X̂2) 0 0 f5(X̂5) 0

]T
,

Û =
[
0 F(X̂4) 0 0 B5U2 0

]T
,

H =

[
3ω1 I3 3ω2

1 I3 ω3
1 I3 0 0 0

0 0 0 3ω2 I3 3ω2
2 I3 ω3

2 I3

]T

where X̂ i(i = 1, ..., 6) is the estimated value of X i, H denotes the observer gain matrix, and ω1, ω2 are
the ESO’s bandwidth parameters.

To begin the analysis of the ESO’s stability, let us define the estimation error X̃ as

X̃ = X − X̂ =
[

X̃1 X̃2 X̃3 X̃4 X̃5 X̃6

]T

Then, the corresponding scaled estimation error is defined as

ϑ =
[
ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

]T
=

[
X̃1ω2

1 X̃2ω1 X̃3 X̃4ω2
2 X̃5ω2 X̃6

]T
(9)

By recalling Equations (7) and (8), we obtain the scaled estimation error dynamics as

ϑ̇ = ωAϑ + ω1δ2[ f2(X2)− f2(X̂2) + F(X4)− F(X̂4)] + δ3hp + ω2δ5[ f5(X5)− f5(X̂5)] + δ6hθ

= ωAϑ + ω1δ2( f̃2 + F̃) + δ3hp + ω2δ5 f̃5 + δ6hθ

(10)

where

ω =

[
ω1 I9 0

0 ω2 I9

]
,

A =



−3I3 I3 0 0 0 0
−3I3 0 I3 0 0 0
−I3 0 0 0 0 0

0 0 0 −3I3 I3 0
0 0 0 −3I3 0 I3

0 0 0 −I3 0 0


,

δ2 =
[
0 I3 0 0 0 0

]T
, δ3 =

[
0 0 I3 0 0 0

]T
, δ5 =

[
0 0 0 0 I3 0

]T
,

δ6 =
[
0 0 0 0 0 I3

]T
f̃2 = f2(X2)− f2(X̂2), f̃5 = f5(X5)− f5(X̂5).

Before moving on, it is necessary to introduce the following assumption that is widely used in the
proof of ESO’s stability.

Assumption 1 ([34,53]). The functions F, f2, and f5 are globally Lipschitz in their auguments, i.e., there
exist positive numbers γ1, γ2, γ5 such that

‖ F(X4)− F(X̂4) ‖≤ γ1 ‖ ϑ4 ‖≤ γ1 ‖ ϑ ‖
‖ f 2(X2)− f 2(X̂2) ‖≤ γ2 ‖ ϑ2 ‖≤ γ2 ‖ ϑ ‖
‖ f 5(X5)− f 5(X̂5) ‖≤ γ5 ‖ ϑ5 ‖≤ γ5 ‖ ϑ ‖

(11)

for all X i, X̂ i (i = 2, 4, 5).
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Theorem 1. Consider the ESO’s estimation error dynamics in Equation (10), let P be the positive definite
symmetric matrix satisfying ATP + PA = −I18 for the Hurwitz matrix A defined, if the observer
bandwidths ω1 and ω2 are designated such that α = ωm − 2ω1γ1µ2 − 2ω1γ2µ2 − 2ω2γ5µ5 > 0 with
ωm = min{ω1, ω2} and µi =‖ Pδi ‖ (i = 2, 3, 5, 6), then the ESO is stable and the estimation error is
ultimately bounded and asymptotically approach to the origin.

Proof. Choose a Lyapunov candidate function as

V1(ϑ) = ϑTPϑ (12)

Thus, we have
λmin(P) ‖ ϑ ‖2≤ V1 ≤ λmax(P) ‖ ϑ ‖2 (13)

where λmin(P) and λmax(P) are minimum and maximum eigenvalues of P, respectively.
The time derivative of V1 is

V̇1(ϑ) = ϑTPϑ̇ + ϑ̇
TPϑ

= ϑTP[ωAϑ + ω1δ2( f̃2 + F̃) + δ3hp + ω2δ5 f̃5 + δ6hθ ]

