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Abstract: According to a classification of central nervous system tumors by the World Health
Organization, diffuse gliomas are classified into grade 2, 3, and 4 gliomas in accordance with their
aggressiveness. To quantitatively evaluate a tumor’s malignancy from brain magnetic resonance
imaging, this study proposed a computer-aided diagnosis (CAD) system based on a deep convolutional
neural network (DCNN). Gliomas from a multi-center database (The Cancer Imaging Archive)
composed of a total of 30 grade 2, 43 grade 3, and 57 grade 4 gliomas were used for the training and
evaluation of the proposed CAD. Using transfer learning to fine-tune AlexNet, a DCNN, its internal
layers, and parameters trained from a million images were transferred to learn how to differentiate
the acquired gliomas. Data augmentation was also implemented to increase possible spatial and
geometric variations for a better training model. The transferred DCNN achieved an accuracy of
97.9% with a standard deviation of ±1% and an area under the receiver operation characteristics
curve (Az) of 0.9991 ± 0, which were superior to handcrafted image features, the DCNN without
pretrained features, which only achieved a mean accuracy of 61.42% with a standard deviation of ±7%
and a mean Az of 0.8222 ± 0.07, and the DCNN without data augmentation, which was the worst
with a mean accuracy of 59.85% with a standard deviation ±16% and a mean Az of 0.7896 ± 0.18.
The DCNN with pretrained features and data augmentation can accurately and efficiently classify
grade 2, 3, and 4 gliomas. The high accuracy is promising in providing diagnostic suggestions to
radiologists in the clinic.

Keywords: glioblastoma; magnetic resonance imaging; deep convolutional neural network

1. Introduction

Diffuse gliomas, the most common primary central nervous system (CNS) neoplasm, are formed
of tumor cells that display differentiation of glial cells. In the World Health Organization (WHO)
classification of tumors of the CNS [1,2], diffuse gliomas are graded according to their malignant
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degree into WHO grades 2 to 4. Patients with diffuse gliomas of lower grades (grades 2 and 3)
have more favorable prognoses [2,3]. On the contrary, glioblastoma multiforme (GBM) is the most
aggressive tumor type (WHO grade 4) with dismal prognoses despite advances in various aspects of
its clinical management [4]. Since therapeutic strategies for the various grades are not identical [5],
distinguishing the different grades of diffuse gliomas is a critical issue in clinical settings. Determining
the tumor grade relies on different pathological features including mitotic activity, cytological atypia,
neoangiogenesis, and tumor necrosis. However, since the definitions are semiquantitative and
subjective [6,7], histopathological analyses sometimes result in ambiguity in glioma grading. Moreover,
previous reports revealed that the heterogeneous expressions of cellular features may result in
misgrading in up to one-third of cases with unguided surgical tissue sampling [7–11].

With the development of medical imaging technologies, magnetic resonance (MR) imaging (MRI)
is now the most commonly used modality to evaluate the malignancy of brain tumors [12,13]. Growing
evidence has revealed the feasibility of using MRI features to probe underlying pathological subtypes,
suggesting their potential application in differentiating tumor molecular profiles based on imaging
traits [14]. In addition to conventional sequences, several physiological MR sequences, including
diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and MR spectroscopy (MRS),
have also been applied to find physiologically meaningful signals within the tumor, thus helping
to evaluate heterogeneous patterns of cell compositions within tumor tissues and noninvasively
differentiate gliomas of different degrees of malignancy [15–19]. A previous study proposed that MRI
scans are highly specific for diagnosing brain stem gliomas and can even replace risky biopsies before
radiotherapy in most cases [20]. To improve the clinical care of CNS gliomas, getting the most out of
MRI information is very important.

Various computer-aided diagnosis (CAD) systems have been used to extract relevant diagnostic
image features from X-ray radiography, ultrasonography, and MRI to evaluate tumor types, grades,
and subsequent treatments [21–24]. Certain image features, including the intensity, morphology,
and textural features, are handcrafted according to clinical experience. When designing handcrafted
features, such as shape features, which are described by the experimented radiologists from clinical
experience as being malignant tumors that are aggressive and have irregular shapes, implementation
not only depends on the interpretive skills of physicians and computer scientists, but also is limited by
the experts’ available knowledge.

