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Abstract: The computational analysis of facial expressions is an emerging research topic that could
overcome the limitations of human perception and get quick and objective outcomes in the assessment
of neurodevelopmental disorders (e.g., Autism Spectrum Disorders, ASD). Unfortunately, there have
been only a few attempts to quantify facial expression production and most of the scientific literature
aims at the easier task of recognizing if either a facial expression is present or not. Some attempts
to face this challenging task exist but they do not provide a comprehensive study based on the
comparison between human and automatic outcomes in quantifying children’s ability to produce
basic emotions. Furthermore, these works do not exploit the latest solutions in computer vision
and machine learning. Finally, they generally focus only on a homogeneous (in terms of cognitive
capabilities) group of individuals. To fill this gap, in this paper some advanced computer vision and
machine learning strategies are integrated into a framework aimed to computationally analyze how
both ASD and typically developing children produce facial expressions. The framework locates and
tracks a number of landmarks (virtual electromyography sensors) with the aim of monitoring facial
muscle movements involved in facial expression production. The output of these virtual sensors is
then fused to model the individual ability to produce facial expressions. Gathered computational
outcomes have been correlated with the evaluation provided by psychologists and evidence has been
given that shows how the proposed framework could be effectively exploited to deeply analyze the
emotional competence of ASD children to produce facial expressions.

Keywords: assistive technology; autism; facial expressions; computer vision

1. Introduction

Computational quantification of neurodevelopmental disorders is one of the most attractive
research areas [1] since it overcomes limitations of human perception and it also allows caregivers to
get quick and objective outcomes [2]. Invasive tools are the most explored method so far to accomplish
this challenging task. Unfortunately, they require acceptance and collaborative behaviors during
calibration. Moreover, they have no negligible costs and caregivers have to be trained to properly
use them. Besides, the gathered data are conditioned by the bias introduced by the presence of the
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tools. On the one hand, high costs make their pervasive use economically unsustainable for most
private and public organizations and, on the other hand, their effectiveness in the assessment of
neurodevelopmental disorders is controversial. This is even truer in the case of Autism Spectrum
Disorders (ASD) [3], particularly in the case of treatment of children. Accurate evaluation, using
non-invasive tools, is becoming a primary need, also considering the increase of ASD prevalence
(1/59) [4]in the general population. In particular, since it is well known that ASD children show a clear
deficit in the quality of facial expression production compared to typically developing ones [5,6], some
computer vision and machine learning techniques can be successfully implemented to automatically
assess emotional skills in a not invasive and accurate way [7] and, finally, to give an automatic
assessment of autism spectrum disorders. Unfortunately, to the best of our knowledge, there are no
works exploiting the aforementioned computational technologies to provide a comprehensive study
carried out comparing psychologists and automatic outcomes to quantify children’s ability to produce
basic emotions. Prior works mainly report qualitative assessment (ASD vs. non-ASD behavioral
features) or just rough quantitative assessments (e.g., smiling /not smiling). A pioneering approach
towards this challenging research line was the one in [8]: it introduced an algorithmic pipeline able to
analyze facial dynamics using a continuously updated and personalized reference model, differently
from the plethora of approaches in the literature that lies on predefined facial models. Unfortunately,
that work had two main drawbacks: its outcomes were validated only on ASD children and, besides,
it did not exploit the great potential of convolutional neural networks. This leads to an incomplete
analysis of its potential in assessing ASD, to a sub-optimal correlation between numerical outcomes
and the strength of facial expressions and, last but not least, to collect unreliable outcomes especially in
the cases of non-frontal head pose and non-collaborative behaviors of children. To overcome the above
limitations, in this paper, the pipeline in [8] has been improved by advanced computer vision and
machine learning modules that rely on deep learning strategies. The updated pipeline, as proved in the
experimental section carried out on both ASD and typically developing children, allows the framework
to get numerical outcomes more correlated to the actual strength of the expression executions. Besides,
it increases the system’s performance in terms of accuracy with respect to manual annotations provided
by a team of psychologists. It is worth noting that, even if the pipeline relies on existing strategies,
it combines them in a fruitful, and still unexplored, way in order to achieve the pursued application
goal. The exploitation of the pipeline brought to a generalization of the knowledge by allowing to
perform a deeper computational analysis of how children with ASD manifest their deficit in emotional
competence, in particular, by comparing them to typically developing (TD henceforth) children 24-36
months old. Indeed, studies on emotional competence [9-11] considered this age range the crucial
moment in which children start to develop the ability to name and recognize the facial expression of
basic emotions (i.e., happiness, sadness, fear, and anger). Summing up, this paper has two levels of
innovation: on the one side, it improves the pipeline in [8] by introducing deep learning strategies for
face detection and facial landmark positioning. On the other side it extends the experimental evidence
about the possibility of using the proposed pipeline to computationally analyze facial expressions
also for typically developing children (in [8] only ASD children were involved). From the above, an
important additional contribution derives: for the first time the computational outcomes on ASD
and TD groups are compared and a discussion about the gathered outcomes is provided from both
technological and clinical sides.

The rest of the paper is organized as follows: in Section 2 related works achieving the automatic
assessment of ASD behavioral cues are reported and discussed. In addition, a brief overview of the
most recent computer vision techniques addressing facial expressions recognition is given. Then, in
Section 3, the proposed pipeline is described whereas Section 4 describes method and participants.
Section 5 reports experimental results on both ASD and TD children and it numerically compares
gathered outcomes. Subsequently, Section 6 reports and discusses a performance comparison, on the
same set of data, with some leading approaches in the literature. Section 7 reports instead a discussion
about clinical evidence emerged from experimental outcomes and, finally, Section 8 concludes the
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paper, giving an explanation of how the proposed framework could be exploited in the clinical
treatment to improve emotional competence’s evaluation of ASD children. It gives also a sight of
possible future works.