+ [ωAϑ + ω1δ2( f̃2 + F̃) + δ3hp + ω2δ5 f̃5 + δ6hθ ]
TPϑ

= ϑT(PωA + ATωTP)ϑ + 2ω1ϑTPδ2( f̃2 + F̃) + 2ω2ϑTPδ5 f̃5 + 2ϑTPδ3hp + 2ϑTPδ5hθ

≤ −ωm ‖ ϑ ‖2 +2ω1(γ1 + γ2) ‖ ϑT ‖‖ Pδ2 ‖‖ ϑ ‖
+ 2ω2γ5 ‖ ϑT ‖‖ Pδ5 ‖‖ ϑ ‖ +2H1 ‖ ϑT ‖‖ Pδ3 ‖ +2H2 ‖ ϑ ‖‖ Pδ6 ‖
≤ −(ωm − 2ω1γ1µ2 − 2ω1γ2µ2 − 2ω2γ5µ5) ‖ ϑ ‖2 +2(H1µ3 + H2µ6) ‖ ϑ ‖

≤ −ωm − 2ω1γ1µ2 − 2ω1γ2µ2 − 2ω2γ5µ5

λmax(P)
V1 +

2(H1µ3 + H2µ6)√
λmin(P)

√
V1

≤ − α

λmax(P)
V1 +

2β√
λmin(P)

√
V1

(14)

where β = H1µ3 + H2µ6.
To obtain a linear differential inequality from Equation (14), let us introduce the following function.

W1(t) =
√

V1 (15)

Then, when V1 6= 0, we have

Ẇ1(t) =
V̇1

2
√

V1
≤ − α

2λmax(P)
W1 +

β√
λmin(P)

(16)

Following the comparison principle [52], the following inequality can be derived from
Equation (16).

W1 ≤ [W1(0)− C0]exp[− α

2λmax(P)
t] + C0 (17)

where

C0 =
2λmax(P)β

α
√

λmin(P)
(18)

Invoking (13), one obtains the upper bound of ‖ ϑ ‖ as

‖ ϑ ‖≤
√

V1(0)− C0√
λmin(P)

exp[− α

2λmax(P)
t] +

C0√
λmin(P)

(19)
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Then, we have:

lim sup
t→∞

‖ ϑ ‖≤ C =
2λmax(P)β

αλmin(P)
(20)

From the above analysis, it is clear that ϑ is uniformly ultimately bounded. Consequently,
from Equation (9), the ultimate upper bound of the scaled estimation error is

lim sup
t→∞

‖ X̃1 ‖≤ C/ω2
1, lim sup

t→∞
‖ X̃2 ‖≤ C/ω1,

lim sup
t→∞

‖ X̃3 ‖≤ C, lim sup
t→∞

‖ X̃4 ‖≤ C/ω2
2,

lim sup
t→∞

‖ X̃5 ‖≤ C/ω2, lim sup
t→∞

‖ X̃6 ‖≤ C

(21)

From Equation (21), it can be clearly concluded that when the observer bandwidth parameters
are sufficiently large, the ESO is stable and its state variables can reach their real values with arbitrarily
small estimation errors. This fact implies that

lim
ωm→∞

C = lim
ωm→∞

2λmax(P)β

αλmin(P)
= 0 (22)

Remark 1. Equations (20) and (21) indicate that increasing the bandwidth parameters ω1 and ω2 can improve
the estimation accuracy of the ESO. However, from Equation (8), it can be seen that any tiny measurement
uncertainties of X1 and X4 will be excessively amplified if the bandwidth parameters are too large. Therefore,
the bandwidth parameters should be tuned appropriately to make a trade-off between the estimation accuracy and
the robustness of the ESO.

4. Robust Saturated Backstepping Tracking Controller Design

In this section, an ESO-based backstepping controller is presented for addressing the robust
trajectory tracking control problem of quadrotors in the presence of both the system parameterized
uncertainties in combination with external disturbances and control input saturation. With the
application of the ESO proposed in Section 3, the estimates of velocity, angular rate, and the lumped
disturbances in both translational and rotational dynamics are supplied simultaneously and, thus,
can be used in the following controller design procedures.

