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Abstract: In the design phase of housing projects, predicting the settlement of soil layers beneath the
buildings requires the estimation of the coefficient of soil compression. This study proposes a low-cost,
fast, and reliable alternative for estimating this soil parameter utilizing a hybrid metaheuristic
optimized neural network (NN). An integrated method of artificial bee colony (ABC) and the
Levenberg–Marquardt (LM) algorithm is put forward to train the NN inference model. The model is
capable of delivering the response variable of soil compression coefficient a set of physical properties
of soil. A large-scale real-life urban project at Hai Phong city (Vietnam) was selected as a case study.
Accordingly, a dataset of 441 samples with their corresponding testing values of the compression
coefficient has been collected and prepared during the construction phase. Experimental outcomes
confirm that the proposed NN model with the hybrid ABC-LM training algorithm has attained
the highly accurate estimation of the soil compression coefficient with root mean square error
(RMSE) = 0.008, mean absolute percentage error (MAPE) = 10.180%, and coefficient of determination
(R2) = 0.864. Thus, the proposed machine learning method can be a promising tool for geotechnical
engineers in the design phase of housing projects.

Keywords: soil compression coefficient; neural computing; artificial bee colony; geotechnical
engineering; Hai Phong city

1. Introduction

The compressibility behavior of soil is a crucial parameter in geotechnical engineering, which
is mandatory to investigate during the design phase of various construction projects. This behavior
dictates the change in soil volume under applied stress [1]. Particularly for housing projects, in order
to forecast the settlement of building foundations, the compressibility of soil needs to be estimated
as accurately as possible, because unforeseen or excessive settlement inevitably causes cracks in
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buildings and even threatens their stability [2,3]. Damage to buildings and building collapses due to
unanticipated settlements are widely reported in many countries [4–7].

The soil compression is generally defined as the decrease in volume of the soil under pressure
caused by the drainage of pore water [8]. Hence, the analyses on the compressibility of soil are
basically required for fine-grained soils having low permeability. It is also noted that the process of
determining the soil compressibility for fine-grained soils is relatively tricky, because these soils have
low permeability and their rate of pore water drainage is a complex time-dependent phenomenon [8].

To quantify the compressibility of soil, researchers and engineers have used the compression
coefficient (CC) [9–12]. This parameter is practically employed in the process of estimating the
settlement of soil layers in constructed areas. The quality of soil settlement estimation heavily depends
on the accuracy of the CC prediction. In practice, this important property of soil is computed using
the oedometer test performed in a laboratory [13], however, the process of obtaining CC via the
oedometer test is recognizably time-consuming and costly [14]. More importantly, experienced and
skilled technicians are required so that the test results are reliable.

In this regard, mathematical models in the form of predictive equations have been developed
based on experimental laboratory data as cost-effective approaches for estimating CC [15–19], however,
the accuracy result obtained from those predictive formulas is often restricted due to their lack of
generalization capability, inability to describe multivariate relationships, as well as a limited amount of
collected data [20]. Therefore, predictive equations are not sufficient for deriving accurate prediction
models used for CC estimation, and therefore new efficient solutions for the CC prediction should be
developed to meet the current demand for practicing engineers.

Recently, advanced artificial intelligence has successfully been adopted for solving complex
modeling problems in various geotechnical engineering applications, i.e., predictions of soil
strength [21–23], shear wave velocity [24], peak shear strength of fiber-reinforced soils [25], soil
liquefaction [26,27], pile–soil interactions [28,29], and groutability of granular soils [30,31]. The main
merit of these artificial intelligence approaches is the high prediction capability and the ability to deal
with multivariate data [32,33]. A remarkable review of artificial intelligence in geotechnical engineering
can be founded in Shahin [34].

Regarding the CC estimation, several artificial intelligence algorithms have been considered in
various real-world projects. Park and Lee [35] showed that the neural network provides a higher
performance as compared with those of empirical formulas. Kurnaz et al. [17] proposed a neural
network for predicting soil CC and applied it to forecast the settlement of fine-grained soils. The result
showed that the predicted values were close to the experimental values. Mohammadzadeh et al. [8]
developed a multi-gene expression programming model for computing CC. The multi-gene expression
programming can automatically identify predictive equations that provide an excellent fit to the
employed data set, however, the physical meaning of these equations is challenging to interpret.
Overall, the modeling accuracy of the genetic programming approach has significantly surpassed
those of other neural computing approaches [36,37]. Among various artificial intelligence algorithms,
neural computing still stands out as an auspicious tool for modeling complex geotechnical engineering
problems including the CC prediction. This is because neural computing, with a flexible learning
paradigm, has high ability to adapt to nonlinear modeling problems, noise in data, and multivariate
datasets [38–40]. Herein, the flexible structure of the neural computing model is a key that can
approximate any targeted function with arbitrary accuracy. Thus, neural computing can possess the
capability of universal learning [41].

