
applied
sciences

Article

Existence Conditions and General Solutions of
Closed-form Inverse Kinematics for Revolute
Serial Robots

Wang Shanda 1, Luo Xiao 2,*, Luo Qingsheng 1 and Han Baoling 3

1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;
3120160137@bit.edu.cn (S.W.); luoqsh@bit.edu.cn (Q.L.)

2 School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China
3 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; hanbl@bit.edu.cn
* Correspondence: luox@bit.edu.cn; Tel.: +86-010-6891-8856

Received: 14 August 2019; Accepted: 10 October 2019; Published: 16 October 2019
����������
�������

Featured Application: This paper primarily studies the existence conditions for the closed-form
inverse kinematic solution for revolute serial robots. Based on the results, a general closed-form
inverse solution algorithm is designed.

Abstract: This study proposes a method for judging the existence of closed-form inverse kinematics
solutions based on the Denavit–Hartenberg (DH) model. In this method, serial robots with closed-form
solutions are described using three types of sub-problems from the viewpoint of solving algebraic
equations. If a serial robot can be described using these three types of sub-problems, i.e., if the
inverse kinematics problems can be solved by several basic problems, then there is a closed-form
solution. Based on the above method, we design a set of universal closed-form inverse kinematics
solving algorithms. Since there is a definite formula solution for the three types of sub-problems,
the joint angles can be rapidly determined. In addition, because the DH parameters can directly
reflect the linkage of the robot, the judgment of the sub-problems is also quick and accurate. More
importantly, the algorithm can be applied to serial robots with low degrees of freedom. This enables
the algorithm to not only quickly and accurately solve inverse kinematics problems but also to exhibit
high universality. This proposed theory improves the existence conditions for closed-form reverse
solutions and further promotes the development of motion control techniques for serial robots.

Keywords: inverse kinematics; Denavit–Hartenberg method; closed-form solution; existence condition;
universal inverse kinematics algorithm

1. Introduction

Recently, the use of serial robots has increased owing to their extensive application in the field of
bionics and in various industries [1–5]. Overcoming the usual problems in inverse kinematics is a key to
controlling the motion of serial robots. However, inverse kinematics is a non-linear problem with multiple
solutions. Among these solutions, the general numerical solution method is both time-consuming and
unstable. Alternatively, the closed-form solution for inverse kinematics is commonly sought for practical
applications but has two major limitations that remain unsolved. First, there is no general method for
finding the closed-form solution. Second, the Pieper criterion is not complete.

To resolve these problems, a model for the robotic kinematics needs to be established. There are
two major methods for robotic modeling using inverse kinematics, namely the Denavit–Hartenberg
(DH) parametric method and the product of exponentials (POE) formula method.

Appl. Sci. 2019, 9, 4365; doi:10.3390/app9204365 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app9204365
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/20/4365?type=check_update&version=2

Appl. Sci. 2019, 9, 4365 2 of 36

The DH parametric modeling method is based on a transformation of coordinates [6]. Due to its
easily visualized parameters, this convenient method has attracted the attention of many researchers
and engineers. Under this model, the inverse kinematics problem is solved via two methods, i.e.,
numerical and closed-form solutions. Moreover, because the forward kinematics formula of the DH
model provides a maximum of six independent equations, simplifying the algebraic equation using
the numerical method can solve the inverse kinematics problem for most non-redundant robots [7].
In addition, the Jacobian matrix derived in the DH model can be used to solve the inverse kinematics
problem for redundant robots [6,8–11]. Based on the numerical method, a series of objective functions
can be added [12] that not only enable the robot to reach a designated position but also allow the
completion of some extra tasks, such as keeping away from a singular point or maintaining its maximum
motion ability. Studies on numerical solutions have primarily focused on efficiently and stably solving
the equations or obtaining an approximate solution using the functional approximation method
in combination with neural networks and intelligent algorithms [11,13,14]. However, owing to the
existence of the robotic singular posture, the stability of the numerical solution and its convergence rate
cannot be guaranteed. Therefore, this method is not suitable for cases where instantaneity is required.

Another method based on the DH model is the analytical method, which uses a closed formula
to determine the relations between the terminal posture and various joint angles. Nonetheless, not
all robots have a closed-form solution. In 1978, a general method for solving for the closed-form
solution was proposed by Paul [15]. In 1968, Pieper studied six-degree-of-freedom (DOF) robots with
three axes intersecting at one point [16] and concluded that a serial robot with the three terminal axes
intersecting at one point has a closed-form solution. This criterion, i.e., that a six-DOF serial robot
with three terminal axes intersecting at one point (defined as Pieper Criterion 1, let us say PC-1) or
three adjacent parallel axes (defined as Pieper Criterion 2, let us say PC-2) has a closed-form solution,
has been obtained in subsequent studies [17,18]. However, the method proposed by Paul needs to be
manually derived and the formula needs to be rederived every time the robot structure changes, which
limits the universality of the closed-form solution. Accordingly, studies on the closed-form solution
based on the DH model have primarily focused on situations with already known structures, such as
keeping the robot away from a singular value [19]. More importantly, the necessary conditions for the
existence of the closed-form inverse solution given by Pieper are inadequate. For example, a robot
with the DH parameters listed in Table 1 has three terminal axes intersecting at one point, as well as
three parallel joints; however, its inverse kinematics problem cannot be solved.

Table 1. Counter-example of Pieper Criterion 1 (PC-1).

n θ/◦ d/mm a/mm α/◦

1 θ1 d1 a1 0
2 θ2 d2 a2 0
3 θ3 d3 a3 π/2
4 θ4 d4 0 π/2
5 θ5 0 0 −π/2
6 θ6 0 0 0

The DH method is a parameter selection norm based on a transformation of coordinates [6]. This
method regulates the criterion for selecting three parameters between two adjacent axes, where a
represents the linkage offset, i.e., the normal offset between the two adjacent axes, d is the linkage length,
representing the axial offset between the two adjacent axes, and α is the linkage torsion, representing
the included angle between the two adjacent axes.

On a similar note, the robot with the DH parameters listed in Table 2 has three adjacent and
parallel joints; however, we cannot solve the inverse kinematics problem.

Appl. Sci. 2019, 9, 4365 3 of 36

Table 2. Counter-example of Pieper Criterion 2 (PC-2).

n θ/◦ d/mm a/mm α/◦

1 θ1 d1 0 0
2 θ2 0 a2 0
3 θ3 0 a3 π/2
4 θ4 d4 0 0
5 θ5 d5 a5 0
6 θ6 d6 0 0

The inadequacy of the Pieper principle leads to defects in the inverse kinematics algorithm
designed on the basis of this principle. However, no further studies on this problem have been
conducted to supplement and improve this method.