Let us define the position tracking error as the subtraction of the actual position vector, X1,
from the desired position vector, Pd:

e1 = X1 − Pd (23)

Thus, the derivative of e1 is
ė1 = X2 − Ṗd (24)

A virtual control law for (24) is constructed as

X̄2 = −k1(X1 − Pd) + Ṗd (25)

where k1 ∈ R+ is a controller gain. The approximation of ˙̄X2 is computed by making use of the
following first-order low-pass filter (LPF) [54],

τ2Ẋ2 f + X2 f = X̄2 (26)

where τ2 ∈ R+. Then,
˙̄X2 = Ẋ2 f + ε2 (27)
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with the approximation error ε2 satisfying ‖ ε2 ‖≤ E2 ∈ R+.
Next, we consider the velocity tracking error as

e2 = X2 − X̄2 (28)

Taking derivative of e2 gives

ė2 = Ẋ2 − ˙̄X2 = X3 + f2(X2) + F(X4)− ˙̄X2 (29)

To address the control input saturation corresponding to u1, let us consider the following
Lyapunov candidate function,

V2 =
1
2
(e2 − ξ1)

T(e2 − ξ1) +
1
2

ξT
1 ξ1 (30)

where, ξ1 is an auxiliary variable relating to the control input saturation and its dynamics will be
designed later. Differentiating Equation (30) yields

V̇2 = (e2 − ξ1)
T(ė2 − ξ̇1) + ξT

1 ξ̇1 (31)

Substituting Equation (29) into (31) gives

V̇2 = (e2 − ξ1)
T(X3 + f2(X2) + F(X4)− ˙̄X2 − ξ̇1) + ξT ξ̇ (32)

For the V̇2 to be negative definite, the virtual control vector F and the dynamics of ξ1 are
designed as {

F = − f2(X̂2)− k2(X̂2 − X̄2 − ξ1)− X̂3 + Ẋ2 f + ξ̇1

ξ̇1 = −k3ξ1 + ∆F
(33)

where k2, k3 ∈ R+ and ∆F = sat(F)− F. Here, note that F(X4) = (B1u1 −G)/m and assuming that
∆F satisfies ‖ ∆F ‖≤ υ1 with υ1 ∈ R+.

Now, the thrust force u1 and the desired values of roll and pitch angles, i.e., φd and θd, can be
calculated from the following equation.

F =

F1

F2

F3

 =


u1
m [c(φd)s(θd)c(ψd) + s(φd)s(ψd)]

u1
m [s(φd)s(θd)c(ψd)− c(φd)s(ψd))]

u1
m [c(φd)c(θd)]− g

 (34)

Here, the desired heading angle ψd is determined by some high-level guidance algorithm that
will not be discussed as it is beyond the scope of this paper. Manipulating (34) yields

u1 = m
√

F2
1 + F2

2 + (F3 + g)2

φd = arcsin( m
u1
[F1 sin(ψd)− F2 cos(ψd)])

θd = arctan( 1
F3+g [F1 cos(ψd) + F2 sin(ψd)])

(35)

Let e4 denote attitude tracking error as

e4 = X4 − X̄4 (36)

with X̄4 = [φd, θd, ψd] being a virtual control law.
Then, the derivative of e4 can be obtained as

ė4 = Ẋ4 − ˙̄X4 = X5 − ˙̄X4 (37)
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A virtual control law for (37) is constructed as

X̄5 = −k4(X̂4 − X̄4) +
˙̄X4 (38)

where k4 ∈ R+ is a controller gain.
Thus, the angular rate tracking error is defined as

e5 = X5 − X̄5 (39)

The following LPF is applied to compute the approximation of ˙̄X5,

τ5Ẋ5 f + X5 f = X̄5 (40)

where τ5 ∈ R+. Then,
˙̄X5 = Ẋ5 f + ε5 (41)

with the approximation error ε5 satisfying ‖ ε5 ‖≤ E5 ∈ R+.
Taking derivative of (39), we have

ė5 = Ẋ5 − ˙̄X5 = X6 + f5(X5) + B5U2 − ˙̄X5 (42)

To address the control input saturation corresponding to U2, let us consider the following
Lyapunov candidate function,

V3 =
1
2
(e5 − ξ2)

T(e5 − ξ2) +
1
2

ξT
2 ξ2 (43)

where, ξ2 is an auxiliary variable relating to the input saturation and its dynamics will be designed
later. Differentiating Equation (37) yields

V̇3 = (e5 − ξ2)
T(ė5 − ξ̇2) + ξT

2 ξ̇2 (44)

Substituting Equation (36) into (38) gives

V̇3 = (e5 − ξ2)
T(X6 + f5(X5) + B5U2 − ˙̄X5 − ξ̇2) + ξT

2 ξ̇2 (45)

To achieve the V̇3 negative definite, the control vector U2 and the dynamics of ξ2 are designed as{
U2 = B−1

5 [− f5(X̂5)− k5(X̂5 − X̄5 − ξ2)− X̂6 + Ẋ5 f + ξ̇2]

ξ̇2 = −k6ξ2 + ∆U2
(46)

where k5, k6 ∈ R+ and ∆U2 = sat(U2)−U2. Assume that ∆U2 satisfies ‖ ∆U2 ‖≤ υ2 with υ2 ∈ R+.

