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Abstract: Ignition position is an important factor affecting flame propagation and deflagration-to-
detonation transition (DDT). In this study, 2D reactive Navier–Stokes numerical studies have been
performed to investigate the effects of ignition position on hot jet detonation initiation. Through the
stages of hot jet formation, vortex-flame interaction and detonation wave formation, the mechanism
of the hot jet detonation initiation is analyzed in detail. The results indicate that the vortexes formed
by hot jet entrain flame to increase the flame area rapidly, thus accelerating energy release and the
formation of the detonation wave. With changing the ignition position from top to wall inside the
hot jet tube, the faster velocity of hot jet will promote the vortex to entrain jet flame earlier, and the
DDT time and distance will decrease. In addition, the effect of different wall ignition positions (from
0 mm to 150 mm away from top of hot jet tube) on DDT is also studied. When the ignition source
is 30 mm away from the top of hot jet tube, the distance to initiate detonation wave is the shortest
due to the highest jet intensity, the DDT time and distance are about 41.45% and 30.77% less than the
top ignition.

Keywords: hot jet detonation initiation technique; flame acceleration; detonation combustion; vortex;
ignition position

1. Introduction

Detonation combustion has attracted plenty of attention from researchers because of its high
thermal efficiency, low entropy generation and self-pressurization characteristic [1,2]. According to
the formation process of detonation waves and operating characteristics in the engines, detonation
engines can be divided into rotating detonation engine (RDE) [3,4], pulse detonation engine (PDE) [5,6]
and standing detonation wave engine (SDWE) [7]. The detonation initiation technology is one of the
bottlenecks and key technologies that restrict the engineering application of any detonation engines.

The common detonation initiation techniques are mainly divided into two categories: one is
direct detonation, and the other is indirect detonation initiation. Compared with direct detonation,
indirect detonation initiation requires less ignition energy, thus becoming the main direction of the
detonation domain. A weak energy ignition source triggers combustion and then leads to a transition
to detonation through the accumulation of energy, which is a commonly used indirect detonation
initiation method [8]. Deflagration-to-detonation transition (DDT) usually requires a transition distance.
However, too long transition distance may cause oversize engines and performance loss. Therefore, it is
necessary to explore suitable short-range detonation initiation technology [9]. In published literature,
studies have been done on detonation initiation mechanism and enhancement approach, such as hot
jet [10,11], solid obstacle [12,13], fluidic obstacle [14,15], plasma [16] and shock focusing detonation
initiation technology [17].
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Especially, the hot jet detonation initiation firstly forms a high-energy flame in the jet tube,
and then the jet flame rapidly forms a high-intensity turbulent flame in the detonation chamber,
eventually forming a detonation wave in a short distance. Since the hot jet detonation initiation is
an effective detonation technique with short distance and low flow loss, it is one focus of current
research. Shimada et al. [18] firstly applied the hot jet tube on the detonation chamber to achieve a
reliable detonation. Through visual experiments, it was found that a hot jet could quickly form a
turbulent flame at the head of the detonation chamber and promote the formation of a detonation
wave. Zhao et al. [19] used the numerical simulation method to study the hot jet detonation initiation,
their results showed that the energy provided by the hot jet was 20 times that of the spark, and the hot
jet technology could effectively reduce the initiation distance of DDT. Other literature got the same
conclusion by experiments [20,21]. Subsequently, plenty attention had been poured on effect of jet
intensity on DDT. Lots of research had been investigated jet intensity by changing the structure of
the hot jet tube, and the same conclusion was obtained that the initiation time and distance of DDT
were short when the jet intensity is sufficient [22–25]. Using ethylene/oxygen with nitrogen diluted,
He et al. [26] explored the effects of different jet velocity on DDT distance. From their experimental
results, it was clearly seen that jet velocity played an important role in accelerating DDT, the faster
jet velocity the shorter DDT distance. Wang et al [27] numerically investigated propane/air hot jet
detonation initiation process by changing the length of jet tube, it was found that the increasing length
of jet tube resulted in faster jet velocity, thus decreasing the initiation time and distance of DDT.