Conversely, the modeling method for the POE formula has been presented in some detail [20].
The logic for the inverse kinematics solution problem based on POE primarily consists of a reduction of
the original problem into several sub-problems followed by solving all the joint angles step by step. This
method uses an abstract geometric model to solve the inverse kinematics problem, therefore enhancing
the generalization of the algorithm. In POE-based studies, several universal inverse kinematics
algorithms have been designed, of which the most typical universal sub-problem was proposed in
1986 [21,22]. There is subproblem 1. Rotation about a single axis, subproblem 2. Rotation about two
subsequent axes, and subproblem 3. Rotation to a given distance. A robotic universal solving method
that meets the Pieper principle has been proposed [23], and a new sub-problem was proposed to solve
the universal inverse kinematics algorithm [24]. The universal inverse kinematics algorithm based on
the POE model has definite geometrical significance and stable numerical values. However, in practice,
it is impossible for some robots to utilize the known sub-problems to describe and solve the problem.
In addition, the algorithm consumes enormous computational resources when selecting sub-problems.
As a result, it is difficult for the universal inverse solution algorithm based on the POE model to be
applied in cases with real-time requirements.

It can be seen that both the DH model and POE model have various drawbacks in solving inverse
kinematics problems. This study proposes a method for judging the existence of closed-form solutions
based on the DH model to deal with the first problem of the closed-form solution. In this method,
revolute serial robots with closed-form solutions are described using three types of sub-problems from
the viewpoint of solving the algebraic equations. They are sub-problem of translation components,
sub-problem of rotational components, and sub-problem of sub-chains. In more detail, based on
sub-problems, when the configuration of the robot satisfies some characteristics, some more concise
and fixed formulas can be used to solve the joint angle. This article refers to this more specific situation
as the basic problem of sub-problems, a total of ten. If a serial robot can be described using the three
types of sub-problems, i.e., if the inverse motion problems can be solved by several basic problems,
then there is a closed-form solution. Based on the above method, a set of universal closed-form inverse
kinematics solving algorithms is designed to address the second problem mentioned above. Since
there is a definite formula solution in the three types of sub-problems, the joint angles can be rapidly
determined. In addition, because the DH parameters can directly reflect the linkage of the robot, the
judgment of the sub-problems is also quick and accurate.

In general, the main contributions of this article are:

1. Proposes a more complete judgment condition for the existence of the closed-form solution of
series robot to solve the defect of Pieper principle. In addition, this judgment method is a method
that is suitable for all robots whose degree of freedom is less than six.

2. A general inverse kinematics algorithm is designed for this judgment method. We can use
this algorithm to find the angles of all joints of the series robots meet the conditions quickly
and accurately.

Appl. Sci. 2019, 9, 4365 4 of 36

3. This universal inverse solution algorithm has a simple judgment method, the calculation speed
of it is fast, and it is an algorithm that can be applied in occasions with real-time requirements.
Usually, a special method is used for the motion control of series robot, only the common
configuration is supported, and some parameters cannot be adjusted. Therefore, the proposed
method can greatly improve the application range of the motion controller of series robots.

4. Proposed method and theory has also enriched the foundation of robotics.

The manuscript is organized as follows. Section 2 derives a kinematics equation for a robot based
on the standard DH model. Relevant properties are obtained according to the forward kinematics
equation to be used in the inverse kinematics problems. Section 3 analyzes the robotic inverse kinematics
problems. According to the existence conditions, the inverse kinematics problems are divided into
three sub-problems and 10 types of basic problems. Section 4 designs a universal inverse kinematics
algorithm. Section 5 designed two experiments. The first experiment uses MATLAB and Robotics
Toolbox [25] to test the completeness, versatility, and continuity of the algorithm. Subsequently, the
algorithm is implemented and verified in a real-time system to demonstrate its correctness and real-time
stability. Section 6 presents a summary of the findings of this paper.

2. Kinetic Models

2.1. Standard DH Parameters

The DH method is a parameter selection norm based on a transformation of coordinates [6].
Let axis k denote the axis of the axis connecting link k− 1 to link k; DH method adopted to define

link Frame k:
Choose axis zk along the axis of joint k + 1. Locate the origin Ok at the intersection of axis zk with

the common normal to axes zk−1 and zk. Locate also Ok′ at the intersection of the common normal with
axis zk−1. Choose axis xk along the common normal to axes zk−1 and zk with direction from joint k to
joint k + 1. Choose axis yk so as to complete a right-handed frame.

Once the link frames have been established, the position and orientation of Frame k with respect
to Frame k− 1 are completely specified by the following parameters: ak distance between Ok and Ok′
dk coordinate of Ok′ along zk−1, αi angle between axes zk−1 and zk about axis xk to be taken positive
when rotation is made counter-clockwise, and θk angle between axes xk−1 and xk about axis zk−1 to be
taken positive when rotation is made counter-clockwise.

Using the DH method, the relations for a robot can be directly established in a visualized manner
and the existence conditions for closed-form solutions can be derived in a more direct and visualized
manner. The standard DH parameters in the case of the KingKong collaborative robot are shown in
Table 3. A schematic diagram of the robot is shown in Figure 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 36

configuration is supported, and some parameters cannot be adjusted. Therefore, the proposed
method can greatly improve the application range of the motion controller of series robots.

4. Proposed method and theory has also enriched the foundation of robotics.

The manuscript is organized as follows. Section 2 derives a kinematics equation for a robot based
on the standard DH model. Relevant properties are obtained according to the forward kinematics
equation to be used in the inverse kinematics problems. Section 3 analyzes the robotic inverse
kinematics problems. According to the existence conditions, the inverse kinematics problems are
divided into three sub-problems and 10 types of basic problems. Section 4 designs a universal inverse
kinematics algorithm. Section 5 designed two experiments. The first experiment uses MATLAB and
Robotics Toolbox [25] to test the completeness, versatility, and continuity of the algorithm.
Subsequently, the algorithm is implemented and verified in a real-time system to demonstrate its
correctness and real-time stability. Section 6 presents a summary of the findings of this paper.

2. Kinetic Models

2.1. Standard DH Parameters

The DH method is a parameter selection norm based on a transformation of coordinates [6].
Let axis 𝑘 denote the axis of the axis connecting link 𝑘 − 1 to link 𝑘; DH method adopted to

define link Frame 𝑘:
Choose axis 𝑧 along the axis of joint 𝑘 + 1. Locate the origin 𝑂 at the intersection of axis 𝑧 with the common normal to axes 𝑧 and 𝑧 . Locate also 𝑂 at the intersection of the common

normal with axis 𝑧 . Choose axis 𝑥 along the common normal to axes 𝑧 and 𝑧 with direction
from joint 𝑘 to joint 𝑘 + 1. Choose axis 𝑦 so as to complete a right-handed frame.