Notably, the learning phase of a neural computing model is formulated as the minimization
of a loss function. The standard method of backpropagation algorithms is often employed due to
good convergence speed and high prediction performance. Nonetheless, the loss function is generally
complex and contains many local minima. Hence, building a neural computing model with the
backpropagation algorithms for the CC prediction is still tricky, which often gets trapped in a locally
optimal solution [32]. This issue prevents neural computing from predicting the CC at higher accuracy.
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To address this, hybrid and ensemble systems that integrate metaheuristic optimization and neural
computing should be developed for predicting soil CC in order to enhance accuracy.

A literature review showed that various metaheuristic algorithms have been successfully
employed for optimizing the neural computing models, i.e., genetic algorithm [42], particle swarm
optimization [43], differential evolution [44], artificial bee colony (ABC) [45], cuckoo search [46],
differential flower pollination [47], and ant-lion optimizer [48]. Herein, the weights of the neural
computing models were searched and optimized. Although the performance of these models has been
improved, it is still not easy to train the model, because these metaheuristic algorithms are stochastic
processes which may cause stagnation in many situations [49].

This study addresses the above-mentioned issue by proposing a new hybrid neural computing
approach for predicting soil CC. Thus, a new hybrid algorithm, which is based on ABC [50] and
the Levenberg–Marquardt (LM) backpropagation [51], was developed and proposed to optimize the
neural computing model. Herein, the ABC acts as a global search method used to optimize the model’s
weights. During the searching process of ABC, the LM algorithm is randomly activated to play the role
of a local search used to enhance the convergence speed of the overall optimization process. The ABC
is selected because this is a swarm intelligence that has demonstrated better performance as compared
with other benchmark algorithms [50]. In addition, ABC has been successfully employed to solve
various real-world problems [52,53]. For the case of the LM, this algorithm stands out as one of the
most robust methods for training neural computing models. This fact is demonstrated by its successful
applications in various research domains [54,55].

The proposed hybrid neural computing model was verified at a large-scale real-life urban project
at Hai Phong city (Vietnam). For this task, a dataset of the project with 441 samples, which recorded
results of the soil CC and their twelve physical parameters, were used. The subsequent part of this
paper is organized as follows: Section 2 reviews the employed computational approaches of multilayer
perceptron artificial neural network (MLP ANN) and ABC; Section 3 provides general information
regarding the study site and the collected dataset; Section 4 presents the proposed ANN model using
the combination of ABC and LM in detail; Section 5 reports the experimental results; followed by
concluding remarks on the study stated in Section 6.

2. Background of the Employed Artificial Intelligence Algorithms

2.1. Neural Computing Model

In geotechnical engineering, neural computing, i.e., artificial neural network (ANN), is widely
accepted as a capable tool for modeling complex phenomena [56–58]. Inspired from biological neural
networks, ANN simulates the information processing and knowledge generalization that happens
in the human brain. By learning from examples of input and output data, a trained ANN is capable
of making inferences on the output information by analyzing novel inputs [59,60]. The structure of
an ANN consists of simple interconnected neurons. Although the learning and generalization of one
neuron are restricted, the whole network, which combines all of the information processing unit of
individual neurons, is capable of describing sophisticated processes. It has been confirmed that ANN
has the capability of universal learning [41]; this means that an ANN structure with a sufficient number
of neurons in its hidden layer can model any hidden function with arbitrary accuracy. ANN has been
successfully applied in various geotechnical engineering problems [29,54,61,62].