5. Closed-Loop System’s Stability Analysis

In this section, we move on establishing the stability analysis of the closed-loop system. Toward
that end, the error dynamics of the closed-loop system needs to be derived first. By combining
Equation (10) with the equations from (23) to (46), we have the following formula.

ė1 = X2 − Ṗd = (X2 − X̄2) + X̄2 − Ṗd = −k1e1 + e2 (47)

ė2 = X3 + f2(X2) + F(X4)− ˙̄X2

= X3 + f2(X2)− f2(X̂2)− k2(X̂2 − X̄2 − ξ1)− X̂3 + Ẋ2 f − k3ξ1 + ∆F − ˙̄X2

= −k2(e2 − ξ1) + f̃2 + k2
ϑ2

ω1
+ ϑ3 − k3ξ1 + ∆F − ε2

(48)
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ė4 = (X5 − X̄5) + X̄5 − ˙̄X4 = e5 − k4(X̂4 − X̄4) = e5 − k4(e4 + X̃4)

= −k4e4 + e5 + k4
ϑ4

ω2
2

(49)

ė5 = X6 + f5(X5)− f5(X̂5)− k5(X̂5 − X̄5 − ξ2)− X̂6 + Ẋ5 f + ξ̇2 − ˙̄X5

= X̃6 + f̃5 − k5(e5 − ξ2) + k5X̃5 − k6ξ2 + ∆U2 − ε5

= −k5(e5 − ξ2) + f̃5 + k5
ϑ5

ω2
+ ϑ6 − k6ξ2 + ∆U2 − ε5

(50)

From Equations (47)–(50), the closed-loop system’s error dynamics can be written as

ė1 = −k1e1 + e2

ė2 = ϑ3 + f̃2 − k2(e2 − ξ1) + k2
ϑ2
ω1
− k3ξ1 + ∆F − ε2

ξ̇1 = −k3ξ1 + ∆F

ė4 = −k4e4 + e5 + k4
ϑ4
ω2

2

ė5 = −k5(e5 − ξ2) + k5
ϑ5
ω2

+ f̃5 + ϑ6 − k6ξ2 + ∆U2 − ε5

ξ̇2 = −k6ξ2 + ∆U2

ϑ̇ = ωAϑ + ω1δ2( f̃2 + F̃) + δ3hp + ω2δ5 f̃5 + δ6hθ

(51)

Theorem 2. Consider the quadrotor dynamics as described in Equation (2), for the given sufficiently smooth
trajectory command Pd and heading angle ψd, if the controller gains ki (i = 1, ..., 6) and the observer bandwidth
parameters ω1, ω2 are chosen such that the matrix Π defined in the following is positive definite, then the
ESO-based saturated trajectory tracking controller, including the virtual controllers (25), (33), (38), and (46)
and the applied controllers (35) and (46), can guarantee the ultimate boundedness of all signals in the closed-loop
and make the tracking errors arbitrarily small.

Π =

[
Π1 Π2

ΠT
2 Π3

]

Π1 =



k1 − 1
2 − 1

2 0 0 0
− 1

2 k2 − c4
2 0 0 0 0

− 1
2 0 k3 − c1

2 0 0 0
0 0 0 k4 − 1

2 − 1
2

0 0 0 − 1
2 k5 − c5

2 0
0 0 0 − 1

2 0 k6 − c2
2



Π2 =



0 0 0 0 0 0
0 − 1

2 (γ2 +
k2
ω1

) − 1
2 0 0 0

0 0 0 0 0 0
0 0 0 − k4

2ω2
2

0 0

0 0 0 0 − 1
2 (γ5 +

k5
ω2

) − 1
2

0 0 0 0 0 0


Π3 = (

α

2
− c3

4
)diag(1, 1, 1, 1, 1, 1)

(52)

with cj(j = 1, ..., 5) being some positive constants to be chosen.