According to the review of previous work, it is concluded that the faster jet flame velocity was,
the shorter DDT distance. Up to now, the common method to obtain fast jet flame was increasing the
length of jet tube. However, too long length of the hot jet tube would increase the formation time
of hot jet and increase the DDT time, so that the performance of the engines was seriously affected.
In addition, oversize was inconvenient for practical applications. So, alternatives to increase the length
of hot jet tubes needed to be explored. Previous studies had shown the ignition position inside the
detonation chamber was an important factor in flame propagation and formation of DDT [28–30].
Peng and Weng [31] numerically investigated the effects of different ignition position on DDT. They
indicated that wall ignition had advantages over closed-end ignition in the initiation time and distance
of DDT. Blanchard et al. [32] studied the effects of different wall ignition positions on flame propagation
and DDT by hydrogen/air experiments. The results showed that the expansion of burnt fuel against the
closed section of the tube behind flame front increased flame speed and turbulence when the ignition
position was a certain distance from the closed section. From these studies of the ignition position,
it was clearly seen that ignition position inside the detonation chamber had a great influence on the
detonation initiation time and distance, and wall ignition was more conducive to flame acceleration.
Using this principle, optimization of the ignition position inside the jet tube may also obtain a fast
jet velocity to reduce the detonation distance without changing the length of the jet tube. However,
the influence of the different ignition positions inside the jet tube on hot jet detonation initiation had
not been fully studied and needed more detailed analysis and discussion.

Motivated by the above considerations, the present study performs the 2D numerical simulations to
investigate the effect of different ignition positions inside the hot jet tube on DDT. Firstly, the mechanism
of hot jet detonation initiation and flow characteristics are analyzed in detail through the study of the
vortex-flame interaction, temperature, pressure, and velocity. Secondly, the jet parameters and flame
acceleration performance of top and wall ignition are compared to investigate the reasons why wall
ignition is more favorable for DDT. Finally, the wall ignition position is further optimized, it expects
to lay the foundation for the design and application of the efficient and compact hot jet detonation
initiation device.
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2. Numerical Model and Methods

2.1. Physical Model

Figure 1 presents the physical model of the detonation chamber analyzed in this paper. As shown
in the Figure, the chamber is 100 mm in diameter and 1800 mm in length, and the left wall of the
detonation chamber is closed. Six obstacles are arranged inside the detonation chamber which the
blocking ratio is 0.35 [33]. The distance between the first obstacle and the left wall of the detonation
chamber is 380 mm. The previous three obstacles are equidistant, the distance between adjacent
obstacles is 175 mm. The distance between the last three obstacles is 250 mm. Four monitoring
points (P1–P4) are set to monitor the changing of parameter. The monitoring point is 100 mm behind
the obstacle. The hot jet tube with the 32 mm inner diameter and the 200 mm length is aligned
perpendicular to the centerline of the detonation chamber. The distance between the hot jet tube and
the left wall of the detonation chamber is 114 mm, the ignition is located in the hot jet tube. As shown
in Figure 1b, top ignition or wall ignition will be investigated. Flame accelerates in hot jet tubes first,
and then jet flame propagates into detonation chamber and produces a detonation wave in it.
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Figure 1. Schematic of geometry, (a) computational domain and (b) ignition position. 
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Figure 1. Schematic of geometry, (a) computational domain and (b) ignition position.

2.2. Numerical Method

In this study, the numerical simulations are performed using ANSYS Fluent software.
The calculation is solved on the basis of two-dimensional Navier-Stokes equations for a viscous
compressible gas coupled with chemical kinetics and the equation of state of ideal gas. The vertical
jet tube causes obvious shear flows in the detonation chamber, so SST k-ω turbulence model is
employed which defines the transport of the turbulence shear stress in the turbulent viscosity to resolve
the unsteady turbulent flow equations [34,35]. The combustion model uses the eddy-dissipation
concept model (EDC) [19,36]. The pressure correction equation is solved by a PISO algorithm
coupling with second-order upwind, which has an advantage in shock capture and accurately simulate
detonation [19,37,38]. The 26-species 34-steps skeletal reaction mechanism of propane/air is selected [39].
This mechanism is believed to better reflect flow field characteristics, detonation wave structure and
chemical kinetics of detonation.
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2.3. Initial Parameters and Boundary Conditions

The flow field is initially filled with a mixture of propane oxygen and nitrogen at a temperature
of 300K and a pressure of 0.128MPa. Among them, the mass fraction of propane is 9.4% and the
oxygen was 34%, the rest is nitrogen. The ignition zone is simplified as a semicircle with a diameter of
15 mm, whose temperature is 2500 K. The pressure-outlet is chosen as the exit boundary condition of
calculation domain. The walls are adiabatic and no-slip boundary conditions [40].

2.4. Grid-Independent and Model Validation

According to the geometric characteristics of the physical model, the quadrangular structured
meshes are chosen in this paper. Selecting different mesh sizes (ranging from 0.5 mm to 2 mm). Figure 2
shows mesh size independence analysis. By comparing the variations of pressure with time at the same
monitor point (P shows in Figure 1a), the monitoring pressure no longer changes significantly with
decreasing mesh size when mesh size is reduced to 1 mm. Therefore, the parameters of 1 mm for mesh
size is chosen in the following numerical simulation, which meets the requirements of independence.
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Figure 2. Mesh size independence analysis.