A function of interest, f, can be described as follows:

f : X ∈ RNX
→ Y ∈ R1

where NX is the number of input attributes.
To approximate f, an ANN with a typical structure of an input, a hidden, and an output layer is

employed. The typical structure of an ANN is demonstrated in Figure 1. It is noted that, herein, NX =

12 which is the number of CC’s influencing factors. The targeted output Y is CC of soil. To model the
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mapping function between the set of 12 predictor variables and CC of the soil, the training process of
an ANN adapts its parameters including the weight matrix of the hidden layer (W1), the weight matrix
of the output layer (W2), the bias vector of the hidden layer (b1), and the bias vector of the output layer
(b2). In Figure 1, fA denotes an activation function. The sigmoid function is often employed [32] and
its formula is given as follows:

fA(n) =
1

1 + e−n (1)
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The model parameters of an ANN, including the weight matrices and the bias vector, can be
identified via the training process which relies on the framework of error backpropagation. The mean
square error (MSE) is commonly employed as the loss function for training in ANN [32]:

MSE =
1
M

M∑
i=1

e2
i (2)

where M represents the number of training samples; ei denotes the deviation between the observed
and the predicted values of CC; ei = Yi,P − Yi,A; and Yi,P and Yi,A are the predicted and actual values of
CC, respectively.

In addition, the Levenberg–Marquardt (LM) backpropagation algorithm [51] is often used to train
an ANN model used for function approximation tasks [37]. The LM backpropagation algorithm is
essentially a modification of the Newton algorithm for nonlinear optimization. During the training
process, the weights of a ANN are adapted using the following equation [63]:

wi+1 = wi − (JT
i Ji + λ× I)

−1
JT
i ei (3)

where J denotes the Jacobian matrix of output errors, I represents identity matrix, and λ is the
learning rate.

Finally, the ANN model employed for CC estimation can be shown as follows:

f(X) = b2 + W2 × (fA(b1 + W1 ×X)) (4)

2.2. Artificial Bee Colony for Solving Continuous Optimization

As described earlier, the training process of an ANN is to adapt the network weight and construct
a model that can provide a good fit to the collected data. This model construction is achieved via
the minimization of a loss function. Therefore, the ANN training process can be formulated as an
optimization problem [64]. The characteristics of the loss function are difficult to investigate. Moreover,
the search space is definitely high-dimensional and possibly nonlinear with many local minima. Hence,
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metaheuristic algorithms are suitable candidates which can be applied for optimizing the network
structure. In this study, ABC optimization [50] is selected as the ANN training approach.

Herein, the problem of interest is to find a solution that minimizes a cost function F(x), in which
x is a vector that stores ANN model parameters. ABC relies on a population of PS bees to explore
the search space and identify a set of right solutions that bring about the desired values of the cost
function F(x). To explore the vast search space and exploit potential foraging areas, ABC resorts to
three kinds of honeybees, which are employed bees, onlooker bees, and scout bees [52]. These types of
honeybees perform searching operators to locate the optimum solution or near optimum solutions
within a maximum number of searching iteration (Imax).

In the first iteration, all bees in the population are randomly generated within the feasible domain
according to the following equation:

xi,j = LBj + Rand(0, 1)
(
UBj − LBj

)
(5)

where LBj and UBj denote the lower bound and the upper bound of the jth variable of the solution ith,
and Rand(0, 1) is a uniform random number between 0 and 1.

With these randomly initiated individuals, the ABC algorithm sequentially performs the employed
bee phase, onlooker bee phase, and scout bee phase. In the employed bee phase, a candidate solution
(also called food source) is created according to the following formula:

ui,j = xi,j +ϕi,j
(
xi,j − xk,j

)
(6)

where k and i denote the kth and ith bees in the population and φi,j represents a random number
generated within the range of −1 and +1.

On the basis of the information of the search space provided by the employed bee phase, onlooker
bees probabilistically determine their new food source according to the following equation:

pi = Fi/
PS∑
j=1

Fj (7)

where Fi is the fitness of the ith food source and pi denotes the food source selection probability. It is
noted that the fitness value of a solution is simply the inverse of its cost function value.

The ABC algorithm employs a greedy selection criterion in the selection operator to retain good
individuals and discard inferior ones. Accordingly, when the employed and onlooker bee phases are
accomplished, the best-found solution (or food source) is updated. Notably, if a food source cannot
improve its cost function for a certain number of consecutive iterations, it is abandoned and replaced
by a newly found food source explored by a scout bee. The equation used to generate a scout bee’s food
source is similar to that of Equation (5). Hence, the scout bee phase can be considered as a measure to
prevent the algorithm from stagnation and premature convergence.