2. Related Work

This section firstly discusses some works dealing with the exploitation of computer vision and
machine learning techniques to assess behavioral cues in ASD children. Subsequently, a brief overview
of the most recent computer vision techniques addressing facial expressions recognition is given.
Concerning the assessment of ASD behavioral cues, computer vision and machine learning techniques
have been effectively exploited in the last years to highlight signs that are considered early features
of ASD [12]. Computer vision analysis measured participants” attention and orienting in response
to name calls in [13] whereas in [14] the head postural stability was evaluated while the children
watched a series of dynamic movies involving different types of stimuli. Both works made use of
an algorithm that detects and tracks 49 facial landmarks on the child’s face and estimates head pose
angles relative to the camera by computing the optimal rotation parameters between the detected
landmarks and a 3D canonical face model. In [15] a video segmentation approach was exploited to
retrieve social interactions that happen in unstructured video collected during social games, such as a
“peek-a-boo” or “patty cake,” that consist of repetitions of stylized, turn-taking interactions between
a child and a caregiver or peer. More complex behaviors (i.e., sharing Interest, visual tracking and
disengagement of attention) were analyzed in [16] by using a semiautomatic system relying on a
dense motion estimator, multi-scale Histograms of Orientated Gradients (HOG) and Support Vector
Machine. The authors assumed that, in the first frame, the bounding boxes of the left ear, left eye
and nose are available and proposed a way to estimate yaw and pitch motion from images acquired
in unstructured environments. Unfortunately, the relevant deficit of ASD children in recognizing
and producing facial expressions (that is clinically considered a robust feature to evaluate ASD
conditions) has not been deeply investigated by using automatic techniques. This is due to the fact
that computational analysis of facial expressions in digital images is an emerging research topic: there
are only a few attempts to quantify facial expression production [17] whereas most of the scientific
productions aim at the easier task of evaluating the ability to recognize if either a facial expression is
present or not [18]. Very recently, some pioneering studies introduced advanced approaches to get
computational outcomes able to numerically prove only the differences in facial skills of ASD vs. TD
children groups [19-22]. Other approaches focused instead on detecting early risk markers of ASD. An
application of displaying movie stimuli on a mobile device which were expertly designed to capture
the toddler’s attention and elicit behaviors relevant to early risk markers of ASD, including orienting
to name call, social referencing, smiling while watching the movie stimuli, pointing, and social smiling
was, for example, proposed in [23]. A rough assessment with respect to smiling/ not smiling labels
provided by human raters was carried out. Authors in [24] presented an end-to-end system (based
on the multi-task learning approach) for ASD classification using different facial attributes: facial
expressions, Action units, arousal, and valence. High-level diagnostic labels (ASD or No-ASD) were
used as a reference. Table 1 sums-up the most relevant prior works in the literature. For each work the
involved computer vision tasks are indicated and, in the last column, the validation process put in
place is mentioned. In particular, from the last column, it is possible to derive that works in [19-22] did
not consider any quantitative evaluation but just a qualitative analysis of the outcomes to highlight the
differences in affective abilities of ASD vs. TD groups.
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Table 1. The most relevant prior works in the literature

Prior Works Head Gaze and Motor Body Face Validation
Movement Attention Analysis Motion Analysis

[16] X X X expert clinician

[15] X manual annotation

[13] X X human rater

[14] X ASD vs. TD

[19] X ASD vs. TD

[20] X ASD vs. TD

[21] X ASD vs. TD

[22] X ASD vs. TD

[24] X diagnostic labels

(ASD/non-ASD)

[23] X X expert human raters
(smiling/not smiling))

[8] X expert psychologists
(only on ASD Group)

The last row in Table 1 reports the work in [8] that has been the first attempt to introduce an
algorithm pipeline to quantify affective abilities by analyzing facial traits. As already stated in Section 1,
ithad a major limitation consisting in the use of the handcrafted features and shallow learning strategies
that are operational choices largely overcome by the recent literature on facial analysis. The recognition
of facial expression can be achieved with high accuracy by learning robust and discriminative features
from the data as proposed in [25] where deep sparse auto-encoders are established. A deep learning
architecture, that includes convolutional and recurrent neural network layers, has been also proposed
in [26] and it has been exploited for the estimation of emotional valence and arousal in-the-wild.
An approach that combines automatic features learned by convolutional neural networks (CNN) and
handcrafted features computed by the bag-of-visual-words (BOVW) model has been proposed in [27].
Similarly in [28], an improved expression recognition network that combines the improved Local
Binary Patterns (LBP) features with deep convolution neural network facial features was designed.
Facial expressions can be also modeled directly from image intensities using deep neural networks
(i.e., without requiring or involving facial landmark detection) as proposed in [29]. Computational
aspects have been addressed in [30] where a new Convolutional Neural Network (CNN) model,
namely MobileNet, is proposed in order to compound accuracy and speed. Finally, even automatic
recognition of micro-expressions has been effectively tackled by convolutional neural networks [31].
However, most of the aforementioned existing facial expression recognition methods work on static
images. Unfortunately, their intrinsic nature makes them useless in a context where it is important
to evaluate the facial dynamics following external elicitation stimuli or verbal requests to produce
facial expressions. On the other hand, it is ineluctable that this kind of evaluation can benefit from the
temporal correlations of consecutive frames in a sequence. In literature, there are some works that
addressed this challenging problem: some of the simply aggregate outcomes on consecutive frames
whereas more effective approaches learned spatio-temporal evolution in producing facial expressions.
Although dynamic FER is known to have a higher recognition rate than static FER, it does suffer
from a few drawbacks: the extracted dynamic features depend on the facial geometry, the different
temporal transient from inexpressive face to emotion apex, the initial facial configuration that can trick
the classifier by affecting temporal evolution of facial features. Very outstanding survey papers on
this topic can be found in [32] and [33]. The above limitations are emphasized when the goal is to
recognize and even to quantify facial expression in individuals with limited skills due to cognitive
impairments (e.g., affected by ASD) or still under functional development (e.g., toddlers). Under
those circumstances, classical FER approaches decrease their accuracy since their models are built on
typically developed individuals and their generalization could be not trivial. Finally, it should also be
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pointed out that also outstanding papers that treat the expression intensity estimation as a regression
problem [34] are not suited for the considered application context since they make use of a common
(not personalized) reference model.

3. The Proposed Framework

The framework mainly consists of four algorithmic modules performing face detection, facial
landmark detection and tracking, facial action unit intensity estimation and high-level semantic
analysis that provides the computational quantification of the facial expressions. In Figure 1 the
proposed algorithmic pipeline is schematized. It is worth noting that the figure points out, by the
horizontal dotted line and the blocks differently colored, that the two modules above the line (face
detection and facial landmark detection and tracking) are the ones heavily improved with regards
to the former work in [8]. To be as clear as possible, the heavily changed algorithmic modules with
respect to the framework in [8] are colored in light orange.
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Figure 1. The proposed algorithmic pipeline. The figure points out, by the horizontal dotted line and
the blocks differently colored, that the two modules (face detection and facial landmark detection and
tracking) above the dotted line (colored in light orange) are the ones heavily improved with regards to
the former work in [8].