Experiments have been done to verify the validity of the numerical simulation. The experimental
equipment schematic is shown in Figure 3. The PCB 113B24 pressure sensor is selected. Figure 4
compares the pressure curve of the experiment and numerical simulation at the same positions (P2 and
P3 are located at 1035 mm and 1285 mm away from the left wall of detonation chamber), the pressure
variation trends and peaks of them are very similar. According to Figure 4, we can confirm the
experimental and simulated results are both the deflagration wave by the shape of the wave before the
P2, and there are the detonation waves at P3. So DDT is completed between P2 and P3. In addition,
the high detonation waves prove that the detonation initiation point is after P2 [8,32]. The DDT time
and distance of numerical simulation have good similarity with the experiment. Therefore, the validity
of the numerical simulation used in this paper is proved.
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Table 1 shows the comparison of theoretical and numerical detonation wave parameters.
The theoretical parameters of detonation waves are obtained by chemical equilibrium with applications
(NASA CEA) [41]. The value of the detonation parameters of this simulation method used in this
paper is slightly larger than CEA, and the maximum deviation is only 3.4%. The comparison further
verifies the validity of the numerical simulation method used in this paper.

Table 1. Comparisons of theoretical and numerical detonation wave parameters.

Parameters Theoretical Numerical Deviation

p/p1 21.15 21.87 3.40%
T/T1 9.94 10.08 1.41%

VCJ (m/s) 1904.4 1909.5 0.27%

Note: p is detonation front pressure. T is the detonation front temperature. p1 is unburned pressure. T1 is the
unburned temperature. VCJ is the detonation wave velocity.

3. Results Analysis and Discussion

The distance from the left wall of the detonation chamber to the position of detonation formation
is defined as the initiation distance of DDT, represents by xDDT. The time between ignition and hot
jet propagating into the detonation chamber is defined as the time of hot jet formation, represents by
tHJ. The tTDC is the time between the hot jet entering into the detonation chamber and the detonation
initiation formation. So the time from ignition to detonation (tDDT) is expressed as tDDT = tHJ + tTDC.
This paper mainly studies the influence of the ignition position inside the hot jet tube on the initiation
distance and time of DDT. Before that, the mechanism of hot jet detonation initiation by the top ignition
is necessary to be discussed firstly in detail.

3.1. Mechanism of Hot Jet Detonation Initiation

The hot jet detonation process is divided into three stages to study according to the combustion
characteristic and temperature distribution. They are the stage of hot jet formation, vortex-flame
interaction and detonation wave formation respectively. The flame propagation in hot jet tubes directly
impacts the jet velocity and pressure, which might further affect the following formation of the final
detonation wave. Therefore, the hot jet formation stage is discussed firstly. Figure 5 shows the hot
jet formation in hot jet tube. Since the hot jet tube is a smooth tube, the flame-wall boundary layer
interaction is an important factor affecting the flame propagation [42,43].
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From Figure 5a–c, high-temperature ignition source triggers laminar flame, and an expansion
wave is generated during thermal mixture expansion [44]. Due to the obstructive effect of the wall
boundary, the expansion waves are continuously superimposed and reflect on the flame. The flame
wrinkles and the convex flame front propagates downstream at a laminar flow velocity of about 90m/s.
In Figure 5d, since the pressure wave generated by the convex flame pushes unburned mixture to move
towards near the wall, the high-density unburned mixture is formed near the wall and accelerates
the flame propagation in this area. Then flame propagation speed near the wall increases rapidly,
the contact area between flame and unburned mixture begins to decrease. Mass and thermal diffusion
will also decrease. Flame front develops into an approximate plane, and flame propagation speed
slows down.

Figure 6 shows the field of temperature and turbulent kinetic energy at 1.575 ms. The jet flame
enters the detonation chamber, so tTDC is assumed to be 0ms at this time. To further increase the jet
velocity entering chamber, inspired by Ref. [18], the outlet of the hot jet tube has been designed as a
sudden shrunken form as shown in Figure 6. Due to the narrow structure, convex flame propagates
into the detonation chamber at a velocity of 333m/s. According to turbulent kinetic energy field, it is
found that not only the flame front forms turbulence but also there are some high turbulence areas in
the detonation chamber. The reason is that the pressure wave enters the detonation chamber ahead of
flame and inevitably produces some disturbances in the detonation chamber. The Q criterion field is
used to analyze these disturbances as shown in Figure 7. The Q criterion is defined by Hunt [45]:

Q = (Ωi jΩ ji − Si jS ji)/2 (1)

Ωi j = (µi j − µ ji)/2 (2)

Si j = (µi j + µ ji)/2 (3)

where Ωij and Sij are the rotate-rate and the strain-rate tensor of the velocity components, µij and µji
are the partial derivatives of the velocity in the x and y-direction. The Q criterion can describe the
structural characteristics of the vortex in the flow field.