Proof. Consider the following Lyapunov candidate function

V =
1
2

eT
1 e1 +

1
2
(e2 − ξ1)

T(e2 − ξ1) +
1
2

ξT
1 ξ1 +

1
2

eT
4 e4 +

1
2
(e5 − ξ2)

T(e5 − ξ2) +
1
2

ξT
2 ξ2 +

1
2

ϑTPϑ (53)
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Substituting (10) and (51) into the time derivative of V gives

V̇ ≤ eT
1 (−k1e1 + e2) + (e2 − ξ1)

T [−k2(e2 − ξ1) + f̃2 + ϑ3 − ε2

+ k2
ϑ2

ω1
] + ξT

1 (−k3ξ1 + ∆F) + eT
4 (−k4e4 + e5 + k4

ϑ4

ω2
2
)

+ (e5 − ξ2)
T [−k5(e5 − ξ2) + k5

ϑ5

ω2
+ f̃5 + ϑ6 − ε5] + ξT

2 (−k6ξ2 + ∆U2)−
1
2

ωm ‖ ϑ ‖2

+ (ω1γ1µ2 + ω1γ2µ2 + ω2γ5µ5) ‖ ϑ ‖2 +µ3 ‖ ϑ ‖‖ hp ‖ +µ5 ‖ ϑ ‖‖ hθ ‖
≤ −k1eT

1 e1 − k2(e2 − ξ1)
T(e2 − ξ1)− k3ξT

1 ξ1 − k4eT
4 e4 − k5(e5 − ξ2)

T(e5 − ξ2)− k6ξT
2 ξ2

+ (e2 − ξ1)
T( f̃2 +

k2

ω1
ϑ2) + (e2 − ξ1)

Tϑ3 +
k4

ω2
2

eT
4 ϑ4

+ (e5 − ξ2)
T( f̃5 +

k5

ω2
ϑ5) + (e5 − ξ2)

Tϑ6 + eT
1 e2 − (e2 − ξ1)

Tε2 − (e5 − ξ2)
Tε5

+ eT
4 e5 + ξT

1 ∆F + ξT
2 ∆U2 −

α

2
‖ ϑ ‖2 +β ‖ ϑ ‖

(54)

Obviously, we have the following relationship.

eT
1 e2 = eT

1 (e2 − ξ1) + eT
1 ξ1 ≤‖ e1 ‖‖ e2 − ξ1 ‖ + ‖ e1 ‖‖ ξ1 ‖

eT
4 e5 = eT

4 (e5 − ξ2) + eT
4 ξ2 ≤‖ e4 ‖‖ e5 − ξ2 ‖ + ‖ e4 ‖‖ ξ2 ‖

ξT
1 ∆F ≤ c1

2
‖ ξ1 ‖2 +

1
2c1

υ2
1

ξT
2 ∆U2 ≤

c2

2
‖ ξ2 ‖2 +

1
2c2

υ2
2

β ‖ ϑ ‖ ≤ c3

4
‖ ϑ ‖2 +

1
c3

β2

−(e2 − ξ1)
Tε2 ≤

c4

2
‖ e2 − ξ1 ‖2 +

1
2c4

E2
2

−(e5 − ξ2)
Tε5 ≤

c5

2
‖ e5 − ξ2 ‖2 +

1
2c5

E2
5

(55)

By making use of (54), (55) can be rewritten as

V̇ ≤ −k1 ‖ e1 ‖2 −(k2 −
c4

2
) ‖ e2 − ξ1 ‖2 −(k3 −

c1

2
) ‖ ξ1 ‖2

− k4 ‖ e4 ‖2 −(k5 −
c5

2
) ‖ e5 − ξ2 ‖2 −(k6 −

c2

2
) ‖ ξ2 ‖2

− (
α

2
− c3

4
) ‖ ϑ ‖2 +(γ2 +

k2

ω1
) ‖ e2 − ξ1 ‖‖ ϑ2 ‖

+ ‖ e2 − ξ1 ‖‖ ϑ3 ‖ +
k4

ω2
2
‖ e4 ‖‖ ϑ4 ‖

+ (γ5 +
k5

ω2
) ‖ e5 − ξ2 ‖‖ ϑ5 ‖ + ‖ e5 − ξ2 ‖‖ ϑ6 ‖

+ ‖ e1 ‖‖ ξ1 ‖ + ‖ e4 ‖‖ ξ2 ‖ +(
υ2

1
2c1

+
υ2

2
2c2

+
β2

c3
+

1
2c4

E2
2 +

1
2c5

E2
5)