Once the link frames have been established, the position and orientation of Frame 𝑘 with
respect to Frame 𝑘 − 1 are completely specified by the following parameters: 𝑎 distance between 𝑂 and 𝑂 𝑑 coordinate of 𝑂 along 𝑧 , 𝛼 angle between axes 𝑧 and 𝑧 about axis 𝑥 to
be taken positive when rotation is made counter-clockwise, and 𝜃 angle between axes 𝑥 and 𝑥
about axis 𝑧 to be taken positive when rotation is made counter-clockwise.

Using the DH method, the relations for a robot can be directly established in a visualized manner
and the existence conditions for closed-form solutions can be derived in a more direct and visualized
manner. The standard DH parameters in the case of the KingKong collaborative robot are shown in
Table 3. A schematic diagram of the robot is shown in Figure 1.

𝑑1

𝑎2

𝑑5

𝑑6

𝑑4
𝑎3

𝑧1 𝑦1 𝑥1

𝑧0 𝑦0 𝑥0

𝑦2 𝑧2 𝑥2

𝑦3 𝑧3 𝑥3

𝑦4 𝑧4 𝑥4

𝑦5

𝑧5 𝑥5

𝑦6 𝑧6 𝑥6

𝑗1

𝑗2

𝑗3

𝑗6 𝑗4 𝑗5

Joint 1 Joint 2

Joint 3

Joint 4 Joint 5

Joint 6

(a) (b)

Figure 1. (a) Schematic for the KingKong parameters: 𝑑 is the linkage length of the 𝑘th link and 𝑎
is the linkage torsion of the 𝑘th link. 𝑗 is the 𝑘th joint. (b) Visualization of the KingKong model.

Figure 1. (a) Schematic for the KingKong parameters: dk is the linkage length of the kth link and ak is
the linkage torsion of the kth link. jk is the kth joint. (b) Visualization of the KingKong model.

Appl. Sci. 2019, 9, 4365 5 of 36

Table 3. Denavit–Hartenberg (DH) parameters of the KingKong collaborative robot.

n θ/◦ d/mm a/mm α/◦

1 θ1 89.459 0 π/2
2 θ2 0 −42.5 0
3 θ3 0 −39.225 0
4 θ4 109.15 0 π/2
5 θ5 94.65 0 −π/2
6 θ6 82.3 0 0

2.2. Forward Kinematics Formula

Using the following formula, the DH parameters [6] can be transformed into elements of a
transformation matrix from [6]:

k−1
k T(θi) =

[
Rk Pk

01×3 1

]
=

cosθk −sinθkcosαk sinθksinαk akcosθk
sinθk cosθkcosαk −cosθksinαk aksinθk

0 sinαk cosαk dk
0 0 0 1

, (1)

where k indicates the number of the current joint. k−1
k R is the rotational component of k−1

k T(θk), a
3 × 3 orthogonal matrix, and k−1

k P is the translational component of k−1
k T(θk). The end transformation

matrix of the end executor of the robot relative to the coordinate system can be obtained using the
following formula:

0
i T = 0

1T1
2T2

3T · · · i−1
i T. (2)

i indicates the number of degrees of freedoms of the robot. According to Equation (2) from [18],
we could obtain 0

i T as follows:

0
i T =

[0
i R 0

i P
01×3 1

]
=

n=i∏
n=1

n−1
n R

n=i∑
n=1

0
1R . . . i−1

i P

01×3 1

, (3)

where 0
i R is the rotational component of 0

i T. Since the rotational component i−1
i R is closed and

orthogonal, 0
i R is an orthogonal matrix. Here, 0

i P is the translational component of 0
i T, which can be

represented as follows:

0
i P =

n=i∑
n=1

0
1R . . . i−1

i P =
n=i∑
n=1

Pn. (4)

According to Equation (4), the positional component of the back linkage is influenced by the front
joint angle.

In the definition of the DH parameter, the Z-direction of the joint coordinate indicates the
orientation of the joint and can be used to characterize the relationship between the joints. Here, the
joints of the serial robots are represented as zk. To concisely indicate the linkage relations, the following
definitions are made: αk = 0, then zk ‖ zk+1, whereas αk = ±π/2, then zk⊥zk+1, where za,d

k represents
the linkage parameters ak = dk = 0.

2.3. Decoupling of the End Linkage

The coordinate transformation matrix is written as 0
i−1T =

[0
i−1R 0

i−1P
01×3 1

]
. Moreover, the

transformation matrix of the last axis is i−1
i T =

[i−1
i R i−1

i P
01×3 1

]
. The rotational component R is written

in the form of a row vector as R =
[
→
x

→
y

→
z

]
.

Appl. Sci. 2019, 9, 4365 6 of 36

Then, 0
i P can be written as:

0
i P = 0

i−1R

cosθi
sinθi

0

ai +
0
i−1
→
z di +

0
i−1P, (5)

further:

0
i−1R

cosθi
sinθi

0

 = 0
i
→
x . (6)

The following conclusions can be drawn:

when αi = π/2 then 0
i
→
y = 0

i−1
→
z ,

0
i−1P = 0

i P − 0
i
→
x ai −

0
i
→
y di; (7)

when αi = −π/2 then 0
i
→
y = −0

i−1
→
z ,

0
i−1P = 0

i P − 0
i
→
x ai +

0
i
→
y di; (8)

and when αi = 0 then, 0
i
→
z = 0

i−1
→
z ,

0
i−1P = 0

i P − 0
i
→
x ai −

0
i
→
z di. (9)

The above derivation demonstrates that when the current end transformation matrix 0
i T is known,

the translational component 0
i−1P in the previous transformational matrix 0

i−1T can be obtained based
on the rotational component 0

i R of 0
i T and the translational component 0

i P. Given such a property, the
last axis may not be considered when the translational component of the robot is being analyzed.

2.4. Translational Relation of the Rotational Component

According to Equation (3) form [6], k−1
k R = Rotz(θk)Rotx(αk). The rotational component of the

transformational matrix can be expressed as:

0
kR =

n=k∏
n=1

n−1
n R =

n=k∏
n=1

Rotz(θn)Rotx(αn). (10)

If there exists several continuous parallel joints in the robot, then zl ‖ zl+1 . . . ‖ zm and αl =

αl+1 . . . = αm−1 = 0. In addition, the rotational transformation in the same direction has additivity:

l
mR =

n=m∏
n=l

Rotz(θn)Rotx(αn) = Rotz(Θ)Rotx(αm) = Rθs , (11)

where Θ = θl + θl+1 . . .+ θm. Here, we refer to zl ‖ zl+1 . . . ‖ zm as a sub-chain s. This concept will be
used in the following paragraphs. According to Equation (11), the translational components of the
sub-chain z1 ‖ z2 . . . ‖ zm can be defined and simplified as follows:

m−1
m P = R1.m−1Pm = Rotz(Θ)

am

0
0

+

0
0

dm

 =

am cos Θ
am sin Θ

dm

 = Pθs , (12)

where Θ = θ1 + θ2 . . .+ θm.