3. Description of the Study Site and Collected Dataset

Since ANN is a supervised machine learning approach, a set of experimental data with observed
CC values needs to be collected to train the CC prediction model. In this study, 441 samples of soil
with 12 properties were collected during the construction phase of the Vinhomes housing project (Hai
Phong city, Vietnam) in 2016. The study area ha illustrated in Figure 2. The 12 soil properties include
sample depth (X1), sand percentage (X2), loam percentage (X3), clay percentage (X4), moisture content
(X5), wet density (X6), dry density (X7), void ratio gravity (X8), liquid limit (X9), plastic limit (X10),
plastic index (X11), and liquid index (X12).
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Figure 2. Location of the study area.

It is noted that 31 boreholes, ranging from 1.8 m to 52.8 m, are used to investigate the geological
condition of the study area. The geological survey and laboratory tests in this study were performed
according to instructions stipulated in the Vietnam Standards including TCVN9155:2012 (Hydraulic
structures: Technical requirements for drilling machines of the geological survey) and TCVN 9140:2012
(Hydraulic structures: Technical requirements for preserving samples in the work on geological
investigation). Moreover, the standard penetration test [65] was used to collect data on soil layers. The
statistical characteristics of CC’s influencing factors used in this study are shown in Table 1. Table 2
illustrates samples of the collected dataset. Histograms of the variables in the collected dataset are
shown in Figures 3 and 4.

Table 1. The statistical description of the collected dataset.

Variables Unit Notation Min Mean Median Std Skewness Kurtosis Max

Sample depth m X1 1.80 17.99 17.80 10.02 0.39 2.88 52.80
Sand percentage % X2 17.90 33.31 30.30 9.95 1.90 6.64 71.00
Loam percentage % X3 22.10 43.32 44.80 5.61 −1.72 5.95 51.40
Clay percentage % X4 5.20 23.22 24.10 5.50 −1.30 5.24 37.50
Moisture content % X5 20.30 41.38 42.00 8.05 −0.24 2.78 63.50

Wet density g/cm3 X6 1.55 1.75 1.74 0.08 0.84 4.23 2.05
Dry density g/cm3 X7 0.95 1.25 1.23 0.13 0.80 3.53 1.67
Void Ratio Unitless X8 0.58 1.15 1.16 0.20 −0.26 3.12 1.79

Liquid limit % X9 23.20 43.92 44.50 5.88 −0.60 3.52 58.30
Plastic limit % X10 16.80 30.23 30.50 5.01 −0.20 2.63 43.60
Plastic index % X11 5.20 13.69 14.10 2.61 −1.40 5.21 19.10
Liquid index Unitless X12 0.11 0.81 0.77 0.29 0.85 4.36 1.99

Compression coefficient cm2/kG Y 0.01 0.06 0.07 0.02 0.15 2.89 0.15
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Table 2. Demonstration of the collected dataset.

Data X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y

1.00 3.80 37.30 44.70 18.00 50.10 1.69 1.13 1.32 51.30 39.20 12.10 0.90 0.09
2.00 5.80 45.90 37.00 17.10 48.30 1.65 1.11 1.38 49.50 37.20 12.30 0.90 0.08
3.00 7.80 40.20 40.30 19.50 47.80 1.72 1.16 1.27 48.40 36.90 11.50 0.95 0.07
4.00 9.80 33.30 45.80 20.90 52.20 1.63 1.07 1.43 53.20 39.10 14.10 0.93 0.09
5.00 3.80 43.10 41.30 15.60 46.10 1.69 1.16 1.28 47.50 37.10 10.40 0.87 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

437.00 45.40 38.50 16.10 45.20 1.71 1.18 1.25 46.40 35.20 11.20 0.89 0.08 0.08
438.00 48.40 35.30 16.30 42.40 1.68 1.18 1.25 43.60 32.70 10.90 0.89 0.08 0.04
439.00 40.20 42.60 17.20 48.20 1.71 1.15 1.30 49.20 36.80 12.40 0.92 0.07 0.08
440.00 35.50 42.30 22.20 42.10 1.73 1.22 1.18 43.50 31.60 11.90 0.88 0.08 0.03
441.00 44.40 39.70 15.90 43.90 1.74 1.21 1.17 44.20 33.60 10.60 0.97 0.06 0.07
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In addition, to facilitate the learning phase of ANN, the collected dataset has been normalized by
means of the Z-score data transformation. The formula of the Z-score data transformation is shown
as follows:

XN =
XO −mX

sX
(8)

where XN and XO denote the normalized and the original variables, respectively; mX and sX are the
mean value and the standard deviation of the original variable, respectively.