Appl. Sci. 2019, 9, 4607 7 of 18

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 20 

T/K
3300

2700

2100

1500

900

300  
      

 (a) (b) (c) (d) (e) (f) 

Figure 5. Hot jet formation process (a) tHJ = 0ms, (b) tHJ = 0.15ms, (c) tHJ = 0.3ms, (d) tHJ = 0.6ms, (e) tHJ = 

0.9ms, (f) tHJ = 1.2 ms. 

From Figure 5a–c, high-temperature ignition source triggers laminar flame, and an expansion 

wave is generated during thermal mixture expansion [44]. Due to the obstructive effect of the wall 

boundary, the expansion waves are continuously superimposed and reflect on the flame. The flame 

wrinkles and the convex flame front propagates downstream at a laminar flow velocity of about 

90m/s. In Figure 5d, since the pressure wave generated by the convex flame pushes unburned mixture 

to move towards near the wall, the high-density unburned mixture is formed near the wall and 

accelerates the flame propagation in this area. Then flame propagation speed near the wall increases 

rapidly, the contact area between flame and unburned mixture begins to decrease. Mass and thermal 

diffusion will also decrease. Flame front develops into an approximate plane, and flame propagation 

speed slows down. 

Figure 6 shows the field of temperature and turbulent kinetic energy at 1.575 ms. The jet flame 

enters the detonation chamber, so tTDC is assumed to be 0ms at this time. To further increase the jet 

velocity entering chamber, inspired by Ref. [18], the outlet of the hot jet tube has been designed as a 

sudden shrunken form as shown in Figure6. Due to the narrow structure, convex flame propagates 

into the detonation chamber at a velocity of 333m/s. According to turbulent kinetic energy field, it is 

found that not only the flame front forms turbulence but also there are some high turbulence areas 

in the detonation chamber. The reason is that the pressure wave enters the detonation chamber ahead 

of flame and inevitably produces some disturbances in the detonation chamber. The Q criterion field 

is used to analyze these disturbances as shown in Figure 7. The Q criterion is defined by Hunt [45]: 

300 900 1500 2100 2700 3300

T/K

 1000 2000 3000 4000 50000

TKE/m2/s2

 

  

Figure 6. Temperature field and turbulent kinetic energy field at 1.575ms. 

 

Figure 6. Temperature field and turbulent kinetic energy field at 1.575 ms.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 19 

( ) / 2ij ji ij jiQ Ω Ω S S   (1) 

( ) / 2ij ij jiΩ     (2) 

( ) / 2ij ij jiS     (3) 

where Ωij and Sij are the rotate-rate and the strain-rate tensor of the velocity components, μij and μji 

are the partial derivatives of the velocity in the x and y-direction. The Q criterion can describe the 

structural characteristics of the vortex in the flow field. 

Q=108

0 2 4 6 8 10  

V1 V2

 
V1 V2

 
V1 V2  

(a) tHJ = 0.57 ms (b) tHJ = 1.005 ms (c) tHJ = 1.575 ms 

Figure 7. Variations of Q criterion field. 

Two vortexes (V1 and V2) can be found at the corners of the hot jet tube in Figure 7a. The pressure 

wave compresses the unburned mixture inside the hot jet tube into the detonation chamber. The 

velocity of the moving unburned mixture is significantly faster than the surrounding fluid. The 

intermittent velocity causes fluctuations, and the vortex occurs after the interface of the gas layer is 

destabilized [46]. The V1 and V2 continue to expand and move downstream in the detonation chamber 

with time. Comparing the Q criterion and turbulent kinetic energy at tHJ = 1.575 ms (Figure 7c) and 

the TKE filed as shown in Figure 6, it is found that the vortex will form local turbulence. 

The vortexes have formed before flame enters into the detonation chamber, so they inevitably 

affect the propagation of hot jet when flame propagates into the detonation chamber. Figure 8 shows 

the variations of temperature and Q criterion field, which reflects the interaction of vortex and jet 

flame. The O indicates the obstacle in the figure, and the Oi represents the ith obstacle. The gray area 

represents the vortex. At tTDC = 0.03 ms, the jet flame propagates into the detonation chamber, the 

vertical distance between the largest scale vortexes (V1 and V2) and the flame front is 70 mm. From 

0.03ms to 0.24ms, the flame surface area increases accordingly because of the sudden expansion of 

flow field structure and the small-scale vortexes. As the influence of the left wall, the jet flame 

propagates to the right in the detonation chamber. Flame reaches the down wall of the detonation 

chamber as shown in Figure 8d, and the V1 and V2 move to the sides by the hot reaction products. 