Appl. Sci. 2019, 9, 4365 7 of 36

Rθs defined by the formula (11) and Pθs defined by the formula (12), will be used in the following
paragraphs.

2.5. Solving the Trigonometric Equation

This section summarizes two common formula solutions for trigonometric functions. The first
can be derived using Equation (4):

0
i P = 0

1P + 0
1R

n=i∑
n=2

1
2R · · · n−1

n P =

(
1
i Pysinα1 − n1

1
i Px

)
sinθ1 +

(
1
i Pza1 + a1

)
cosθ1(

1
i Pza1 + a1

)
sinθ1 −

(
n1

1
i Py − n1

1
i Px

)
cosθ1

sinα1
1
i Px + n1

1
i Py +

(
1 + 1

i Pz
)
d1

, (13)

where 1
i Px, 1

i Py, and 1
i Pz represent the three components in 0

1R−1
(
0
i P − 0

1P
)

and ni = sign(αi). According
to Equation (18), 0

i Px, 0
i Py, and θ1 satisfy a special trigonometric function relation, as shown in

Equation (14): [0
i Px
0
i Py

]
=

[
D L
L −D

][
sinθ1

cosθ1

]
, (D , 0 or L , 0). (14)

Therefore,
θ1 = atan2

(
D0

i Px + L0
i Py, L0

i Px −D0
i Py

)
. (15)

Another common trigonometric equation is shown in Equation (16) from [17]:

Acosθ+ Bsinθ = C, (A , 0 or B , 0), (16)

whose solution is:

θ = 2atan

B±
√

B2 + A2 −C2

A + C

. (17)

Equations (15) and (17) can map the joint angles within the interval of [−π, π]. Moreover, in the
following paragraphs, the robotic inverse solution equation is transformed into Equations (14) and
(16), resulting in a fixed formula, which can compute the equation parameters and further derive
the common closed-form formula solution for serial robots. When the parameters for Equations (14)
and (16) are zero, the equation has no solution. This provides a suitable answer to the question of
whether a robot has a solution when the linkage parameters are sparse. For convenience, Equation (14)
is represented as θ1 = F1(D, L, x, y) and Equation (15) is represented as θk1,θk2 = F2(A, B, C).

3. Analysis of The Inverse Kinematics Problem

Given a transformational matrix with a known end 0
i T =

[0
i R 0

i P
01×3 1

]
, the joint angle is obtained

inversely from the equation provided by 0
i R and 0

i P; this is known as inverse kinematics.

3.1. Three Types of Sub-Problems Related to Closed-Form Inverse Kinematics

The French mathematician Évariste Galois proved that the quartic polynomial equation has a
closed-form solution, whereas the sextic polynomial equation generally has none. The rotational
and translational components of the robotic end transformational matrix provide three independent
equations separately. The two equation sets are combined to solve the inverse kinematics problem, and
then high-order polynomial equations may be required. Therefore, a robot has a closed-form inverse
solution, partial joint angles will be preferably solved from a certain equation set followed by the other
joint angles.

To guarantee the existence of a closed-form solution, a feasible solution guarantees mutual
decoupling between the translational and rotational components [17,26]. Such traditional decoupling

Appl. Sci. 2019, 9, 4365 8 of 36

enables the translational component to be associated with the front three joints, which in turn, are
solved via 0

3P. The latter three joints are solved via the rotational component 3
6R.

0
6T =

[0
3R 0

3P
0 1

][3
6R 0
0 1

]
=

[0
3R3

6R 0
3P

0 1

]
. (18)

Based on the derivation in Section 2.4, a robot has several parallel joints, the number of unknown
numbers in the rotational component will decrease. Therefore, another feasible decoupling idea is
to preferably find a solution using the rotational component 0

6R(ϕ, ϑ,ψ) and solve for the remaining
joint angles using the translational component 0

6P. This strategy has not been mentioned in any
previous studies.

0
6T =

[0
6R 0

6P
0 1

]
=

[0
6R(ϕ, ϑ,ψ) 0

6P
0 1

]
. (19)

Based on the above two decoupling methods, we could obtain three types of sub-problems.
In the first type, when the number of unknowns in the rotational component is larger than three

and the robot meets some structural characteristics, some joint angles can be preferably and directly
solved using the translational component. This article refers to the first type sub-problem as the
sub-problem of translation components.

In the second type, the robot has several parallel joints and the number of unknowns in the
rotational component is no greater than 3, these unknowns can be solved using the rotational component.
This article refers to the second type sub-problem as sub-problem of rotational components.

In the third and final type, when the second type is used to solve the unknowns for the robot and the
joint angles are still not completely solved, the remaining joint angles are obtained using the translational
component. This article refers to the third type sub-problem as a sub-problem of sub-chains.

Via an analysis of these sub-problems, it is possible to determine the solving conditions and
methods in detail. In Sections 3.2–3.4, a more detailed analysis and derivation will be made for each
sub-problem, and the formulas and conditions for solving the basic problems will be obtained.

3.2. The First Type of Sub-problem

When there exist more than three unknowns in the rotational component, the partial joint angles
should preferably be solved using the translational component. With reference to the DH parameter
table, the DOF of the robot is i and the number of the DOF with α = 0 in the first i− 1 DOFs is p. In the
case of i− p > 3, there are more than three unknowns in the rotational component.

According to Equation (4), the back joint angles are influenced by the front joint angles in the
translational component. Therefore, the association with a maximum of the front three joint angles in
the translational equation must be first guaranteed to solve the first type of sub-problem.

When the first joint angle of the robot model Roboti with i DOFs is solved, 0
1T can be calculated

using the forward kinematics formula. Meanwhile, the first row of the DH parameters is deleted to
form a new robot model Roboti−1 and a new transformational matrix 0

i−1T:

1
i T = 0

1T−10
i T =

[0
1R−1

−
0
1R−10

1P
01×3 1

]
0
i T. (20)

There may only be a parallel or vertical relationship between two adjacent joints. Since only the
linkage relation of the front three axes is considered, the possible configuration between the first three
axes is only the case where C1

2C1
2 = 4. Moreover, z1⊥z2⊥z3, z1 ‖ z2⊥z3, z1⊥z2 ‖ z3 and z1 ‖ z2 ‖ z3.

However, during the process of derivation, it was found that z1 ‖ z2 ‖ z3 only provides two valid
equations in X-direction and Y-direction, making it impossible to solve for three unknowns:

Appl. Sci. 2019, 9, 4365 9 of 36

0
3P =

a3cos(θ1 + θ2 + θ3) + a2cos(θ1 + θ2) + a1cosθ1

a3sin(θ1 + θ2 + θ3) + a2sin(θ1 + θ2) + a1sinθ1

d1 + d2 + d3

. (21)

Such a case is the counter example mentioned in the preceding paragraphs. The Piper principle
does not specifically describe such a case. Therefore, the linkage parametric limitations and the formula
solution for the three basic problems are derived in detail in the following paragraphs.