4. Proposed ANN with Hybridization of ABC and LM Algorithms for Compression Coefficient
Estimation

This section presents the proposed ANN model trained by a hybrid method of ABC and LM
algorithms. This model is trained with the aforementioned experimental dataset and is specifically
designed for the task of CC estimation. The proposed model, namely, ABC-LM-ANN, is demonstrated
in Figure 5. It is noted that the model relies on the MATLAB Statistics and Machine Learning Toolbox [66]
to perform the LM algorithm. In addition, the ABC algorithm and the integrated ABC-LM-ANN model
were coded by the authors in MATLAB programming environment.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 18 
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Figure 5. The proposed artificial bee colony Levenberg–Marquardt artificial neural network
(ABC-LM-ANN) for compression coefficient (CC) estimation.

To construct the ANN model used for CC estimation, it is required to appropriately set the
two-weight matrices of W1 and W2, as well as the two bias vectors of b1 and b2. It is worth reminding
that the size of the matrix W1 is NR x NDX, where NR and NDX are the numbers of neurons in the hidden
layer and the number of input neurons, respectively. Herein, NDX = 12, which is the number of CC’s
conditioning factors. Meanwhile, based on the suggestion of Heaton [67] and several trial-and-error
experiments, the value of NR used in this study is selected to be 10 and the size of W2 is NO x NR where
NO is the number of output neurons. Herein, NO = 1, which is the targeted output of CC. The size of
the two bias vectors of b1 and b2 is NR and 1, respectively. Since it is required that a solution of ABC is
presented in the form of a vector, the ANN structure including W1, W2, b1, and b2 are vectorized and
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concatenated to formulate a solution or food source. On the basis of the above explanation, the length
of a vector representing a solution is NR x NDX + NO x NR + NR + 1.

To train the ANN model using the ABC-LM algorithm, the following cost function (CF) is used to
minimize the discrepancy between the observed and the predicted output of CC:

CF =
MSETR + MSEVA

2
(9)

where MSETR and MSEVA represent the mean squared error (MSE) of the data samples in the training
and validating datasets, respectively. Herein, the training set and the validating set occupy 80%
and 10% of the whole dataset, respectively. The rest of the original dataset (10%) is reserved for
testing purposes.

The MSE is given as follows:

MSE =

∑ND
i=1 (YA,i −YP,i)

2

ND
(10)

where YA,i and YP,i denote the actual and the predicted CC of the ith data instance. ND is the number
of data instances.

The inclusion of the validating data is to safeguard against overfitting during the ABC-LM training
process. Overfitting typically occurs when the constructed ANN model can provide a perfect fit to
the training data, nevertheless, the model has an inferior fit when predicting CC values for novel soil
samples. The inclusion of both training and validating datasets is to force the ABC-LM to seek for a
network structure that can deliver good predictive accuracy and guarantee generalization property.

During the model training phase, ABC acts as a global optimizer to guide the population of
honeybees to better solutions that represent network structures. Moreover, to accelerate the optimization
process, the LM backpropagation algorithm is activated once in ten iterations on a randomly selected
solution. With the maximum number of ABC’s iterations set at 100, the LM backpropagation algorithm
with the number of training epoch = 300 and the learning rate = 0.01, is activated 10 times to boost
the optimization performance. The population size of ABC is chosen to be 100; the lower and upper
boundaries of the network parameters, which are the elements of W1, W2, b1, and b2, are selected to
be −3 and 3, respectively. The operational training flow of the ABC-LM algorithm is illustrated in
Figure 6.
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5. Results and Discussions

As described above earlier, the whole dataset of soil samples includes 441 data points. To construct
the ABC-LM-ANN model used for CC prediction, the original dataset is divided into a training set
(80%), a validating set (10%), and a testing set (10%). The first two datasets are used in the phase of
model construction and the third dataset acts as novel soil samples to verify the predictive performance
of the proposed model in real-world applications of CC estimation. It is worth noting that before
the model construction and testing phases, the original dataset had been normalized with the use of
the Z-score transformation. This data transformation is to prevent the undesired situation in which
variables with large magnitude dominate the ones with small magnitude.