Subsequently, the V2 enhances the local turbulent fluctuation and entrains flame when tTDC = 0.66 

ms. Then V2 accelerates the mixing between hot reaction products and cold unburned mixture [47], 

which is beneficial to promote the chemical reaction rate and diffusion rate of mass and heat. As a 

result, the vortex-flame interaction increases flame wrinkle surface area and accelerates the flame 

propagation. Since V2 entrains the flame surface and V1 does not touch the flame yet, the right flame 

surface increases more. Such actions lead to the formation of a "hook-type" flame as shown in Figure 

8e. In addition, the vortex enhances the superposition between the pressure waves. The increasing 

pressure wave results in the stronger internal energy of unburned mixture, thus improving the flame 

propagation. According to Figure 8f, the right flame front propagates to the first obstacle, and the V1 

begins to entrain the left flame. The unburned mixture propagates with the promotion of the high-

temperature products and creates vortexes in the boundary layer of obstacle as the Kelvin-Helmholtz 

(K-H) instability [48]. 

Figure 7. Variations of Q criterion field.

Two vortexes (V1 and V2) can be found at the corners of the hot jet tube in Figure 7a. The pressure
wave compresses the unburned mixture inside the hot jet tube into the detonation chamber. The velocity
of the moving unburned mixture is significantly faster than the surrounding fluid. The intermittent
velocity causes fluctuations, and the vortex occurs after the interface of the gas layer is destabilized [46].
The V1 and V2 continue to expand and move downstream in the detonation chamber with time.
Comparing the Q criterion and turbulent kinetic energy at tHJ = 1.575 ms (Figure 7c) and the TKE filed
as shown in Figure 6, it is found that the vortex will form local turbulence.

The vortexes have formed before flame enters into the detonation chamber, so they inevitably
affect the propagation of hot jet when flame propagates into the detonation chamber. Figure 8 shows
the variations of temperature and Q criterion field, which reflects the interaction of vortex and jet
flame. The O indicates the obstacle in the figure, and the Oi represents the ith obstacle. The gray
area represents the vortex. At tTDC = 0.03 ms, the jet flame propagates into the detonation chamber,
the vertical distance between the largest scale vortexes (V1 and V2) and the flame front is 70 mm.
From 0.03 ms to 0.24 ms, the flame surface area increases accordingly because of the sudden expansion
of flow field structure and the small-scale vortexes. As the influence of the left wall, the jet flame
propagates to the right in the detonation chamber. Flame reaches the down wall of the detonation
chamber as shown in Figure 8d, and the V1 and V2 move to the sides by the hot reaction products.

Subsequently, the V2 enhances the local turbulent fluctuation and entrains flame when
tTDC = 0.66 ms. Then V2 accelerates the mixing between hot reaction products and cold unburned
mixture [47], which is beneficial to promote the chemical reaction rate and diffusion rate of mass and
heat. As a result, the vortex-flame interaction increases flame wrinkle surface area and accelerates
the flame propagation. Since V2 entrains the flame surface and V1 does not touch the flame yet,
the right flame surface increases more. Such actions lead to the formation of a “hook-type” flame
as shown in Figure 8e. In addition, the vortex enhances the superposition between the pressure
waves. The increasing pressure wave results in the stronger internal energy of unburned mixture,
thus improving the flame propagation. According to Figure 8f, the right flame front propagates to the
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first obstacle, and the V1 begins to entrain the left flame. The unburned mixture propagates with the
promotion of the high-temperature products and creates vortexes in the boundary layer of obstacle as
the Kelvin-Helmholtz (K-H) instability [48].
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Figure 8. Interaction of jet flame and vortex in the detonation chamber.

As flame passes through the obstacles, the flame surface area, and flame propagation velocity both
increase due to the Rayleigh-Taylor (RT) and K-H instabilities [49,50]. The flame becomes fast flame as
shown in Figure 9 (a) [51], just arrives at the O4. Figure 9 describes the formation of detonation wave
by the variations of pressure and temperature field in detail. Obviously, a high-pressure zone occurs
near the fourth obstacle at this moment. Pressure waves superimpose to form a shock in the leading
edge of flame front. Since the leading shock compresses unburned mixture at front of flame to raises
the temperature surrounding it, the chemical reaction and combustion are both promoted. Then plenty
energies released from rapid combustion will strengthen the leading shock. This creates a positive
feedback effect.
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Figure 9. Variations of pressure and temperature field at detonation transition (DDT).