The system works on the images acquired by off-the-shelf cameras. In each acquired image
human face detection is performed by multiple CNNs (cascaded) integrating, by multi-task learning,
both face detection and alignment [35]. After resizing the input image to different scales, the resulting
image pyramid is given as input to a three-stage series of cascaded convolutional neural networks,
that have been proved to be a very effective approach to solve the face detection problem under
unconstrained conditions [36]. At first, a fully convolutional network is used to detect candidate
facial regions and related bounding boxes. Candidates are then refined by a linear regression model
followed by a non-maximal suppression. Resulting regions are fed to another CNN which further
rejects a large number of false candidates and newly performs bounding box regression followed
by non-maximal suppression. Finally, the same network used at stage 1 but empowered by a larger
number of convolutional layers is used to accurately localize faces in the input image. The face detector
was trained on WIDER FACE [37] and CelebA [38] datasets. Details on employed network architectures
can be found in [35].

Each facial patch, extracted by the aforementioned face detector, is given as input to the
facial landmark detection and tracking step. This crucial step is carried out by making use of the
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Convolutional Experts Constrained Local Model (CECLM) [39]. CECLM algorithm consists of two
main parts: response map computation using Convolutional Experts Network and shape parameter
update. The first step is to compute a response map that helps to accurately localize individual
landmarks by evaluating the landmark alignment probability at individual pixel locations. During the
parameter update, the positions of all landmarks are updated jointly and penalized for misaligned
landmarks and irregular shapes using a point distribution model. The following objective function

n
p* = argmin | ) —D;i(x;Z) + R(p) M
p i=1

is used where p* is the optimal set of parameters controlling the position of landmarks, with p being
the current estimate. D; is the alignment probability of landmark 7 in location x; for input facial image I
computed by Convolutional Experts Network. R is the regularization enforced by a point distribution
model exploiting mean-shift over the landmarks but with regularization imposed through a global
prior over their joint motion [40].

The estimation of Action Unit (AU) intensities is subsequently carried out on the basis of the
detected facial landmarks. The AU estimation starts from the initial regression outcomes coming
from a Support Vector Regressor [41] having linear kernels. The regressor was trained on feature
vectors built by concatenating geometry (i.e., the CECLM parameters) and appearance features. The
CE-CLM parameters consist of the scale factor, the first two rows of a 3D rotation matrix, the 2D
translation t and a vector describing the linear variations of non-rigid shape. In addition, geometry
is described by the locations of each detected landmark. In particular, the location into the 3D
reference model is used starting from the inferred 2D position in the facial region. This led to a
23 + 204 (i.e., 68 x 3) = 227 dimensional vector describing the face geometry [42]. On the other
hand, in order to extract appearance features, the detected face is mapped onto a common reference
frame by transforming detected landmarks to a representation of frontal landmarks from a neutral
expression (pivoting on a 3d model) in order to get a 112 x 112 pixel image of the face with 45 pixel
inter-papillary distance. Histograms of Oriented Gradients (HOG) features [43] are then extracted
only from the facial region (surroundings are discarded) by exploiting blocks of 2 x 2 cells, of 8 x 8
pixels. This leads to 12 x 12 blocks of 31 dimensional histograms that represent the facial appearance
features. The resulting vector (having 4464 elements) is subsequently reduced to 1391 elements by
projecting it on the most informative data directions through principal component analysis. The
complete vector is then made up by the concatenation of geometry and appearance ones features
(1391 + 227 = 1618 elements). Finally, the AU intensities are estimated by Support Vector Regression
(SVR) employing linear kernels [41]. The models used in the proposed approach were trained on
DISFA [44], SEMAINE [45] and BP4DD-Spontaneous [46] datasets coontaining video data of people
responding to emotion-elicitation tasks.

Estimated AU intensity values are subsequently smoothed in time by an adaptive
degree polynomial filter (ADPF)) [47] and regularized by geometrical constraints raising from
probabilistic reasonings.

ADPFs are smoothing filters that, unlike most common Finite Impulse Response (FIR) digital
filters, are represented by polynomial equations. The basic idea is to take advantage of a process,
known as convolution, to fit successive subsets of adjacent data points with a low-degree polynomial
by the method of linear least squares. This kind of filters is typically used to smooth a noisy signal
whose frequency range of the signal without noise is large. In the considered application, ADPFs
perform better than the standard FIR filters because these tend to attenuate a significant portion of
high frequencies of the signal along with noise. It is worth noting that the variation in each AU
brings information about facial expression production and then high frequencies have to be preserved
during smoothing processes. The particular formulation of ADPFs preserves moments of higher orders
much better than other methods. As a consequence, the widths and amplitudes of the peaks for the
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desired signals tend to be preserved. This is the reason why an ADPF is used in the proposed pipeline,
although it is less effective in removing high-level noises in a signal than common finite impulse
response filters. Concerning ADPF’s parameters, the number of points used in each subset of model
fits is 5 (frame length) and a polynomial of order 3 is exploited to represent each signal portion.
Since the intensities of multiple AUs are not independent of each other their cross-correlation
can, therefore, be exploited to mitigate the effects of single random variations (due for example to
noise and/or errors in the estimation or involuntary movements of the muscles) and, on the other
hand, to emphasize significant patterns instead. To accomplish this fundamental task a Bayesian
Network (BN) has been trained using a large number of videos containing annotated facial expressions
as suggested in [48]. In particular, AU dependencies were learned on the well known Cohn-Kanade
Dataset (CK+) [49]. Each node of the BN has been associated with an AU label, whereas the links among
nodes and their transition probabilities capture the conditional dependencies among AUs. Conditional
dependencies among AUs were exploited to regularize AU intensities by the following rule:

AU;(t) = AU;(t) + Ri(t) Vie{l.n} ()
where
Ri(f) = ):j(Pi,j(Aui(;) _Auj(t)))V{z’,j} € (Lnki#]

with n the number of considered co-occurrent action units (in this paper n = 14). The outputs of this
step are regularized AU intensities, i.e., AU intensities whose values at each time instant have been
’smoothed’ or "enhanced” according to the learned parameters of the model there are applied on the
values of the intensities of the related AUs.

Facial Expression Analysis is subsequently performed on the basis of the estimated, temporally
smoothed and regularized AU intensities. To this purpose, the Ekman model [50] that attributes
the character of basic emotions to happiness, sadness, fear, and anger has been taken as
theoretical reference.