To evaluate the performance of the ABC-LM-ANN model, root mean square error (RMSE),
the mean absolute percentage error (MAPE), the mean absolute error (MAE), and the coefficient of
determination (R2) are employed. The equations used to compute these indices are provided as
follows [68]:

RMSE = sqrt(
N∑

t=1

(YA,i −YP,i)
2

N
) (11)
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MAPE =
100%

N

N∑
t=1

∣∣∣YA,i −YP,i
∣∣∣

YA,i
(12)

MAE =
1
N

N∑
t=1

∣∣∣YA,i −YP,i
∣∣∣ (13)

R2 =
SSyy − SSE

SSyy
(14)

where YA,i and YP,i is the actual and the predicted values of soil CC of the ith data instance. N is the
number of data instances in the set of interest.

SSyy and SEE are calculated as follows:

SSyy =
N∑

i=1

(YA,i −YA,m)2 (15)

SSE =
N∑

i=1

(YA,i −YP,i)
2 (16)

where YA,m is the mean value of actual soil CC.
The optimization process of the proposed ABC-LM-ANN is illustrated in Figure 7. It can be seen

from this figure that the hybridization of ABC and LM can help the searching process to converge into a
good solution of ANN structure within 63 iterations. Beyond this point, no better solution of the ANN
structure can be found. The ANN optimized by the LM-ANN can attain a promising predictive result
with RMSE = 0.009, MAPE = 10.705%, MAE = 0.007, and R2 = 0.840. With R2 = 0.840 (see Figure 8), the
constructed ANN can explain 84% of the variation of the actual CC values. This is a good outcome
since the problem of CC estimation, like other problems in the field of geotechnical engineering, is
known to be complex. In addition, Figure 9 demonstrates the collected CC values accompanied by
the corresponding CC results predicted by the proposed approach and Figure 10 presents the error
distribution of the ABC-LM-ANN model in both training and testing phases.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 18 
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To confirm the performance of the ABC-LM-ANN, its outcome is compared to those of the LM
backpropagation artificial neural network (LM-ANN), the ABC trained ANN (ABC-ANN), and the
regression tree (RegTree). The two models of LM-ANN and RegTree are implemented in MATLAB
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environment with the help of the Statistics and Machine Learning Toolbox [66]. To ensure a fair
comparison, the hyper-parameters of LM-ANN are selected as follows: the number of neurons in
the hidden layer = 10, the learning rate = 0.01, and the maximum number of training epochs = 5000.
Moreover, the number of minimum number of leaf node observations is set to be 1 as suggested
in [66]. The experimental outcomes are reported in Table 3. As can be observed from this table,
the proposed ABC-LM-ANN has achieved the most desired predictive accuracy with RMSE = 0.009,
MAPE = 10.705%, MAE = 0.007, and R2 = 0.840. The LM-ANN model is the second-best prediction
approach with RMSE = 0.010, MAPE = 12.400%, MAE = 0.008, and R2 = 0.811, followed by ABC-ANN
(RMSE = 0.010, MAPE = 14.029%, MAE = 0.008, and R2 = 0.792) and RegTree (RMSE = 0.010, MAPE =

12.862%, MAE = 0.008, and R2 = 0.810).

Table 3. Model result comparison.

Phase Performance Prediction Models

ABC-LM-ANN LM-ANN ABC-ANN RegTree

Training RMSE 0.009 0.009 0.010 0.005
MAPE (%) 12.117 11.730 14.674 6.374

MAE 0.007 0.007 0.008 0.004
R2 0.860 0.873 0.821 0.955

Testing RMSE 0.009 0.010 0.010 0.010
MAPE (%) 10.705 12.400 14.029 12.862

MAE 0.007 0.008 0.008 0.008
R2 0.840 0.811 0.792 0.810

In the next experiment, to better assess the predictive performance of the proposed ABC-LM-ANN,
as well as the other benchmark models, a repetitive random subsampling consisting of 20 training and
testing times was performed. In each run, 90% of the data is used for training the CC estimation model
and 10% of the data is used as testing cases. The average computational time of the newly developed
ABC-LM-ANN is 167.37(s); additionally, the proportions of computational time for global and local
searching phases are 97.79% and 2.21%, respectively.

The experimental results obtained from the repeated random subsampling process are reported
in Table 4 with the mean and the standard deviation (Std) of the outcomes. This second experiment
in this study points out that the average testing performance of the ABC-LM-ANN (RMSE = 0.010,
MAPE = 12.586%, MAE = 0.007, and R2 = 0.841) is better than those of the ANN models trained by LM
and ABC, as well as the RegTree model.