According to Figure 9b, the leading shock and flame pass the O4, and the leading shock reflects
from the wall. Then the leading and reflected waves collide at point “c” as shown in Figure 9c,
the maximum pressure of “c” is over 6MPa. From the temperature field at this time, a hot spot is
formed at the point “c”. At tTDC = 1.935 ms, the flame surface is coupled to the front shock, the hot spot
develops to detonation wave at 1170 mm. The instabilities caused by internal combustion and walls
lead to the generation of hot spots, which is the mechanism of the detonation wave formation [52].
The detonation wave coupled with shock and flame propagates downstream at velocity of 1909 m/s.
Based on Figure 9e, 1OMach stem, 2Oincident shock, and 3Otransverse shock intersect to form the
detonation wave system, the focus of the three shocks is called the “triple point” [53]. The key to the
existence of stable and persistent detonation is that the “triple point” provides continuous energy to
ensure the detonation wave velocity and propagate downstream successively.

3.2. The Influence of Ignition Position on the Hot Jet Detonation Initiation

Through the above study, it is found that the hot jet can form vortexes to accelerate flame
propagation and promote DDT in the detonation chamber. However, the formation time of the hot
jet is 44.87% of DDT time, which will greatly affect the performance of the detonation engine. In the
previous paper, the ignition position inside the detonation chamber affects flame propagation [8].
So, the differences between top ignition and wall ignition are the following focus and research
(ζY = 0 mm as shown in Figure 1b. Figure 10 shows the time and distances to detonation initiation of
two ignition positions. Simulation results clearly display that wall ignition can not only effectively
reduce the tHJ, but also shorten DDT time and distance. The top ignition tDDT = 1.575 ms (tHJ) +

1.935ms (tTDC) = 3.51 ms, and xDDT = 1170 mm. The wall ignition tDDT = 1.005 ms (tHJ) + 1.32 ms (tTDC)
= 2.325 ms, and xDDT = 907 mm, the tDDT and xDDT are reduced by 33.76% and 22.48% comparing with
top ignition.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 20 
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Figure 11 compares the flame propagation speed inside the jet tube of the two ignition positions,
which can account for the reason of tHJ reduction. In this figure, the distance represents the flame
propagation distance in the hot jet tube, the left side is the ignition position, and the right side is the
exit of the hot jet. The initial flame development of the two ignition positions is similar, then flame
propagation speed of wall ignition is obviously higher than that of top ignition. Finally, the jet flame of
wall ignition propagates into the detonation chamber at a velocity of 550m/s, which is about 1.65 times
faster than that of top ignition.
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Figure 11. Flame propagation speed in the hot jet tube of two ignition positions.

Base on the “a” region of Figure 11, it is found that the flame propagation velocity of wall ignition
is more than 2 times of the wall ignition. To investigate this issue, the variations of temperature field
of wall ignition are studied as shown in Figure 12. At tHJ = 0.3 ms, the pressure wave reaches right
wall and then reflects. The reflected wave propagates to left, and it prevents the flame from contacting
the right wall, thus ensuring the contact area between flame and unburned mixture. Comparing with
Figure 5, there is more contact area between flame and unburned mixture in the flow field of wall
ignition at this moment. More contact area releases more energy to increase the flame propagation
speed. Therefore, the flame propagates faster and flame front reaches the exit of the jet tube in only
0.9 ms as shown in Figure 12c, the propagation distance is significantly farther than the flame of
Figure 5e. Then flame front transforms from “fingertip” to “planar” shape. Flame contacting with
wall results in reducing the contact area between flame and unburned mixture, thus slowing down the
flame propagation speed. However, the flame propagation speed of wall ignition is faster than that of
top wall, and wall ignition takes only 1.005 ms to form a hot jet into the detonation chamber.
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Figure 12. Variations of temperature field of the wall ignition (a) tHJ = 0.3 ms, (b) tHJ = 0.6 ms, (c) tHJ =

0.9 ms, (d) tHJ = 1.005 ms.
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The jet pressure also affects the jet flame propagation into the detonation chamber, so a detailed
comparison of the jet pressure changes with time at the center point of the hot jet tube is shown in
Figure 13. The first pressure peak appears at 0.5 ms. The pressure peak of wall ignition is 1.35 times
that of top ignition. Subsequently, the pressure of wall ignition is always higher than the top ignition.
The second pressure peak appears at 0.75 ms and the peak value can reach 0.2 MPa. The jet flame of
wall ignition enters detonation chamber with 0.1 MPa at 1.005 ms, which is obviously higher than
0.06 MPa of top ignition. The average pressure of the wall ignition is twice than top ignition due to
more intense burning and wave superimposition. On the basis of above discussions of jet velocity, it is
found wall ignition brings a faster hot jet with higher pressure.
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Figure 13. Pressure changes of two ignition positions at the exit of the hot jet tube.