To this end, firstly, the actual variation in each AU intensity is computed by introducing a
short-term statistics on a modeling window W, (t — A,;;t — 1) where A is the observation period
whose length depends on the expected temporal distance between two consecutive relevant facial
expressions. The modeling window Wy, (t — A,,; t — 1) is exploited to build a probabilistic model with
multiple Gaussian functions built on the observed configurations of the facial muscles. The probability
to observe the value X of the intensity of AU is then computed as:

K
P(X) =Y wi*n(X, i, %) ®)
i=1

where K is the number of distributions (K = 3 in this paper), w; is an estimate of the weight of the
ith Gaussian in the mixture, y#; and X; are the mean value and covariance matrix of the ith Gaussian
respectively, and  is a Gaussian probability density function.

Given the model, the largest value of AU in the observation window W, (t +1;t + A,) is extracted,
its probability to fit the model is computed and its negative log-likelihood

Vaui(t) = —log(PDF(max(AUi(t) : t € Wy)) 4)

is retained as a measure of the variation of the current values with respect to the expected ones.

The values V,yy; are finally exploited to compute the production scores M;(t) with x € [H, S, F, A]
and y € [uf,lf] that are the outcomes of the proposed algorithm pipeline in each time instant ¢. For
each of the 4 basic facial expressions taken into consideration, at each time instant, a measure of
production ability is separately computed for lower and upper facial part (indicated by uf and If
subscripts respectively) as reported in Table 2.
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Table 2. Computational measures of production ability for H = Happiness; S = Sadness; F = Fear; A =
Anger. lower and upper facial part are indicated by uf and I f subscripts respectively. Time index has
been omitted for better table readability.

Expression Measures
H MH = Vaue
Mg = Vaun
S Mif = max(Vau1, Vaua)
Mlsf = Vauis
F Mﬁf = min(max(Vau1, Vauz), Vaus, Vaus)

le} = max(Vauzo, Vauzes)

A M{?f = max(Vaua, Vaus, Vauz)
M;} = max(max(Vauo, Vauz), min(Vauiz, Vaus))

4. Participants and Method

Participants. Twenty-seven children were recruited for this study: 17 were children with ASD
recruited at two diagnosis and treatment associations in the South of Italy and 10 were typically
developing children recruited at a daycare in a little city of South of Italy. For this research Ethical
Committee of the Local Health Service gave its approval and informed consent was obtained from
children’s parents. All children’s families were contacted to obtain agreement and they received a cover
letter with the project research description and the signed informed consent. ASD group. This group is
equivalent to the one used in [8]. It included 14 males and 3 females children aged 6-13 years (mean =
8.94; standard deviation = 2.41) and who received a High Functioning—ASD diagnoses by local health
service using Autism Diagnostic Observation Schedule (ADOS) scores [51]. Their IQ was assessed
by Raven’s Colored Progressive Matrices [52] and the scores were on average level (mean = 105;
standard deviation = 10.98; range = 90-120). Furthermore, all children followed a behavioral intervention
program using the Applied Behavioral Analysis (ABA). TD group. This group included 10 children
(6 males) aged 26-35 months of life (Mean = 31.3; Standard Deviation = 3.1) who were not referred for
any developmental disability. Children were voluntarily recruited aged between the second and third
year of life since that age range is the crucial moment in which children start developing the ability to
name and recognize facial expression (e.g., [9-11]) of basic emotions (happiness, sadness, fear, and
anger). Table 3 describes the sample divided by children’s group.

Table 3. Description of the sample divided by children’s group. Standard deviation is in the bracket.
Note that for the level of education “high” means at least 13 years of education whereas “low” indicates
5-8 years of education.

Variables ASD Group TD Group
Children’s gender M=13;F=4 M=6:F=4
Average children’s age 8.9 years (2.47) 31.35 (3.11)
Children’s birth order First born = 10 Firstborn =6
Second-born and more =5  Second-born and more = 4
Mother’s mean age * 43.3 (4.6) 36.9 (4.95)
Father’s mean age * 47.3 (3.9) 41 (7.45)
Level of maternal education High = 15; Low =2 High=9;Low =1
Level of paternal education High = 14; Low =3 High=7;Low =3

* Variables showing standard deviation values are marked with an asterisk.

Here it could be useful to make a clarification: the main aim of the paper is to quantify facial
expression production while it is not completely developed. For this reason, the experimental setup
involved 2-3 years old TD children. Evaluation of TD children of the same age of ASD ones would
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bring to pointless results since all the scores would tend to the maximum in subjects having the facial
expression production skills fully acquired. What really matters in the considered application context
is the level of development of competences, not the chronological age of the involved individuals. In
light of this, for both groups, the clinical baseline was assessed by the Facial Emotion Recognition (FER)
task [53,54] which evaluated the child’s ability to recognize each emotion between four visual stimuli.
A point is awarded to a child if he recognizes the stimulus. Since there are four visual stimuli (each
associate to a basic emotion) and each stimulus is supplied 5 times to each child, the total score ranges
from 0 to 20 (i.e., from O to 5 for each basic emotion). Tables 4 and 5 show grouped FER scores for TD
and ASD children respectively. In each table, the first column indicates the emotion to which the visual
stimulus was related to, whereas the second column reports the total number of recognized emotions
for the related group. In the second column also the percentage of correct executions of the recognition
task with respect to the total number of supplied stimuli is reported. In each table, the last row reports
the overall scores. Tables point out that the development of the TD group’s competence was still in
progress since the percentage of correct recognition was on average the 62% . On the other hand,
ASD children obtained very good performances in basic emotion recognition task (on average correct
recognition of 94%). This could be associated with their higher chronological age than children in the
TD group. Besides, for both groups, the most recognized emotion was happiness (in particular all ASD
children succeeded in recognizing it), whereas negative emotions were less recognized. This is further
evidence of the homogeneity between groups related to the competence in facial emotion recognition.
According to this homogeneity, it is possible to assert the fairness in comparing the two groups on the
subsequent and evolutionary emotion competence, which is the production of basic emotions.

Table 4. Scores achieved by the typically developing (TD) group in the Facial Emotion Recognition
(FER) task.

Emotion  Recognized Not Recognized

Happiness 35 (70%) 15 (30%)
Sadness 31 (62%) 19 (38%)
Fear 29 (57.9%) 21 (42.1%)
Anger 29 (57.9%) 21 (42.1%)
TOT. 124 (62%) 76 (38%)

Table 5. Scores achieved by the Autism Spectrum Disorders (ASD) group in the FER task.