3.2.1. First Three Joint Configured as z1 ‖ z2⊥za
3

Here, the expression for the translational component is 0
3P = P1 + R1P2 + R1R2P3. However,

R1R2P3 contains the cubic term of the sine and cosine functions, which would directly increase the
order of the equation to sextic. Only when a3 = 0 will the requirements for a closed solution be met.
According to Equation (18), The formula solution of θ1 can be obtained as follows:

θ11 = F1
(
D, L, 0

3Px, 0
3Py

)
θ12 = F1

(
D,−L, 0

3Px, 0
3Py

) , where

 D = n1d2

L =
√

0
3Px2 + 0

3Py2 −D2 . (22)

Once θ1 is obtained, the forward kinematics formula can be used to forward simplify the robot to
obtain the expression of 1

i T and the DOFs of i− 1. The basic problem can still be employed to seek a
solution to θ2.

To guarantee the existence of only the front two joint angles in the translational equation, the
linkage of zk>3 needs to satisfy d = a = 0. However, according to the end decoupling formula proposed
in Section 2.3, the linkage parameters of the last joint are not restricted.

3.2.2. First Three Joint Configured as z1 ‖ z2⊥z3

The formula solution for z1 ‖ z2⊥z3 is derived in the following paragraphs. Its translational
component can be written as 0

3P = P1 + P12 + R12P3, and its translational equation can be arranged as
follows:

a1cosθ1 + D sin(θ1 + θ2) + L cos(θ1 + θ2)

a1sinθ1 + L sin(θ1 + θ2) −D cos(θ1 + θ2)

n2a3sinθ3

 =

0
3Px
0
3Py

0
3Pz − d1 − d2

. (23)

Arranging Equation (23) gives the formula solution Equation (24):

θ31,θ32 = F2(A3, B3, C3), where

A3 = 0

B3 = n2a3

C3 = 0
3Pz − d1 − d2

;

θ11,θ12 = F2(A1, B1, C1), where

A1 = 0
3Px

B1 = 0
3Py

D = n2d3

L = a2 + a3cosθ3

C1 =
0
3Px

2+0
3Py

2+a1
2
−L2
−D2

2a1

θ1 + θ2 = F1

(
D, L, 0̃

3Px, 0̃
3Py

)
, where

 0̃
3Px = 0

3Px − a1cosθ1
0̃
3Py = 0

3Py − a1sinθ1
;

θ2 = f [(θ1 + θ2) − θ1]±π;

(24)

where f [θ]
±π in the last equation indicates that θ is mapped onto the interval of [−π,π].

Under such a structure, θ3 is preferably solved using the equation in the Z-direction. Therefore,
the existence of za

4 after z3 does not influence the solution of θ3, resulting in the derivation of two
different structures, z1 ‖ z2⊥z3⊥za

4 and z1 ‖ z2⊥z3 ‖ za
4.

Appl. Sci. 2019, 9, 4365 10 of 36

According to the translational equation of z1 ‖ z2⊥z3⊥za
4 and Equation (23), the critical coefficient is:{

D = n2d3 + n2d4

L = a2 + a3 cosθ3
. (25)

Moreover, according to Equation (23), the critical coefficient under z1 ‖ z2⊥z3 ‖ za
4 is:

A3 = −n2n3d4, where
{

D = n2d3

L = a2 + a3 cosθ3 + n3d4 sinθ3.
(26)

To guarantee that only the front three joint angles exist in the translational equation, the linkage of
zk>4 needs to satisfy d = a = 0. There is not restricted to the linkage parameters of the last joint.

In addition, in the basic problems mentioned above, when d4 = a4 = 0 is true in z4, it can also
be used to solve z1 ‖ z2⊥z3. Similarly, it can be used to solve z1 ‖ z2. Therefore, such a type of basic
problem contains two sets of formula solutions that can be used to solve four cases.

3.2.3. First Three Joint Configured as z1⊥z2 ‖ z3

The solution method for z1⊥z2 ‖ za
3 in Section 3.4.1 also applies here. In addition, if z1⊥z2 ‖ z3⊥za

4
and D = n1(d2 + d3), θ1 can still be directly solved. This results in a special situation. Further,
suppose there is a robot with i degrees of freedom, in which the configuration of the first g joints is
z1⊥z2 ‖ . . . ‖ zg−1⊥za

g, and the linkage of zk>g needs to satisfy d = a = 0. These are not restricted to the
linkage parameters of the last joint. The formula solution of θ1 can be obtained as follows:

θ11 = F1
(
D, L, 0

gPx, 0
gPy

)
θ12 = F1

(
D,−L, 0

gPx, 0
gPy

) , where

D = n1

g−1∑
m=2

dm

L = ±
√

0
gPx2 + 0

gPy2 −D2
. (27)

According to the forward kinematics formula, after θ1 is solved, 0
1T can be cancelled to allow the

robot model to reduce a joint angle and become a new model. At that time, selective solving can be
performed in all of the sub-problems.

Basic problems 3.2.1 and 3.2.3 can be solved using the same formula solution. In the following
paragraphs, basic problem 3.4.1 will be used for the description.

Therefore, there exist two types of basic problems in the first type of sub-problem. This section
gives the corresponding relevant existence conditions and formula solutions.

3.3. Solving the Second Type of Sub-Problem

Since the rotational component only provides three independent equations, a maximum of three
unknowns can be solved. First, the rotational matrix Rotx(θ) is introduced. Rotx(θ) represents a θ
radian rotation around the X-coordinate axis. Similarly, Rotz(θ) and Roty(θ) represent rotations around
the Y- and Z-axes. The Euler angle theorem indicates that a generic rotation matrix can be obtained by
composing a suitable sequence of three rotations while guaranteeing that two successive rotations are
not made around parallel axes [18]. Therefore, any rotational matrix R can be expressed as Rotz(ϕ),
Roty(ϑ), and Rotz(ψ).

The DH parameters of a serial robot with a certain DOF are shown in Table 4.

Table 4. The DH parameters of a serial robot with three degrees-of-freedoms (DOFs).

n θ/◦ d/mm a/mm α/◦

1 θ1 d1 a1 −π/2
2 θ2 d2 a2 π/2
3 θ3 d3 a3 0

Appl. Sci. 2019, 9, 4365 11 of 36

According to the forward kinematics formula,

0
3R = Rotz(θ1)Rotx(α1)Rotz(θ2)Rotx(α2)Rotz(θ3)Rotx(α3),

0
3R = Rotz(θ1)Roty(θ2)Rotz(θ3).

(28)

A serial robot has three continuous joints meeting α1 = −π
2 ,α2 = π

2 and α3 = 0, whose rotational
components 0

3R are known, two sets of solutions can be found using Euler’s formula.