≤ −ηTΠη+ σ

(56)

where σ =
υ2

1
2c1

+
υ2

2
2c2

+ β2

c3
+ 1

2c4
E2

2 +
1

2c5
E2

5 and

η = [‖ e1 ‖, ‖ e2 − ξ1 ‖, ‖ ξ1 ‖, ‖ e4 ‖, ‖ e5 − ξ2 ‖, ‖ ξ2 ‖, ‖ ϑ1 ‖, ‖ ϑ2 ‖, ‖ ϑ3 ‖, ‖ ϑ4 ‖, ‖ ϑ5 ‖, ‖ ϑ6 ‖]T (57)
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With e = [eT
1 , (e2 − ξ1)

T , ξT
1 , eT

4 , (e5 − ξ2)
T , ξT

2 ]
T and matrix Π is positive definite, we have

V̇ ≤ −λmin(Π)(‖ e ‖2 + ‖ ϑ ‖2) + σ

≤ −λmin(Π)[eT
1 e1 + (e2 − ξ1)

T(e2 − ξ1)ξ
T
1 ξ1 + eT

4 e4

+ (e5 − ξ2)
T(e5 − ξ2) + ξT

2 ξ2 +
1

λmax(P)
ϑTPϑ] + σ

≤ −aV + σ

(58)

where a = −2λmin(Π)min{1, 1
λmax(P)

}. Then, we easily obtain

V ≤ [V(0)− σ

a
]exp(−at) +

σ

a
≤ σ

a
, ∀t > t0 (59)

Equation (59) means that V(t) is ultimately bounded, and therefore all signals in the closed-loop
system (51) are ultimately bounded. This completes the proof.

Remark 2. In the above proof, it is obvious that e2 is ultimately bounded as both e2 − ξ1 and ξ1 are ultimately
bounded. Similarly, e5 is ultimately bounded as e5 − ξ2 and ξ2 are ultimately bounded.

Remark 3. From (59), it can be seen that we can enhance the robustness of the proposed controller by decreasing
the value of σ, or, in other words, increasing the values of c1, c2, and c3. However, the parameters c1, c2, and c3

should be chosen appropriately to ensure that the matrix Π is positive definite.

6. Numerical Simulation Results and Discussions

In this section, we demonstrate the effectiveness of the proposed new robust saturated
tracking controller (RAS-BSC) under the combined influence of parameterized uncertainties, external
disturbances, and control input saturation. The quadrotor dynamics from (2) are used to evaluate
the stability of the closed-loop system and verify the superior performance of our controller.
The advantages specific to our method are discussed and highlighted by comparing the proposed
controller with some previous approaches, including the nonrobust adaptive backstepping controller
(BSC) [8] and robust backstepping controller (RA-BSC) [34].

6.1. Simulation Assumptions

The simulation was conducted based on the following assumptions; (i) the quadrotor attitude
is determined by an inertial navigation system (INS), (ii) the quadrotor altitude is measured either
by a barometric sensor or a laser sensor, and (iii) the quadrotor horizontal position is provided by a
commercial global positioning system (GPS) receiver module. The controllers are implemented in
Matlab/Simulink with a sampling time of 0.0025 s, corresponding to an operating frequency of 400 Hz.
The quadrotor parameters and the control saturation limits used in the simulation (Table 1) are chosen
by making use of the parameters of a real F450 quadrotor platform [55], which is equipped with four
2312E motors and four 9450 propellers [56]. The controller gains, initial conditions, desired trajectory,
and heading angle for the numerical simulations are listed in Table 2. By choosing the trajectory
reference as a three-dimensional (3D) spline (Figures 2 and 3), we demonstrate that our new controller
is capable of tracking complex desired trajectories. Candidate functions of the lumped disturbances,
d1(t) and d2(t), are introduced into the simulation as [51]

d1(t) = 0.1[sin(0.1t), sin(0.1t + 0.3), sin(0.1t− 0.1)]T

d2(t) = 0.15[sin(0.3t + 0.2), sin(0.3t− 0.25), sin(0.3t)]T
(60)
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Table 1. System’s nominal parameters used in the simulation.

Symbol Value Unit

m 2.0 kg
J1 0.0121 kg·m2

J2 0.0119 kg·m2

J3 0.0223 kg·m2

l 0.225 m
cd 0.05
g 9.81 m/s2

Λ1 diag[0.01, 0.01, 0.01]
Λ2 diag[0.012, 0.012, 0.012]

umax
1 30 N

umax
2 1.8 Nm

umax
3 1.8 Nm

umax
4 3 Nm

Table 2. Trajectory reference, desired heading angle, initial conditions, and controller gains used in
the simulation.