Emotion  Recognized Not Recognized

Happiness 85 (100%) -

Sadness 79 (92.9%) 6 (7.1%)
Fear 76 (89.4%) 9 (10.6%)
Anger 80 (94.1%) 5(5.9%)
TOT. 320 (94.1%) 20 (5.9%)

Method. To evaluate children’s ability to produce a specific basic emotion, the Basic Emotion
Production Test [55] was administered. Each child was tested while seated in front of a therapist
who asks him/her to produce one of the basic facial expressions. The requests of the production of
facial expressions were provided sequentially to the child as happiness-sadness-fear-anger and the
sequence was repeated five times. This way, each child was asked to produce 20 facial expressions
and a psychologist assigned 1 point if the emotion was correctly produced and 0 points if the child
refused or did not produce the requested emotion. The total score for each child thus ranged from 0 to
20. A video was recorded for each child so that, at the end of the acquisition phase 17 4- 10 = 27 videos
became available for further processing. Videos were acquired from an off-the-shelf camera (image
resolution 1920 x 1080 pixels, 25 fps) and each video was accompanied by information regarding the
time instants in which the requests were provided to the child. Each video had a different duration
(minimum 1.30 min, maximum 6 min) depending on the degree of collaboration of the child and then
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on time spent to attract his attention at the beginning or even between one request and another. For all
children, the requests were anyway provided to the child with a minimum interval of 4 s from each
other. Videos were manually annotated by a team of professionals (3 psychologists with advanced
knowledge on issues related to ASD). The professionals watched recorded videos and pointed out, for
each request, if the child either performed or not the related facial expression. Tables 6 and 7 report
the annotations carried out by experts for TD and ASD children respectively. Each row indicates the
number of correct (second column) and incorrect (third column) productions of the facial expressions
according to the items in the first column.

Table 6. Overview of the annotations carried out by the team of experts for TD children.

Facial Expression Performed Not Performed

Happy 35 (70%) 15 (30%)
Sad 25 (50%) 25 (50%)
Fear 26 (52%) 24 (48%)

Anger 17 (34%) 33 (66%)

TOTAL 103 (51%) 97 (49%)

Table 7. Overview of the annotations carried out by the team of experts for ASD children.

Facial Expression Performed Not Performed

Happy 57 (67%) 28 (33%)
Sad 26 (31%) 59 (69%)
Fear 22 (26%) 63 (74%)
Anger 47 (55%) 38 (45%)
TOTAL 152 (45%) 188 (55%)

5. Experimental Results

This section reports experimental outcomes gathered by processing acquired videos by the
algorithmic pipeline described in Section 3. In particular, a modeling window W;,, = 2 s and an
observation window W, = 4 s were used. The observation window depends on the experimental
setting. The interval between two consecutive requests has been set to 4 s by the clinicians. This means
that the caregiver has to wait 4 s before moving to the following request for facial expression.
The modeling window was consequently set to half of the observation window since lower values
were experimentally proved to be not sufficient to model the neutral expression whereas higher values
could include the offset of the previous facial expression. The experimental proofs were carried out in
different phases. In the first phase, videos related to the TD children were processed and quantitative
comparison with the annotations provided by professionals was then performed. In the second phase,
the videos related to the ASD children were processed and outputs were subsequently compared with
human annotations. As a final experimental phase, outcomes extracted on TD and ASD groups were
put together to draw some conclusions from the different distribution of related numerical values.

5.1. Assessment on TD Children

In the first experimental phase, production scores on the group of TD children were computed
and their graphic representations are reported in Figures 2-5. Please be aware that the highest scores
were kept at a value of 1500 in order to increase graph readability.

It is worth to point out that scores come from negative logarithmic functions of likelihood values
(see Equation (4)). When the likelihood values become very close to zero (in the case of a modification
of action unit during a proper facial expression production) related logarithmic functions tend to
very high values. The outcomes greater than 1500 are equivalent to probability values so small that
can be considered as 0 (and their logarithms kept as a large constant) for the considered application
purposes. In addition, the figures have a different scale on the axes since the gathered scores have a
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more uniform distribution when related to the upper face part than when related to the lower face
part. This is not surprising since the use of the upper face part in emotion production is more difficult
and then this can lead to man different levels of ability. For the lower face part, when children start
reacting to the request usually their production level goes in saturation to the maximum allowed score.
As a consequence, the x-axis has a larger scale to point out that.
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Figure 2. Scores computed for the production of Happy expressions by TD children.
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Figure 3. Scores computed for the production of Sad expressions by TD children.
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Figure 4. Scores computed for the production of Fear expressions by TD children.
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Figure 5. Scores computed for the production of Anger expressions by TD children.

In figures, black circles refer to cases in which the team of psychologists labeled facial expressions
as compliant with the supplied request (i.e., expressions correctly performed by the child), whereas red
circles refer to cases in which the professionals labeled the related facial expressions as not compliant
with the supplied requests (i.e., expressions not performed by the child). At first glance, it is quite
clear that highest scores were properly associated with occurrences that professionals annotated as
expression performed whereas lowest scores were associated with occurrences that professionals
annotated as expressions not performed. Going into details, it is of interest to observe that, in
correspondence of some requests of the happy face that psychologists annotated as performed, the
automatic system gave low outcomes (either for lower or upper face part). This is the case, for example,
of the two black spots that are close to the origin of the reference system in Figure 2.

This evident misalignment between manual annotations and automatic scores depended on a
wrong positioning of facial landmarks due to occlusions of the mouth (and deformation of cheeks
and consequently of eye regions) caused by the hands of the child touching his face. Concerning sad
expression there were, once again, some misalignment occurred in case of mouth occlusion (resulting in
low scores for lower face part in Figure 3) but, in addition, there were also some occurrences (manually
annotated as performed) that experienced low scores only for lower face part (with very high scores for
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upper face part instead). These happened since, in correspondence to the requests of sad expression,
some children occluded the mouth but without affecting the upper face part.

Similar conclusions can be drawn for some spots corresponding to requests of fear expressions
(Figure 4) whereas this problem was never encountered during requests of anger expression (Figure 5).

Some clippings in children’s faces corresponding to the aforementioned situations, in which
the system was not able to produce reliable results in landmark positioning, are shown in Figure 6.
In the reported patches, the landmarks were wrong positioned due to the presence of the hands
in front of the mouth. In particular, in Figure 6a,b, two examples in which the child affected the
positioning of landmarks for both upper and lower face (for happy and sad expression respectively)
are shown. Please observe as the child’s fingers press on his cheeks largely changing his facial features.
In Figure 6¢,d two examples in which the occlusions by the hands affected only the lower part of the
face are reported instead.

(@) (b)
(c) (d)

Figure 6. Some situations that generated miss matches between the outcomes of the system and the
annotations of experts: (a) the child affected the positioning of landmarks for both upper and lower
face parts while performing a happy expression; (b) the child affected the positioning of landmarks
for both upper and lower face parts while performing a sad expression; (c) the child affected the
positioning of landmarks for only the lower part of the face while performing an anger expression;

(d) the child affected the positioning of landmarks for only the lower part of the face while performing
a fear expression.