3.3.1. Three Mutually Perpendicular Sub-Chains

Based on α in the DH parameters, the conclusions in Section 2.4 can be used to simplify the
sub-chains and obtain the expression of the rotational matrix,

0
3R =

cosθs1cosθs2cosθs3 + ns1ens2esinθs1sinθs3 ns1ens2esinθs1cosθs3 − cosθs1cosθs2sinθs3 ns2ecosθs1sinθs2

sinθs1cosθs2cosθs3 − ns1ens2ecosθs1sinθs3 −ns1ens2ecosθs1cosθs3 − sinθs1cosθs2sinθs3 ns2esinθs1sinθs2

ns1esinθs2cosθs3 −ns1esinθs2sinθs3 −ns1ens2ecosθs2

, (29)

for which the following expressions can be obtained:
θs1 = atan2(ns2er23, ns2er13)

θs2 = atan2
(√

r13
2 + r232,−ns1ens2er33

)
θs3 = atan2(−ns1er32, ns1er31)

, (30a)

or
θs1 = atan2(−ns2er23,−ns2er13)

θs2 = atan2
(
−

√
r13

2 + r232,−ns1ens2er33
)

θs3 = atan2(ns1er32,−ns1er31)

, (30b)

where θsk represents the sum of the rotation angles of the kth sub-chain of the robot and nske represents
the symbol of the last linkage α in the kth sub-chain. rxy represents the element at the position of the
xth row and the yth column of the rotation matrix 0

3R. The problem of solving the sum of the rotation
angles of three mutually perpendicular sub-chains is referred to as basic problem 3.3.1.

3.3.2. Two Mutually Perpendicular Sub-Chains

Similarly, when there are only two mutually perpendicular sub-chains, the expression of the
rotational component at that time is as follows:

0
2R =

cosθs1cosθs2 −cosθs1sinθs2 ns1esinθs1

sinθs1cosθs2 −sinθs1sinθs2 −ns1ecosθs1

ns1esinθs2 ns1ecosθs2 0

, (31)

with the corresponding solution: θs2 = atan2(ns1er31, ns1er33)

θs1 = atan2
(

r21
cosθs2

, r11
cosθs2

) . (32)

rxy represents the element at the position of the xth row and the yth column of the rotation matrix
0
2R. The problem of solving the sum of the rotational degrees of two mutually perpendicular sub-chains
is referred to as basic problem 3.3.2.

3.4. The Third Type of Sub-Problem

Before the second type of sub-problem is employed by the governing algorithm, the DOF of the
robot at that time is i, then the number of DOFs with α = 0 in the first i− 1 DOFs is p. If p , 0, not all

Appl. Sci. 2019, 9, 4365 12 of 36

joint angles are obtained by the second type of sub-problem. In this case, the translational component
needs to be employed to solve for the remaining joint angles. Such problems are called the third type
of sub-problem.

For any of this type of sub-problem, when the first chain only has one joint, the forward kinematics
formula can be directly used to simplify the robotic model. Based on that and according to Equation (4),
the translational components of a robot with a DOF of i can be divided into i components. Since the
second type of sub-problem can solve the sum of the rotational angles of the sub-chains of the robot,
based on Equation (17), the translational equation can be arranged as

0
i P − Pθs1

−Rθs1
Pθs2
−Rθs1

Rθs2
Pθs3

=
n=i∑
n=1

n−1
n P − Pθs1

−Rθs1
Pθs2
−Rθs1

Rθs2
Pθs3

. (33)

Pθsk
and Pθsk

represent the rotational and translational components of the kth sub-chain, which is
defined by the formula (11) and formula (12). All terms on the left side of Equation (33) are known and
are written as P̂ in the following paragraphs. Conversely, there are unknown quantities on the right
side of the equation. Since the third type of problem has a maximum of three sections of sub-chains,
[s1, s2, s3] is used to represent the length of each sub-chain on the right side of the equation. Depending
on the length of each sub-chain, the appropriate formula solutions are presented with sit representing
the tth joint in the ith section of the sub-chain.

As an example, for z1 ‖ z2⊥z3 ‖ z4, there exist two sub-chains, s1 and s2, either of which has a
sub-chain length of two. After the second type of sub-problem is solved, the length of each sub-chain
decreases by one. For example, the length of each sub-chain on the right side of Equation (33) is [1, 1, 0].

All possible cases will be analyzed and solved for in the following cases.

3.4.1. Sub-Chain Length as [1,0,0]

θs11 = atan2
(
as11P̂y, as11P̂x

)
.

θs12 =
[
θs1 − θs11

]
±π

.
(34)

3.4.2. Sub-Chain Length as [2,0,0]

θs111,θs112 = F2(A, B, C), where

A = P̂x

B = P̂y

C =
P̂x

2+P̂y
2+as11

2
−as12

2

2as11

.

θs11 + θs12 = F1
(
D, L, P̃x, P̃y

)
, where

P̃x = P̂x − as11 cosθs11

P̃y = P̂y − as11 sinθs11

L = as12

D = 0
θs12 = f

[(
θs11 + θs12

)
− θs11

]
±π

θs13 = f
[
θs1 −

(
θs11 + θs12

)]
±π

(35)

3.4.3. Sub-Chain Length as [2,1,0] and [1,1,0]

θs211,θs212 = F2(A, B, C), where

A = 0

B = ns1eas21

C = P̂z − ds11 − ds12

. (36a)

θs22 = f
[
θs1 − θs11

]
±π

. (36b)

Appl. Sci. 2019, 9, 4365 13 of 36

P̂−Rs1Ps21 = Ps11 + Rsk1Psk2. (36c)

Rskt and Pskt represent the rotational and translational components of the tth joint in the kth section
of the sub-chain. According to Equations (36a) and (36b), all joint angles in the sub-chain s2 can be
solved. Moreover, according to Equation (36c), the first sub-chain solving problem is transformed into
either basic problem 3.6.1 or basic problem 3.6.2.

3.4.4. Sub-Chain Length as [1,2,0]

θs111,θs112 = F2(A, B, C), where

A = ns12as12 sinθs1

B = −ns12as21 sinθs1

C =
(
Rs1

T P̂
)
z
− ds21 − ds22

. (37a)

θs12 = f
[
θs1 − θs11

]
±π

. (37b)

Rs1
T
(
P̂− Ps11

)
= Ps21 + Rs21Ps22. (37c)

According to Equations (37a) and (37b), we could solve all joint angles in the sub-chain s1.
According to Equation (37c), the second sub-chain solving problem can be transformed into basic
problem 3.4.2.