Regarding image interpretation, deep learning, as a recent artificial intelligence technique,
proposes using automatic convolutions to extract enormous numbers of edge features and object
features to recognize the underlying characteristic patterns in images [25–27]. Human interventions
with domain-specific knowledge are thus minimized by convolution layers using hierarchical feature
representations. Thus, deep convolutional neural networks (DCNNs) have been successfully applied
to object recognition in natural images after being trained on a large amount of training data [28].
However, the use of DCNNs in clinical decision making may be restricted due to limited private
medical data. Nevertheless, recent studies have used DCNN or machine learning techniques to classify
gliomas. Yang et al. used DCNN to classify 113 gliomas and achieved good accuracy [29]. Lotan
used machine learning techniques to classify tumors based on the features extracted from image
segmentation [30].

This study addressed the issue of limited data using transfer learning to transfer pretrained
weights obtained from millions of natural images, i.e., ImageNet, to acquire substantial image
features [25,27] and accelerate the training process [31]. In addition, data augmentation was applied
to increase the quantity and diversity of training data [27]. Conventional augmentations, including
translation, flipping, cropping, scaling, and rotation, are common sampling methods in general use.
For the specified glioma MRI images, AutoAugment, which can automatically look for an optimal
augmentation policy from one trained dataset to other different datasets [32], was also implemented
to generate a customized augmentation dataset. Using the proposed transfer learning and data
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augmentation, the success of the developed CAD system can be applied to various medical image
diagnostic issues.

2. Materials and Methods

2.1. MRI Database

The National Cancer Institute funded The Cancer Imaging Archive (TCIA), an open-access
database containing brain MR images that complies with all applicable laws, regulations, and policies
to protect human subjects, including all necessary approvals, human subject assurances, informed
consent documents, and institutional review board approvals [33]. The acquired MRI database from
TCIA was generated in five institutes before any operative procedure: Henry Ford Hospital, Thomas
Jefferson University Hospital, Case Western Hospital, Emory University, and Fondazione IRCCS
Instituto Neuroligico C. Besta. Representative examples of 30 grade 2, 43 grade 3, and 57 grade 4
gliomas are shown in Figure 1 to illustrate the tumor appearances in MR images.
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Figure 1. Gliomas of grades 2, 3, and 4 as they appeared on brain magnetic resonance images.
(http://cancerimagingarchive.net/---\T1\textquotedblleftLicense\T1\textquotedblright and the CC BY
license (https://creativecommons.org/licenses/by/3.0/).

2.2. Image Analysis

A board-certified neuroradiologist (K.H., with 13 years of experience) blinded to the grading
information selected the most representative 2D image from the contrast-enhanced axial MRI
T1-weighted image (T1WI). The intensity distributions among images were normalized to the gray-level
pixel depth, i.e., 8 bits (0-255). After normalization, contrast-enhanced tumor areas were delineated
using OsiriX software (Pixmeo, Geneva, Switzerland). Pixels enclosed in the delineated tumor contour
were the input region-of-interest for the following tissue characterization. Figure 2 shows tumor
areas of the examples in Figure 1. Before feeding the dataset into the DCNN, image resolutions were
normalized to 227 × 227 pixels as a regular procedure.

http://cancerimagingarchive.net/---\T1\textquotedblleft License\T1\textquotedblright 
https://creativecommons.org/licenses/by/3.0/
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Figure 2. Extracted tumor areas as input images to the deep convolutional neural network. (http:
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(https://creativecommons.org/licenses/by/3.0/).

2.3. Transfer Learning

DCNNs based on hierarchical convolution layers have overcome various classic computer
visual challenges with substantial improvements in areas such as image classification [28], image
segmentation [34], and object recognition [35]. AlexNet was the first attempt at using a deep neural
network to achieve dramatically improved accuracy compared to previous methodologies in the
ImageNet large-scale visual recognition challenge (ILSVRC) [28]. Conventional image classification
methods use handcrafted image features to quantify intuitive and easily observed characteristic
patterns for differentiation. As the amount of data increases, more diversities occur that exceed the
imaginable range of humans when they manipulate image features. On the other hand, AlexNet,
as a DCNN, utilizes data diversity and extracts arbitrary image features from edges to objects to
architecturally establish a model of a specified classification task. Inspired by AlexNet, an enormous
dataset is required to train a specific model. Nevertheless, collecting specific image data of sufficient
quantity and quality is challenging. Using millions of images for training is also time-consuming.
Alternatively, high performance is retained by transfer learning, which transfers knowledge learned
about object compositions from an enormous dataset such as ImageNet to a specific task with a smaller
amount of data [25,27,31].