To better evaluate the automatic classification of the ability in producing facial expressions,
a quantitative comparison with the annotations provided by professionals was performed. It easy
to understand that the classification of videos in input, as containing the expected expression or not,
depends on the decision threshold on gathered numerical scores for lower and upper face parts. As
a consequence, a study related to this crucial parameter of the automatic classification model was
preliminary made. Figure 7 reports, in the topmost graphs, the precision and recall curves for the
classification of expressions while varying decision threshold. Each figure is related to a different
expression and, in each of them, bottom graphs represent the corresponding curves for the Fl-score.
The best value for the decision threshold, i.e., the value that maximized the related Fl-score, is indicated
on the x-axis.
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Figure 7. Expressions by TD children: classification accordance between system and experts while
varying decision threshold.

According to the above, Table 8 reports classification performance for TD children when the best
decision threshold (in terms of F1-score) for each expression was used.

Table 8. Accuracy of the automatic system with respect to manual annotations for TD children when
the best decision threshold (in terms of Fl-score) for each expression was used.

TD Children Th F1 P R TP FP FN TN

H 63 087 084 091 32/35 6/15 3/35 9/15
91% 40% 9% 60%
S 78 0.80 1 0.68 17/25 0/25 8/25 25/25
68% 1% 32% 100%
F 45 0.79 0.71 0.88 23/26 9/24 3/26 15/24
88% 38% 12% 62%
A 108 0.86 1 0.76 13/17 0/33 4/17 33/33
76% 0% 24%  100%
Overall rating 0.84 085 0.83 83% 15%  17% 85%

Values in Table 8 demonstrate that the proposed pipeline provides very affordable outcomes, i.e.,
that computed scores are strictly correlated with annotations provided by professionals. It is very
encouraging to observe the overall performance in terms of F1-score (0.84), precision (0.85) and recall
(0.83) considering the situational difficulties due to non-collaborative behaviors of children. Moreover,
in the evaluation of the system, the occurrence of some subtle executions should be considered in
which even the psychologists made a decision for the annotations only after an inter-judge agreement
given the initial divergence in judgment. This adds value to the automatic classification system as it
highlights its usefulness in the specific application context. This aspect will be further discussed later
in Section 7.

5.2. Assessment on ASD Children

In the second experimental phase, the proposed algorithmic pipeline was exploited to gather
scores for facial expression production on the group of ASD diagnosed children. The numeric outcomes
are graphically reported in Figures 8-11 .



Appl. Sci. 2019, 9, 4542

15 of 26

HAPPINESS
ASD CHILDREN
1500 e - . . e
S & 1000
o O
g s
o}
(}; u“_’ ° P [
. ® hd . .
T 3
=73
S 9 500 . o °
e © L]
*
o Sqme® &
00 500 1000 1500
Mﬂf - Scores for Upper Face Part
Figure 8. Scores computed for the production of Happy expressions by ASD children.
SADNESS
ASD CHILDREN
150000 —®—o—00—90-0o o
5 E 1000
$ 9
8
0 °
1 (3]
n= 2 .
= S 500 . “
. .
- . * :
O0 500 1000 1500
Mﬁf) - Scores for Upper Face Part
Figure 9. Scores computed for the production of Sad expressions by ASD children.
FEAR
ASD CHILDREN
1600
*Ge [ 4
1400
1200
5 &
oo 1000
]
38 o ;
) $
w+= = 600
G}
- *
400
oo
200, -*
‘s .
0 L]
0 200 400 600 800 1000 1200 1400 1600

Msf - Scores for Upper Face Part
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Figure 11. Scores computed for the production of Anger expressions by ASD children.

In this case, the correlation between the scores provided by the system and the psychologists’
manual annotations is even more evident than in the case of TD children. This results by the fact that
ASD children were used to not occlude their face while producing facial expression. In the worst cases,
the children moved the head or the whole body (even in a stereotyped fashion) but those behaviors
were handled by the algorithms that kept a correct positioning and tracking of facial landmarks even
in those critical circumstances. What stated above, better emerges by quantitatively comparing the
system’s outcomes with the annotations provided by psychologists. Similarly to what reported for TD
children, Figure 12 reports, in the topmost graphs, the precision and recall curves for classification of
expressions of ASD children while varying decision threshold whereas, in each figure, bottom graphs
represent the corresponding curves for the F1-score. The best value for the decision threshold, i.e., the
value that maximized the related F1-score, is indicated on the x-axis.

https:/ /www.overleaf.com/project/5d2dbf108e87274bad0accf6.
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Figure 12. Expressions by ASD children: Classification accordance between system and experts while
varying decision threshold.
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Table 9 reports classification performance for ASD children when using the best decision threshold
(in terms of Fl-score) for each expression as pointed out in previous figures.

Table 9. Accuracy of the automatic system with respect to manual annotations for ASD children when
the best decision threshold (in terms of F1-score) for each expression was used.

ASD Children Th f1 P R TP FP FN N

H 116 0.94 1 0.89 51/57 0/28 6/57 28/28
89% 0% 10%  100%
S 108 0.76 0.85 0.69 18/26 3/59 8/26 56/59
69% 5%  31%  95%
F 93 071 082 063 14/22 3/63 8/22 60/63
64% 5%  36%  95%
A 123 091 085 097 46/47 8/38 1/47 30/38
98%  21% 2% 79%
Overall rating 087 090 085 85% 7% 15%  93%

Values in Table 9 demonstrate that, for ASD children, the proposed pipeline provides even more
robust outcomes than for TD children, since computed scores showed even higher correlated with
annotation provided by psychologists. In particular, the excellent Fl-score (0.87), precision (0.90)
and recall 0.85) values stand out. Although in this experimental phase subtle executions of facial
expressions frequently occurred, from values in the table, it emerged that they were handled by the
system in a very robust way.

5.3. TD vs. ASD: How Do the Scores Differ?

As a final experimental phase, outcomes produced by TD and ASD were compared. Figures 13-16
merge the scores for TD and ASD children for each of the 4 basic expressions.
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Figure 13. Comparison of the scores computed for the production of Happy expressions by ASD and
TD children.
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Figure 15. Comparison of the scores computed for the production of Fear expressions by ASD and
TD children.