Table 4. The result obtained from the repetitive random subsampling with 20 runs.

Phase Performance

Prediction Models

ABC-LM-ANN LM-ANN ABC-ANN RegTree

Mean Std Mean Std Mean Std Mean Std

Training RMSE 0.008 0.000 0.009 0.001 0.011 0.000 0.005 0.000
MAPE (%) 10.981 0.453 11.585 1.246 15.059 1.053 5.949 0.332

MAE 0.006 0.000 0.007 0.001 0.008 0.000 0.003 0.000
R2 0.876 0.009 0.869 0.017 0.811 0.014 0.962 0.004

Testing RMSE 0.010 0.001 0.010 0.001 0.012 0.001 0.012 0.002
MAPE (%) 12.586 1.822 13.042 1.520 16.852 3.561 15.015 1.965

MAE 0.007 0.001 0.008 0.001 0.009 0.001 0.009 0.001
R2 0.841 0.039 0.817 0.046 0.788 0.057 0.744 0.060

Moreover, the two-sample t-test [69] is employed in this section to better demonstrate the statistical
significance of the models’ performances differences in terms of R2. The R2 is selected in this statistical
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test due to its indication of how well the regression models have fitted the collected dataset. It is
noted that the significant level (p-value) of the t-test is 0.05. The outcomes of the two-sample t-test are
reported in Table 5. The results show that the proposed hybrid ABC-LM-ANN has achieved a win
over the LM-ANN, as well as two significant wins over ABC-ANN and RegTree. This fact confirms
that the proposed ABC-LM-ANN is highly suited for the task of CC estimation.

Table 5. The t-test results which compare the models’ performances in terms of R2: (a) p-values and (b)
model pairwise comparison. Note: “++”, “+”, “–”, and “-” denote a significant win, a win, a significant
loss, and a loss, respectively.

(a)

ABC-LM-ANN LM-ANN ABC-ANN RegTree

ABC-LM-ANN x 0.11792 0.0018945 1.14E−07
LM-ANN 0.11792 x 0.095532 7.83E−05

ABC-ANN 0.0018945 0.095532 x 0.020189
RegTree 1.14E−07 7.83E−05 0.020189 x

(b)

ABC-LM-ANN LM-ANN ABC-ANN RegTree

ABC-LM-ANN x + ++ ++
LM-ANN - x + ++

ABC-ANN – - x ++
RegTree ++ ++ ++ x

6. Concluding Remarks

The CC of soil is a crucial geotechnical engineering parameter that is required in the design
phase of high-rise housing projects. To avoid the cumbersomeness of the oedometer test, this study
proposes a machine learning-based solution for obtaining CC parameter. The machine learning model
is established by using ANN with a novel hybrid training method of the ABC and LM algorithms. The
ABC metaheuristic acts as a global optimizer which searches for an ANN model that provides the best
fit to the collected data. In addition, to accelerate the ABC searching process, the LM backpropagation
is performed on a randomly chosen individual of the ABC population. A dataset consisting of 12
predictor variables including sample depth, sand content, loam content clay content, moisture content,
wet density, dry density, void ratio, liquid limit, plastic limit, plastic index, and liquid index and 441
soil samples was collected during the construction phase of a large-scale housing project in Vietnam.
This dataset is, then, employed to train and verify the prediction performance of the newly constructed
ABC-LM-ANN model. Experimental results confirm that ABC-LM-ANN can deliver the prediction
result of CC which is superior to those of other benchmark approaches. Therefore, the newly established
model can be a promising alternative to assist the decision-making process in the design phase of
high-rise housing projects. Future research works could consider new robust optimization algorithms
to improve the prediction performance of CC.

As can be confirmed by the reported experimental results, one significant advantage of the
hybrid ABC-LM-ANN model is that it combines the two powerful methods of training neural network
regression to achieve a good predictive performance of CC parameter estimation. Therefore, the model
is capable of delivering reliable estimations of this property of soil to quickly assist the engineering
decision-making process. However, one difficulty of using the model is that there are a set of model
hyper-parameters (e.g., the population size of the ABC, the maximum number of epochs used in the
LM training operator, and the number of neurons in the hidden layer) needed to be tuned empirically.
Furthermore, the current model does not integrate with the feature selection method, and therefore
employing metaheuristic-based feature evaluation could be a potential extension of this study.
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