In order to understand flame propagation and detonation wave formation of the two ignition
positions. The comparison of flame propagation speed is shown in Figure 14. The trend of these two
flame propagations is generally the same due to the same structure, but the flame propagation of wall
ignition is substantially faster than that of top ignition. The wall ignition forms a detonation wave first.
According to the characteristics of the flame speed, this figure is divided into two regions to study.
(I) In this region, the vortex entrains the jet flame to increase the flame speed before the first obstacle.
(II) The flame constantly accelerates because of the obstacles, and eventually forms a detonation wave.
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Figure 14. Flame propagation speed in the detonation chamber.
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In the first region, the flame propagation speed of wall ignition increases significantly fast and
remains at big speed. Except for the area around 0.23 m (the V1 entrains the flame of top ignition as
shown in Figure 8e), the flame speed of wall ignition is always faster than that of top ignition. Figure 15
displays the variations of temperature and Q criterion field of wall ignition before the first obstacle to
investigate why the flame speed of wall ignition is faster. Comparing with Figure 8a, it can be seen
that the scale of the vortexes (V1 and V2) is larger at tTDC = 0.03 ms due to the higher jet pressure and
the faster jet velocity. Additionally, the reducing formation time of hot jet results in short moving
time of V1 and V2, so the vertical distance between the vortexes (V1 and V2) and the flame front is
only 14 mm, which is obviously closer than that of top ignition. Base on Figure 15b,c, flame quickly
contacts the vortexes (V1 and V2). The two same scale vortexes (V1 and V2) simultaneously entrain
the flame. Then flame temperature and wrinkling surface both increase rapidly and a symmetrical
“mushroom-shaped” flame is produced at tTDC = 0.24 ms. Subsequently, flame reaches the first obstacle
by only 0.66 ms, which is 26.67% less than top ignition. Moreover, a large amount of mixture is
burned to release energy, which is more conducive to the next acceleration of the flame. Comparing
with Figure 8, vortex entrains flame earlier and the scale of vortex is significantly larger, so the flame
propagation speed of wall ignition is faster than that of top ignition.

1 
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(c) tTDC = 0.24 ms (d) tTDC = 0.66 ms 

 
Figure 15. Variations of temperature and Q criterion field of wall ignition.

In the second region, as the flame propagation speed of wall ignition is faster than that of top
ignition when the flame passes the first obstacle, its flame propagation speed is always faster at the
second stage as shown in Figure 14. Subsequently, the wall ignition forms a detonation wave in advance
as shown in Figure 16. Wall ignition burns more intensely at the early stage in the detonation chamber,
so superposition of pressure waves is more intense. According to Figure 16a, two high-intensity
reflected waves have been formed before the third obstacle. Then the reflected waves and leading shock
collide at point “c”, and a hot spot is formed which is significantly ahead of the top ignition. The high
temperature and pressure point accelerate energy release to accelerate DDT which precedes than top
ignition. The triple point( 1OMach stem, 2O incident shock, and 3O transverse shock) is promoted for the
case of ignition at the wall because of the higher pressure waves and flame strength than that of top
ignition. On the basis of above discussions, it is found that wall ignition forms a fast hot jet with high
pressure, shortens the formation time of hot jet, and forms large-scale vortexes. These all contribute to
accelerating flame and superimposing pressure waves. So the DDT distance and time of wall ignition
are significantly shorter than top ignition.
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Figure 16. Variations of pressure and temperature field at deflagration-to-detonation transition (DDT)
of wall ignition.