ANGER
ASD vs TD CHILDREN
(produced)
2500
‘ ‘ + ASD Children
x ’
20001 TD Children
b=
& 1500 N
° .
0 o P /
é ® \>
o 't1000- , )
| [0) / ,’/ /
<§~_— g [ }
2 500r | / /
8 - s
o )
_ | 1 | | |
500 0 500 1000 1500 2000 2500

M':‘f - Scores for Upper Face Part

Figure 16. Comparison of the scores computed for the production of Anger expressions by ASD and
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In each figure, only spots related to correctly produced (according to annotation by professionals)
facial expressions are shown. The ellipses indicate the spreading of the values computed for TD (in
magenta) and ASD (in blue) group respectively. They were drawn by using as a spread indicator
the eigenvalues of the covariance matrix. The eigenvalues represent the spread in the direction
of the eigenvectors, which are the variances under a rotated coordinate system. By definition, a
covariance matrix is positive definite therefore all eigenvalues are positive and can be seen as a linear
transformation to the data. The actual radii of the ellipse are then the square root of the first two
eigenvalues of the scaled covariance matrix. Looking at the figures, it is possible to focus on the strength
of emotion production and on which facial part was used by ASD and TD children. It is worth noting
that ASD children produced all basic emotions with greater strength than TD children. Furthermore,
ASD children were able to use upper and lower facial parts together when they produced happiness,
fear and anger expressions. They used instead mainly lower part of the face when producing sadness.
TD children integrated upper and lower facial parts when they produced happiness, sadness, and
anger expressions whereas they used less the lower part than the upper one when producing anger
expression. Further discussion about findings arising from experimental tests will be provided in
Section 7.

6. Comparison with Leading Approaches and Technical Discussion

In this section, the outcomes of the performance comparison on the same set of videos with
some of the leading approaches in the literature are reported. The comparison concerned three
approaches in the literature. The first comparing approach is the one in [8], that shares with the
proposed one the same modules for AU intensity estimation and facial expressions quantification but
it uses shallow methods instead of convolutional approaches for face detection and facial landmark
positioning. In addition two leading approaches performing FER by deep neural networks to process
dynamic image sequences were compared: the first one is based on Recurrent Neural Networks (https:
//github.com/saebrahimi/Emotion-Recognition-RNN) [56] whereas the second one is based cascaded
networks (code retrieved from https:/ /github.com/ebadawy/EmotiW2017) [57]. The approach in [56]
is a two-step approach that models emotion as the spatio-temporal evolution of image structure. In the
first step, CNN is trained to classify static images containing emotions. In the second step, an RNN
is trained on the higher layer representation of the CNN inferred from individual frames to predict
a single emotion for the entire video. The core module of the system in [57] is a hybrid network
that combines a recurrent neural network (RNN) and 3D convolutional networks (C3D). RNN takes
appearance features extracted by a convolutional neural network (CNN) over individual video frames
as input and encodes motion later, while C3D models appearance and motion of video simultaneously.

The comparison was accomplished in two steps: the first step was aimed to verify the reliability
of the outputs to quantify the ability in producing basic emotions in the considered application
context, whereas the second step compares computational outcomes to manual annotations provided
by the team of psychologists. In the first step, two subsets of videos concerning ASD children were
considered: the first subset consists of 12 videos in which children showed a strong production of
required expressions (3 videos for each of the 4 considered basic expressions) whereas the second
subset consists of 12 videos in which children reacted with a just hinted production of the required
expressions (again 3 for each of the 4 considered basic expressions). In other words, the former
videos were selected among those on which the team of psychologists immediately agreed during the
annotation process whereas the second subset of videos was built taking sample videos among them in
which the team of experts has resorted to an inter-annotator agreement due to the initial disagreement.
All the comparing approaches were tested on the selected videos and all the outputs were normalized
in [0.0, 1.0] followed by per 4 class re-scaling so that the related scores sum up to 1. In Figure 17 the
scores computed by the comparing approaches on the selected videos are reported.
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Figure 17. Comparison of the scores computed by different approaches on two subsets of videos
containing strongly and hinted execution of facial expressions.

Labels on the x-axis indicate the performed expression (H,S,F A), the related cardinal number (from
1 to 3) and, in brackets, the belonging subset (s for strong executions and h for hinted executions). What
we would like in this case, at the very least, is that highest scores are associated to strongest executions
of facial expressions and lowest scores to just hinted executions but, unfortunately, it is possible
to observe that for approaches in [56] and [57] this not happened. Sometimes, hinted expressions
even drew to scores higher than those obtained for strongly executed expressions. It follows that
outcomes of classical approaches (blue and orange lines) are not suitable to quantify the abilities in
facial expression production since both approaches showed no significant correlation the strength
of the facial expression production and the automatically gathered scores. On the other hand, the
approach in [8] (grey line) showed an appreciable level of correlation and the proposed approach a
desirable very high level of correlation.

In the second comparison step, the aforementioned approaches were evaluated in terms of
accuracy with respect to manual annotations provided by the team of psychologists (on both ASD
and TD videos). Table 10 reports the accuracy values related to each comparing method in terms of
matching between gathered scores and manual annotations.

Table 10. Quantitative comparison with some state-of-the-art approaches.

Method f1 P R TP FP FN TN

[56] 080 079 081 79% 17% 21% 83%
[57] 081 082 080 80% 15% 20% 85%
[8] 082 0.83 082 82% 14% 18% 86%

Proposed 0.86 0.88 0.85 84% 10% 16% 90%

At a first glance, from the table, It is evident that CNN based approaches, i.e., the ones in [56,57],
perform worse than approaches based on statistical modeling of non-emotional face configurations
like the one proposed in this paper and the one introduced in [8]. In fact, besides to provide output
scores strictly correlated to the ability in producing a required expression (as the previous comparison
proved), the statistical modeling of non-emotional face configurations makes the related frameworks
able to adapt their internal parameters to the individual behaviors. Through this desirable feature
they can then embed stereotyped movements and to highlight even subtle voluntary movements of
facial muscles with respect to the inexpressive facial model, continuously updated, that the system
uses as a reference baseline. However, Table 10 shows also that the improved pipeline proposed in this
paper is able to better understand actual emotional dynamics of the face by exploiting the capability
of introduced convolutional approaches for accurately detect face and to precisely positioning facial
landmarks even under severe occlusions and extreme poses. Certainly not all critical situations have
been resolved (as reported in Figure 6), but the comparisons make is possible to state that a step
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forward has been made towards the alignment between the human annotations and the automatic
scores provided by an automatic system.