In transfer learning [36], the internal layers of the original network are regarded as feature
extractors, while the final layers used to learn specific features of the source task are replaced by
adaptation layers trained on the target task (Figure 3). The target task in this study was the grading of
three levels of gliomas on brain MR images, so that the final fully connected layer of the pre-trained
AlexNet DCNN model for 1000 objects was replaced by three groups, i.e., grades 2, 3, and 4, and a
subsequent classification layer.

http://cancerimagingarchive.net/---\T1\textquotedblleft License\T1\textquotedblright 
http://cancerimagingarchive.net/---\T1\textquotedblleft License\T1\textquotedblright 
https://creativecommons.org/licenses/by/3.0/
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2.4. Data Augmentation

Transfer learning uses extracted features from big data for pretraining. These features are oriented
from the source task, such as object recognition in ImageNet, and might not exhaustively describe
the target task. To squeeze diversities and characteristics from the target images, AutoAugment [32]
was also proposed to enhance the generalization ability and reduce overfitting. AutoAugment has
already been used to explore the CIFAR-10, SVHN, and ImageNet datasets to automatically define
the best augmentation policies for these imaging data, that is, the most appropriate combinations of
image operations to generate more data. In the experiment, the policy for SVHN was transferred to
the target task, i.e., examining brain MRI images, while the augmentation policy of the ImageNet
dataset focused on color exchange that differed from the collected grayscale images, and CIFAR-10
focused on translation, which caused the target to exceed the boundary and left only half of the target.
The SVHN policy consisted of 25 subpolicies, each of which consisted of two operations applied to
an image, and each operation was related to two hyper-parameters: the probability of applying the
operation and the magnitude of the operation. For example, an operation named ShearX(Y) has a
range of magnitudes, which is [−0.3, 0.3] and is discretized into 10 values, so (ShearX, 0.9, 7) has a
probability of 0.9 of being applied, and when applied, it has a magnitude of 7 out of 10. Different from
the original policy, probabilities of all subpolicies were ignored in the experiment to generate fixed
image production; therefore, the two operations in each subpolicy were separated into three groups:
operation 1, operation 2, and operation 1 and 2. At this time, some single operations repeated and were
removed. These 56 subpolicies expanded the dataset to 57-fold larger. Figure 4 presents augmented
images for examples of grade 4 gliomas.
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2.5. Ten-Fold Cross-Validation

Ten-fold cross-validation was used for model validation and assessment. The image dataset
was randomly partitioned into 10 equal subsamples. In every cross-validation process, one of the
subsamples was preserved as a test set and the others were used as a training set. The cross-validation
process was repeated 10 times and every subsample was used once as a test set. The mean and standard
deviation (SD) of the 10 test results were calculated as an estimate of the model accuracy. Ten-fold
cross-validation is widely used to evaluate the generalization ability of limited datasets [37].

3. Results

In the training process, a low learning rate can lead to time-consuming training and a low
convergence speed with an excessively high learning rate might cause a suboptimal result or diversity.
An initial learning rate of 0.001 and a maximum number of epochs of 20 were adopted to achieve a nearly
100% training accuracy, as shown in Figure 5, including accuracies of the training set (blue), validation
set (black), and loss rate (orange). As the figure shows, this network converged at the fifth epoch and
was stopped at the eighth epoch by the criterion of no smaller loss. According to biopsy-proven results,
the performance of the prediction model as presented by the accuracy, sensitivity, specificity, and area
under the receiver operating characteristic (ROC) curve (Az) illustrate the tradeoffs between sensitivity
and specificity. They were formulated using SPSS software (version 16 for Windows; SPSS, Chicago, IL,
USA). By evaluating the 10-fold cross-validation, the transferred DCNN achieved a mean accuracy of
97.9% with an SD of ±1% and a mean Az of 0.9991 ± 0, as illustrated in Figure 6. In detail, the classifier
differentiating grade 2 gliomas from the others achieved an accuracy of 98.7%, a sensitivity of 96.9%,
and a specificity of 99.2%. The classifier differentiating grade 3 gliomas from the others achieved an
accuracy of 98.3%, a sensitivity of 96.8%, and a specificity of 99.0%. The classifier differentiating grade
4 gliomas from the others achieved an accuracy of 98.7%, a sensitivity of 99.1%, and a specificity of
98.3%. Compared to the DCNN without pretrained features, retraining gliomas only achieved a mean
accuracy of 61.42% with an SD of ±7% and a mean Az of 0.8222 ± 0.07. In comparison, the results of
the DCNN without augmentation were the worst and achieved a mean accuracy of 59.85% with an SD
of ±16% and a mean Az of 0.7896 ± 0.18.
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4. Discussion