3.3. Optimization of Ignition Position

Through the above study, it is found that wall ignition is more conducive to the acceleration of
DDT. To further study the performance advantage of wall ignition, the effect of different wall ignition
positions on DDT is studied in this section. The ignition positions of ζY = 30 mm, 60 mm, 90 mm,
120 mm, and 150 mm are simulated as well. Figure 17 displays the jet velocity and pressure of different
ignition positions when jet flame front enters into the detonation chamber. Since too big ζY results
in less mixture combustion in the jet tube, thus weakening the jet velocity and pressure. When ζY is
large, the jet velocity and pressure are both relatively small. As ζY increases, the jet velocity maintains
at about 550 m/s and then an obvious reduction occurs. The jet pressure increases firstly and then
weakens with increase of ζY, and the highest peak is observed ζY = 30 mm. The pressure wave is
reflected not only on the left and right walls but also on the top of jet tube [46]. Therefore, it is more
advantageous to obtain larger jet pressure when ζY = 30 mm.
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Then jet flame propagates into the detonation chamber, flame wrinkling surface area and
propagation speed both increase by vortexes and obstacles. In order to compare the flame propagation
in the detonation chamber for different ignition positions, distributions of pressure and temperature
on the axis at different ignition positions at tTDC = 1.44 ms are shown in Figure 18 (ζY ≤ 60 mm) and
Figure 19 (ζY ≥ 90 mm). Since the fast hot jet, flame and pressure propagate farther in Figure 18 than
those of Figure 19. The propagation distances of flame and pressure are farthest when ζY = 30 mm.
The values of leading shock already meet the detonation parameter in Figure 18, and flame front couple
with the leading shock, so the detonation wave has been formed in the detonation chamber.
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Figure 18. Distributions of (a) pressure and (b) temperature of ζY ≤ 60 mm at tTDC = 1.44 ms.

Base on Figure 19, the propagation distance of pressure wave and flame decrease as ζY increasing,
and the pressure wave propagate slightly further than flame front. It is clearly seen that the pressure
of deflagration wave is weak at this time, and value of pressure wave decreases as ζY increasing.
The pressure of ζY = 150 mm is obviously lower than other ignition positions, which does not form the
leading shock.
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Figure 19. Distributions of (a) pressure and (b) temperature of ζY ≥ 90 mm at tTDC = 1.44 ms.

Figure 20 shows the DDT distance and time of different ignition positions. The tDDT (tHJ + tTDC)
and xDDT both decrease firstly and then increase with ζY increasing. The ignition position is near the
exit of the hot jet tube when the ζY is big, so the tHJ is small. However, the reduction of jet intensity
leads to a long time and distance to complete DDT. As the jet velocity and pressure are the largest at
ζY = 30 mm, the shortest xDDT is 810 mm and the fastest tDDT is 2.055 ms at this time.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 20 
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4. Conclusions 

This paper uses a two-dimensional numerical simulation method to study the effect of different 

ignition positions inside the hot jet tube on the distance and time of detonation initiation. The hot jet 

formation, the vortex-flame interaction and character of the initiation time and distance to detonation 

initiation are analyzed in detailed. The primary conclusions of this study include as following: 

(1) The mechanism of the hot jet detonation initiation is fast jet flame and the vortex-flame 

interaction. The vortexes increase turbulence intensity to accelerate blending between the unburned 

mixture and high-temperature products and increase superposition of the waves. Therefore, the 

increasing flame wrinkling surface area results in faster mass and energy release, thus increasing the 

flame propagation speed and accelerating DDT. 

(2) Wall ignition is significantly better than top ignition on DDT. When the ignition position 

changes from the top to the wall inside the hot jet tube, the DDT distance and time are both showing 

an obvious reduction. Two differences should be paid special attention: one is the vortexes entrain 

flame early. Another is the scale of vortex is big and two large-scale vortexes simultaneously entrain 

flame. The reason mainly lies in the formation of hot jet with stronger intensity in cause of wall 

ignition. 
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4. Conclusions

This paper uses a two-dimensional numerical simulation method to study the effect of different
ignition positions inside the hot jet tube on the distance and time of detonation initiation. The hot jet
formation, the vortex-flame interaction and character of the initiation time and distance to detonation
initiation are analyzed in detailed. The primary conclusions of this study include as following:

(1) The mechanism of the hot jet detonation initiation is fast jet flame and the vortex-flame
interaction. The vortexes increase turbulence intensity to accelerate blending between the unburned
mixture and high-temperature products and increase superposition of the waves. Therefore,
the increasing flame wrinkling surface area results in faster mass and energy release, thus increasing
the flame propagation speed and accelerating DDT.

(2) Wall ignition is significantly better than top ignition on DDT. When the ignition position
changes from the top to the wall inside the hot jet tube, the DDT distance and time are both showing an
obvious reduction. Two differences should be paid special attention: one is the vortexes entrain flame
early. Another is the scale of vortex is big and two large-scale vortexes simultaneously entrain flame.
The reason mainly lies in the formation of hot jet with stronger intensity in cause of wall ignition.

(3) The different wall ignition positions also affect the detonation wave formation. The tDDT and
xDDT all reduce firstly and then increase with ζY increasing. The shortest xDDT is 810 mm and the
fastest tDDT is 2.055 ms at ζY = 30 mm. This is because not only the jet velocity is ensured to be about
550 m/s, but also the jet pressure is the largest due to the pressure wave is reflected on the wall and top
of the hot jet tube.
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