In light of the encouraging experimental results, it is useful to discuss how each component in
the proposed pipeline affects the overall performance. The most practical way to derive some useful
considerations about this important issue is to deeply analyze the results of the above experimental
comparisons. From the first comparison step, it emerged that the face analysis based on a personalized,
continuously updated, model of the non-expressive face is a fundamental step to make possible a
convincing quantification of the ability in performing facial expression. Besides, given that detecting
the face is not a particularly complex task in this context (very few faces, not a cluttered scene, zoomed
images), from the second comparing step, it is possible to derive that a key role is played by the
landmark detection and tracking step. This is particularly evident by observing outcomes of the
proposed approach with respect to the one in [8] in which the same strategy was used to perform the
subsequent face analysis. Facial landmark detection algorithms can be categorized into three major
categories [58]: holistic methods, Constrained Local Model (CLM) methods, and regression-based
methods. Holistic methods require models to represent facial appearance and shape information. CLMs
require instead a global shape model but they learn local appearance. Finally, the regression-based
methods do not require any information and capture facial shape and appearance information from
data. Comparisons made in this paper proved that the use of Convolutional Experts Constrained
Local Model introduced a very effective local detector able to model the very complex individual
landmark appearance bringing together the advantages of neural architectures and mixtures of experts
in an end-to-end framework. This way an individual model of the appearance of each landmark is
introduced making it possible to accomplish the landmark detection and tracking tasks in a robust
way with respect to occlusions and changes in pose, which are two of the main challenging issues to
be addressed in the considered application context.

Besides, experiments proved that Constrained Local Model (CLM) methods can be a more effective
solution than regression-based methods, at least for those exploited in [56] and [57]. The last technical
consideration relates to processing times. The system in the current version processes about 20 frames
per second ( images having HD resolution) on a notebook equipped with an Intel i-7 processor, 32
GB of RAM and GPU RTX 2080. In particular, the face detection module takes on average 50 ms, face
landmark positioning takes 5 ms and facial expression analysis takes about 40 ms. To speed up the
processing, in order to achieve the aforementioned rate of 20 fps, face detection is carried out only
every 8 frames (the tracking trick is used in the meanwhile making the hypothesis very likely to have
no abrupt changes of position between one frame and another). It follows that the actual bottleneck is
the calculation of Gaussian mixtures for the definition of the non-emotional facial model. It follows
that, although the software was designed primarily for offline processing of videos acquired during
training sessions, the current implementation of the algorithms could also be exploited to process
videos in real-time, for example, to provide positive feedback to the individual receiving therapy (as
recommended in some efficient strategies in Applied Behavioral Analysis).

7. Clinical Evaluation of Gathered Outcomes

The purpose of this study was to assess the performance of an automatic system to
computationally quantify the children’s ability to produce facial expression of basic emotions.
The reference baseline of this evaluation consisted of the manual annotations made by a team of
psychologists. Experimental outcomes highlighted a high accuracy in the automatic evaluation for
both TD group and ASD group with overall f1 — scorerp = 0.84 and f1 — scoressp = 0.87 respectively
(see Tables 8 and 9). It is worth noting and discussing here the differences in accuracy and scores
distribution for TD (see Figures 2-5) and ASD groups (see Figures 8-11). First of all, it is possible to
observe that the automatic system gathered higher accuracy for ASD children than for TD children.
Also, graphical distributions of scores in figures look clearer for ASD group than for TD group in
terms of separation among points associated by the psychologists to performed (black spots) and
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not performed expressions (red spots). This evidence can be explained considering that, in general,
TD children produce facial expressions emphasizing them by non-verbal communication (i.e., using
hand gestures). According to this, also in the experimental setting, they produced facial expressions in
the same way as they are usual to act daily, that is by integrating gesture and facial changes. On the
contrary, ASD children, in general, show a deficit or a delay in gestural communication and, above all,
in the integration of them with facial expressions. Thus, performances of the automatic system were
worse for TD children than for ASD children since gestures used by TD children generated occlusions
and altered the appearance of the face, making more complex the detection of facial expressions
for the automatic system. An additional purpose of this study was the evaluation of differences in
the production of facial expression within groups. Thanks to the use of the automatic system, this
evaluation step-up from being dichotomous (performed vs not performed) to a computational level
where the two key issues (i.e., the strength of facial expression and level of involvement of facial parts)
can be easily detected and evaluated.

8. Conclusions

This paper proposed a novel framework to computationally analyze how both ASD and TD
children produce facial expressions. The proposed pipeline was applied to evaluate competence in the
production of basic emotions. This competence was evaluated both when it is starting to be acquired in
typically developing children and when it is a deficit in ASD children. Numerical outcomes highlighted
how the pipeline is accurate (more than existing approaches), quick and objective to evaluate both
the strength of facial expressions and how much each facial part is involved in facial expression. The
reference baseline consisted of the manual annotations made by a team of psychologists.

It is worth noting how this automatic system could have important implications in the treatment
of children who are a deficit in emotional competence (e.g., ASD children) since it is able to identify
both facial movements which are not detected by human eyes and their strength. Therefore, it could
help professionals to understand (a) if child is starting to produce a specific facial expression, (b) which
facial part (upper or lower) is starting to be involved in facial expression and thus enhance it, and
finally (c) which facial part is not involved by child in facial expression and thus focus intervention
on it. All the above considerations allow concluding that the automatic system could be useful for
professionals who treat ASD child to obtain a learning trend of acquisition and production of facial
expression of basic emotions.

A limitation of the present study is the sample size. Future works will also deal with the
monitoring of the evolution of children’s skills over time to objectively highlight the improvements,
for example by comparing the individual ability to produce specific facial expression before and
after targeted therapies. Another issue concerns the computation of facial landmarks that, in
the proposed approach, were computed without any prior knowledge about the final goal (facial
expression recognition) to be accomplished. Several researchers are trying to improve landmark
positioning accuracy [59] using different metrics (root mean squared error on ground truth data,
some application objective function, landmark detection rate) and different competitions on this topic
are hosted in top computer vision conferences [60] revealing excellent performance on the reference
datasets. However, there is also a research area that is studying how to specify the landmarks (virtual
electromyography sensors) to detect and monitor the facial muscles movements depending on the
application context. This is a very interesting perspective and the idea of using size variant patches
for landmark detection [61] could help to further improve computational analysis of facial expression
production abilities. Learning active landmarks for each AU, i.e., finding the best representative patch
size for each landmark in a unified framework is the research line to be pursued. The preliminary
experiments have shown that the subtle muscle movements belonging to the upper face require smaller
landmark patches while the lower face AUs are detected better in larger patches. How this could
impact the outcomes of the proposed pipeline will be investigated in future works.
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