Symbol Value and Unit Description

Pd [20sin(0.1 t), 10sin(0.05 t), 0.1 t] m Trajectory reference
ψd 0◦ Desired heading angle
P0 [−5, 3, 0] m Initial position
Ṗ0 [0, 0, 0] m/s Initial velocity
Θ0 [0, 0, 6]◦ Initial attitude
Θ̇0 [0, 0, 0]◦/s Initial angular velocity

ω1, ω2 5, 35 ESO’s bandwidth
k1 diag[0.8, 0.8, 0.27] Controller gains
k2 diag[0.38, 0.38, 0.38] Controller gains
k3 diag[1.05, 1.05, 1.75] Controller gains
k4 diag[2.0, 2.0, 0.8] Controller gains
k5 diag[1.0, 1.0, 0.8] Controller gains
k6 diag[4.0, 4.0, 5.0] Controller gains
cj 1 Controller gains

τ2, τ5 0.01 LPF’s parameters

0
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10 200
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-10 -20
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RA-BSC
RAS-BSC

Figure 2. Three-dimensional view of the trajectory tracking performance of the three controllers.

6.2. Simulation Results and Discussions

In the presence of both parameterized uncertainties and external disturbances our new controller
is expected to perform similarly to the RA-BSC approach as long as the control input is not saturated.
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If saturation does occur, our controller should exhibit a superior performance compared to both BSC
and RA-BSC. To highlight the effectiveness of our proposed RAS-BSC, the simulation was carried out
in two stages: trajectory tracking control in (i) the absence and (ii) the presence of lumped disturbances.
For comparison, we also simulated the performance of the BSC and RA-BSC prescribing the same
flight conditions.

The first stage covers the time period from t = 0 to t = 50 s. At t = 0 s, the vehicle is initialized and
then takes off from the initial position. All three controllers are generally able to drive the quadrotor
to the trajectory reference (Figures 2–9) and stabilize the vehicle’s attitude (Figures 10–12) within a
few seconds after taking off. However, all control signals (Figures 13–16) reach different saturation
values causing significant differences between the three controllers in their convergence times (Table 3).
For the BSC, it is ~9 s for x−position, 14 s for y-position, 23 s for z-position, and 6◦ for heading angle.
For the RA-BSC, it is 15 s, 20 s, 35 s, and 9◦ for x-, y-, z-position, and heading angle, respectively.
Whereas with our new algorithm, it is ~9 s, 19 s, 28 s, and 6◦, respectively, for the x-, y-, z-position,
and heading angle. The slow RA-BSC response time can impose several limitations and pose real
dangers in real-world applications, e.g., loss of tracking targets, agent collision in multi-agent systems,
breaking a precision landing function, etc.
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15
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Figure 3. Two-dimensional view of the trajectory tracking performance of the three controllers.
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Figure 4. Comparing the trajectory tracking performance of the three controllers along the x-direction.
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Figure 5. Comparing the trajectory tracking performance of the three controllers along the y-direction.
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Figure 6. Comparing the trajectory tracking performance of the three controllers along the z-direction.

Here, we can make two main observations: (1) although the RA-BSC converges significantly
slower than our new RAS-BSC controller in the presence of control input saturation (first flight stage),
the convergence times become much more similar when the control input is not saturated (second
flight stage), and (2) although the BSC converges quickly and delivers an acceptable performance in
the absence of external disturbances (first flight stage), its tracking mission deteriorates considerably
once the external disturbances are applied (second flight stage).

During the second stage (from t = 50 s to t = 150 s), the lumped disturbances are applied to the
simulation. As a result, and despite having shown a faster initial response (in the first flight stage)
than both RA-BSC and RAS-BSC, the BSC tracking performance deteriorates dramatically once the
disturbances influence the system (Figures 2–12) and the position tracking error performance exhibits
large peak-to-peak amplitudes of oscillation (Table 4). Furthermore, the BSC altitude oscillation
remains at a high frequency and never converges to zero (Figure 9). During this stage, the control
signals u1, u2, and u3 are not saturated (Figures 13–15), and, as expected, the position tracking error
performance is nearly identical for the RA-BSC and our RAS-BSC. For the RA-BSC, it is, respectively,
0.6 m, 0.7 m, and 0.05 m for the x-, y-, and z-position. Meanwhile, for our new controller, it is 0.6 m,
0.55 m, and 0.05 m for the x-, y-, and z-position, respectively. Furthermore, during this second stage,
the control signal u4 becomes saturated (Figure 16), resulting in a considerable degradation of the
RA-BSC heading angle tracking performance (Figure 12 and Table 4) with a peak-to-peak oscillation
amplitude of 2.4◦, whereas it is only 0.8◦ for our controller. The numerical simulation results also show
that the saturation amounts corresponding to the virtual control signals F and U2 are all bounded
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(Figure 17), verifying the reasonability of the saturation assumptions made in Section 4, i.e., ‖ ∆F ‖≤ υ1

and ‖ ∆U2 ‖≤ υ2.