Machine learning uses statistical analyses to combine various features for automatic classification.
As a state-of-the art technique, deep learning inherited the methodology and exhausts computational
power to automatically extract any possible features from a large dataset. Deep learning architectures
such as the DCNN have been applied to a variety of classification tasks, including object detection
and classification in natural images and medical images. DCNN architectures use multiple nonlinear
transformations to stimulate advanced visual abstractions of image data. Inspired by the mechanism of
biological nervous systems, multiple convolutional layers form a construction from pixels and transfer
regions to objects to thoroughly analyze an image’s composition. Based on the tissue appearance on
a brain MR image, the proposed CAD system uses a transferred DCNN to establish a malignancy
evaluation model to provide more objective and accurate diagnostic suggestions for grading gliomas. In
this study, using the DCNN to classify grade 2, 3, and 4 gliomas achieved an almost perfect performance
with a mean accuracy of 97.9% with an SD of ±1% and a mean Az of 0.9991 ± 0. A previous study [38]
used well-known handcrafted MRI features, including the intensity and textural features, and achieved
an accuracy of only 88%, a sensitivity of 82%, a specificity of 90%, and an Az of 0.89. Regarding the
classifier type, the performance of conventional artificial neural networks in a previous study [38]
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had a lower diagnostic performance in comparison: an accuracy of 84%, a sensitivity of 79%, and a
specificity of 86%. In a study by Yang [29], they used 113 gliomas and convolutional neural networks
with and without transfer learning. The results demonstrated that using transfer learning can improve
the performance, which is similar to our results. Lotan used automatic segmentation methods to obtain
the tumor contours and areas, just like in our delineation. The following classification also depends on
machine learning techniques [30]. Another study used diagnostic information from multiple modalities
to achieve better performance [39].

Kermany et al. [31] imposed a transfer learning model to classify optical coherence tomographic
images and achieved high performances of accuracy, sensitivity, and specificity exceeding 93% and
an Az of 0.988. It is recommended that training using medical images with pretrained models may
produce more accurate models in a very short time compared to training a model from scratch.
Even with a limited number of datasets, the transferred DCNN can generate comparable or even
better performances than human experts. Similar results were shown in this study, as the transferred
DCNN performed much better than the DCNN without pretrained features and the DCNN without
augmentation. The difference was likely caused by the number of training samples. The original
dataset without augmentation contained only 30, 43, and 57 images in the three classes, respectively
which is very low even when using transfer learning—compared to Kermany et al., who used 1000
images in each class to train a limited model. Through AutoAugment, described in this study, the
dataset was expanded 57-fold and therefore contained over 1000 images in each class. The total number
of augmented datasets was sufficient for transfer learning, but still not for original deep learning, so
the result of the DCNN without augmentation was worse than that of the transferred DCNN.

Based on the success of transfer learning, collecting qualified image data, such as precise labeling
and description of the tumor location, boundaries, and features, may become more important than
thinking about sophisticated image features. However, collecting substantial qualified medical data
is very challenging. The limited data used in this experiment may not sufficiently represent the
overall diversity of tumor appearances. Every year, only about 600 patients have diffuse malignant
gliomas, of which only about 240 cases are GBM in Taiwan. As a result, collecting large amounts of
data with patient-informed consent is a challenge. Therefore, data augmentation is bound to become
a necessary tool for using deep learning on uncommon diseases. To date, the experimental results
have demonstrated that using transfer learning and data augmentation for scarce medical images is
suitable. If the case number is limited, the generalization is questioned. In this situation, using data
augmentation with transfer learning can fit a small dataset with substantial challenge in classification.
If the dataset has enough diversity, it can be used. In the future, after more data on gliomas are
collected, this system is likely to be practical in clinical use.

Another limitation is that, although contrast-enhanced T1WIs provided critical information for
differentiating different grades of gliomas in the DCNN, the correlation between the prediction model
and actual biological tissues was underexplored. Key clinical determinants in grading gliomas are
necrosis and angiogenesis. Whether they are related to the established DCNN model is the next topic to
be explored. Meanwhile, further investigation of other sequences including fluid-attenuated inversion
recovery, T2-weighted images, DWI, and MRS is necessary.

5. Conclusions

Using hierarchical feature representations learned by transferred convolutional neural networks,
the proposed CAD system using a transferred DCNN with data augmentation achieved a mean
accuracy of 97.9% with an SD of ±1% and a mean Az of 0.9991 ± 0. The accuracy in distinguishing
different grades of gliomas will be promising for radiologists in the clinic.
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