3.4.5. Sub-Chain Length as [2,0,1] or [1,0,1]

θs311,θs312 = F2(A, B, C), where

A = 0

B = ns1eas31sinθs3

C = P̂z − ds11 − ds12 + ns13ns21ds31cosθs3

. (38a)

θs32 = f
[
θs3 − θs31

]
±π

. (38b)

P̂−Rs1Rs2Ps32 = Ps21 + Rs21Ps22. (38c)

According to Equations (38a) and (38b), all joint angles in the sub-chain s3 can be solved. According
to Equation (38c), the first sub-chain solving problem can be transformed into either basic problem
3.4.2 or basic problem 3.4.1.

3.4.6. Sub-Chain Length as [1,0,2]

θs121,θs122 = F2(A, B, C), where

A = 0

B = ns21as11sinθs2

C = (Rs2
TRs1

TP̂)z − ds31 − ds32 + ns12ns21ds11cosθs2

. (39a)

θs11 = f
[
θs1 − θs12

]
±π

. (39b)

Rs2
TRs1

TP̂−Rs2
TRs1

TPs11 = Ps31 + Rs31Ps32. (39c)

According to Equations (39a) and (39b), we could solve all joint angles in the sub-chain s1.
According to Equation (39c), the third sub-chain solving problem can be transformed into basic
problem 3.4.2.

Appl. Sci. 2019, 9, 4365 14 of 36

In the case of [1,1,1], it may be impossible to find a closed-form solution due to the high complexity
of the equation. Therefore, the third type of sub-problem has six basic problems.

3.5. Summary

The above-mentioned content proposed the two decoupling methods of series robots firstly. Three
types of sub-problems are proposed through these two decoupling methods. Ten basic problems were
derived through analyzing the solvable condition and solution method of each type of sub-problems
specifically. If a series robot can be described through the three types of sub-problem based on these
ten basic problems, the robot must be a closed inverse solution.

P represents the number of the DOF with α = 0 in the first i− 1 DOFs, i.e., the number of α = 0 in
the first i− 1 rows of the DH parameter table.

In the case of i − P > 3, it means that there are more vertical joints in the robot. There will be
more than three unknown numbers that cannot be solved in the rotational component. If there is a
closed solution, a low-order trigonometric function equation can only be solved through translation
components. There are two basic problems that are feasible. The restrictions and solution formula of
the two basic problems is shown in Table 5.

Table 5. The restrictions and solution formula of the two basic problems.

Base Problem Configuration Restrict Solution Formula

3.2.1
1. The configuration of the first g joints is z1⊥z2 ‖ . . . ‖ zg−1⊥za

g,
2. The linkage of zk>g needs to satisfy d = a = 0..

3. The linkage parameters of the last joint are not restricted.

Equation (30) can be used to
solve θ1

3.2.2
1. The configuration of the first three joints is z1 ‖ z2⊥z3,

2. The linkage of zk>4 needs to satisfy d = a = 0.
3. The linkage parameters of the last joint are not restricted.

Equations (25) and (26) can be
used to solve critical coefficient,
formula (24) can be used to solve
the angle of first three joints.

In the case of i− P < 3, it means that there are more parallel joints in the robot. There will be less
than three unknown numbers in the rotational component, then, the unknown number can be solved
through in the rotational component directly. The parallel joints in the rotation component may be
an independent joint angle or the sum of the rotation angles of the sub-chains; therefore, they can
be represented as unknown number here. In the case of i − P = 3, the formula (30) can be used to
solve the three-unknown number. In the case of i− P = 2, the formula (32) can be used to solve the
two-unknown number. In the case of i− P = 1, the first formula in the formula (32) can be used to
solve the only unknown number.

If all joint angles are not solved after using the second sub-problems, it indicates that there is long
sub-chain in the translational component. At this time, the remaining joint angles need to be solved by
combing the third sub-problems with the result of the second sub-problems. The six basic problems in
the third sub-problems are shown in Table 6.

Table 6. The six basic problems in the third sub-problems.

Base Problem Remaining Length of Each Sub-Chain Solution Formula

3.4.1 [1,0,0] Equation (34)
3.4.2 [2,0,0] Equation (35)
3.4.3 [2,1,0], [1,1,0] Equation (36) and Base problem 3.6.2.
3.4.4 [1,2,0] Equation (37) and Base problem 3.6.2.
3.4.5 [2,0,1], [1,0,1] Equation (38) and Base problem 3.6.2 or 3.6.1.
3.4.6 [1,0,2] Equation (39) and Base problem 3.6.2.

Since the third type of problem has a maximum of three sections of sub-chains, [s1, s2, s3] is used
to represent the length of each sub-chain on the right side of the equation. Depending on the length of

Appl. Sci. 2019, 9, 4365 15 of 36

each sub-chain, the appropriate formula solutions are presented with skt representing the tth joint in
the kth section of the sub-chain.

4. Algorithm Design for Universal Inverse Kinematics

The translational and rotational components of a serial robot with a closed-form solution are
mutually decoupled. Therefore, the partial joint angles of the robot can be solved based on the first or
second type of sub-problem. This simplifies the original robot model into a new robot model. If the
new robot model has a closed-form solution, the solution will definitely continue along one of the
three types of sub-problems until all the problems are solved. Therefore, the process of solving the
closed-form inverse solution of a serial robot can be completed via constant model simplification.
The logical flow chart of the entire algorithm is shown in Figure 2.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 36

i DOF

The first type of
sub-problems

i – p > 3

Meeting the
Configuration restrict

of table 5

 Solving the second
types of sub-problems

p≠0

Calculate the remaining
length of each subchain

End

Yes No

Yes No

Yes

NoYes

No

No solution

simplify
the robot

Start

The third type of
sub-problems

End

Is the case that exists
in Table 6

Decoupling of
the end linkage

No solution

Figure 2. Logic for the universal inverse kinematics algorithm.

In Figure 2, P represents the number of the DOF with α = 0 in the first 𝑖 − 1 DOFs, i.e., the
number of α = 0 in the first 𝑖 − 1 rows of the DH parameter table.

The inverse kinematics problem has multiple solutions. Nonetheless, the selection of these
solutions necessitates a relevant upper logic design. In addition, changes in the robotic joints must be
continuous:

 𝑎𝑟𝑔 𝑚𝑖𝑛 𝜃 , − 𝜃 , . (40)

In cases where the robot is in a stationary state, the joint angle of the 𝑘 set can be first solved
and then Equation (40) can be used to determine the inverse motion index value corresponding to
the current position.

The main purpose of this paper was to find a more complete inverse solution judgment
condition, which is more accurate and specific than the Pieper principle. The general inverse solution
algorithm designed based on this judgment condition is also directed to a series robot with a closed
inverse solution. For this paper purposed ten basic problems, which means a series of robots with
closed inverse solutions can be obtained through combining the basic problems. For example,
although 𝑧 ∥ 𝑧 ⊥ 𝑧 ∥ 𝑧 ⊥ 𝑧 , ⊥ 𝑧 ,or 𝑧 ∥ 𝑧 ⊥ 𝑧 ∥ 𝑧 ∥ 𝑧 ∥ 𝑧 are not common, but it is indeed
that there are robots with a closed inverse solution. In addition, maintaining the robot configuration
does not change, only the direction of rotation and the positive or negative of the offset are changed,
the algorithm can still calculate correctly. This can provide great convenience for the application of

Figure 2. Logic for the universal inverse kinematics algorithm.