Figure 7. Comparison of x-position tracking error performance between our new controller (RAS-BSC)
and existing controllers.

Figure 8. Comparison of y-position tracking error performance between our new controller (RAS-BSC)
and existing controllers.
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Figure 9. Comparison of altitude tracking error performance between our new controller (RAS-BSC)
and existing controllers.
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Figure 10. Comparison of roll attitude performance between our new controller (RAS-BSC) and
existing controllers.
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Figure 11. Comparison of pitch attitude performance between our new controller (RAS-BSC) and
existing controllers.

Figure 12. Comparison of yaw attitude performance between our new controller (RAS-BSC) and
existing controllers.



Appl. Sci. 2019, 9, 5184 19 of 23

Figure 13. Comparison of control signal u1 between our new controller (RAS-BSC) and
existing controllers.
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Figure 14. Comparison of control signal u2 between our new controller (RAS-BSC) and
existing controllers.
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Figure 15. Comparison of control signal u3 between our new controller (RAS-BSC) and
existing controllers.



Appl. Sci. 2019, 9, 5184 20 of 23

0 50 100 150

time (s)

-3

-2

-1

0

1

2

3

u 4 (
N

m
)

BSC
RA-BSC
RAS-BSC

Figure 16. Comparison of control signal u4 between our new controller (RAS-BSC) and
existing controllers.
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Figure 17. The magnitude of the saturation amounts, ‖ ∆F ‖ and ‖ ∆U2 ‖, are all bounded, which
verifies the reasonability of the saturation assumptions ‖ ∆F ‖≤ υ1 and ‖ ∆U2 ‖≤ υ2.

Table 3. Comparison of converging time during the first flight stage (in the absence of
external disturbances).

Controller x-Position y-Position z-Position Heading Angle

BSC 9 s 14 s 23 s 6 s
RA-BSC 15 s 24 s 35 s 9 s

RAS-BSC 9 s 19 s 28 s 6 s

Table 4. Comparison of peak-to-peak oscillation amplitude of control performance during the second
flight stage (in the presence of external disturbances).

Controller x-Position y-Position z-Position Heading Angle

BSC 2.9 m 4.5 m 0.7 m 26◦

RA-BSC 0.6 m 0.7 m 0.05 m 2.4◦

RAS-BSC 0.6 m 0.55 m 0.05 m 0.8◦

In summary, our new controller clearly outperforms the other backstepping-based controllers,
despite either parameterized uncertainty in combination with external disturbances or control input
saturation. The way our new controller exhibits the performance promises a robust and rapid response,
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even when the vehicle is flying in disturbance-rich environments and in the presence of control input
saturation and sensor faults. This significantly extends the range of applications and environments in
which UAVs can be deployed, especially if these applications require high stability, rapid response
times, and high accuracy, e.g., for moving obstacle avoidance, precision landing on moving platforms,
autonomous delivery to difficult (e.g., narrowed) areas, etc.

7. Conclusions

This paper presented a new robust backstepping tracking control for a quadrotor with input
saturation. Using only position and attitude measurements, an ESO was devised to supply estimates
of the vehicle’s velocity, angular rate, and lumped disturbances. Taking into account the lumped
disturbances and control input saturation, we designed an ESO-based backstepping tracking controller
and demonstrated the stability of the closed-loop system through Lyapunov theory. The numerical
simulation results clearly demonstrated that our new controller exhibits a significantly improved TTC
performance in comparison to existing backstepping-based approaches. Our proposed controller is not
only robust and capable to adapt to uncertainties and disturbances but it also maintains rapid response
times despite control input saturation. These properties guarantee superior trajectory tracking control
performance of the investigated quadrotor and promise a broad range of applications in other system
classes. Our future work will be directed to designing a controller (using our RAS-BSC approach) to
achieve a precision landing of a quadrotor on a moving platform, which requires superior control
performance in disturbance-rich environments.
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