In Figure 2, P represents the number of the DOF with α = 0 in the first i− 1 DOFs, i.e., the number
of α = 0 in the first i− 1 rows of the DH parameter table.

The inverse kinematics problem has multiple solutions. Nonetheless, the selection of these solutions
necessitates a relevant upper logic design. In addition, changes in the robotic joints must be continuous:

arg min
k

6∑
i=1

∣∣∣θi,cur − θi,k
∣∣∣. (40)

Appl. Sci. 2019, 9, 4365 16 of 36

In cases where the robot is in a stationary state, the joint angle of the k set can be first solved and
then Equation (40) can be used to determine the inverse motion index value corresponding to the
current position.

The main purpose of this paper was to find a more complete inverse solution judgment condition,
which is more accurate and specific than the Pieper principle. The general inverse solution algorithm
designed based on this judgment condition is also directed to a series robot with a closed inverse
solution. For this paper purposed ten basic problems, which means a series of robots with closed
inverse solutions can be obtained through combining the basic problems. For example, although
z1 ‖ z2⊥z3 ‖ za

4⊥za,d
5 ⊥z6, or z1 ‖ z2⊥z3 ‖ z4 ‖ z5 ‖ z6 are not common, but it is indeed that there are robots

with a closed inverse solution. In addition, maintaining the robot configuration does not change, only
the direction of rotation and the positive or negative of the offset are changed, the algorithm can still
calculate correctly. This can provide great convenience for the application of an engineer. Finally,
the logical design of the algorithm is complete. This means that once you use a situation other than
ten basic questions to design the robot, the algorithm will jump out and terminate. Therefore, the
algorithm is not to solve the inverse solution problem of any robot, but to judge whether the closed
inverse solution exists and to solve it.

5. Experiments

The previous section discussed the design of the universal inverse kinematics solution algorithm.
In this section, four of the experiments will be carried out to verify the completeness, versatility,
stability, and real-time performance of the algorithm.

Frist of all, the algorithm was implemented in MATLAB 2016b on a 64-bit Windows 10 operating
system. The completeness, versatility and stability of the algorithm will be verified in MATLAB.
Subsequently, the algorithm was performed using the Beckhoff-C6920 controller. We built a six-DOF
KingKong robot using the Kollmorgen RGM motor for the real-time testing.

5.1. Verification Experiment for Algorithm Completeness

Firstly, the algorithm designed in this paper was logically complete. The first simulation experiment
would test the completeness of the algorithm. Here, a robot with three parallel joints was selected as
the experimental object. The DH parameter of it is shown in the Table 7. This robot is a common series
robot, but it cannot be described by a single sub-problem.

Table 7. The DH parameters of the robot with three parallel joints.

n θ/◦ d/mm a/mm α/◦

1 θ1 0.1 0.1 0
2 θ2 0.1 −0.2 0
3 θ3 0.1 0.3 0

First, the algorithm receives the DH parameters of the robot. Algorithm will enter in the second
type of sub-problem to solve the rotation angle and θs1 of the sub-chain s1. The length of the sub-chain
was [2, 0, 0] after been simplified and calculated, therefore, the remaining joint angles was solved by
the basic problem 3.6.2 in the third type sub-problems.

Consequently, the initial position was Θ =

90◦

90◦

45◦

, and the end posture was:

−0.7071 0.7071 0 −0.0121
−0.7071 −0.7071 0 −0.1121

0 0 1 0.3
0 0 0 1

. (41)

Appl. Sci. 2019, 9, 4365 17 of 36

All joint angles were solved with the algorithm, as shown in Table 8.

Table 8. Two inversely solved joint angle sets.

No. θ1/
◦ θ2/

◦ θ3/
◦

1 90 90 45
2 −36.8699 −90 −8.1301

It is easy to verify that the two sets of joint angles are correct.
A robot with four parallel joints was now used as the experimental object. Its DH parameters are

shown in Table 9.

Table 9. The DH parameters of the robot with three parallel joints.

n θ/◦ d/m a/m α/◦

1 θ1 0.1 0.1 0
2 θ2 0.1 −0.2 0
3 θ3 0.1 0.3 0
4 θ4 0.1 0.1 0

The algorithm will enter in the second type of sub-problem the solve the rotation angle and θs1

of the sub-chain s1. The length of the sub-chain was [3,0,0] after being simplified and calculated, the
algorithm was ended for it was not in the basic problem of the third type sub-problems. In fact, there
are only three valid equations for series robots with four-degree-of-freedom, which is impossible to
solve its inverse motion problem.

Experiment 5.1 verified the completeness of the algorithm by two examples. The first example
was a three-parallel joint robot, the correct joint angles were obtained through an algorithm. Then,
we used a four-parallel joint robot to test, and the algorithm was terminated for it was not in the
basic problems. This shows that the algorithm would exit correctly when it encounters an unsolvable
problem, and it will be able to calculate the result when it encounters a solvable problem.

This experiment also proved that the proposed judgment method could be used to low-degree-
of-freedom robots. In addition, when there were four adjacent parallel joints in a six-degree-of-freedom
robot, the Pieper criterion was satisfied, but the proposed algorithm could judge that the robot did not
have a closed inverse solution. This complements the shortcomings of the Pieper criterion.

5.2. Verification Experiment of Algorithm Versatility

The proposed algorithm could solve those serial robots that could be described by three types of
sub-problems. Since the description of the ten basic problems was determined, a series robot with
a closed-form inverse solution could be constructed based on ten basic problems. Two uncommon
robots were used as examples to verify the versatility of the algorithm in this experiment.

We constructed a robot Bot1, whose structure was z1 ‖ z2⊥z3 ‖ za
4⊥za,d

5 ⊥z6 based on basic problem
3.4.2 and 3.5.1. Its DH parameters are shown in Table 10.

Table 10. The DH parameters of Bot1.

n θ/◦ d/m a/m α/◦

1 θ1 0.1 0.35 0
2 θ2 0.1 0.3 π/2
3 θ3 0.1 0.5 0
4 θ4 0.1 0 −π/2
5 θ5 0 0 π/2
6 θ6 0.1 0.1 0

Appl. Sci. 2019, 9, 4365 18 of 36

The robot had three vertical joints, so the decoupling of the end was carried out firstly. Then, we
found that z1 ‖ z2⊥z3 ‖ za

4⊥za,d
5 could be solved by the basic problem 3.2.2. When the first three joint

angles were solved, the simplified robot za
4⊥za,d

5 ⊥z6 could be solved by the second type of sub-problems.

Consequently, the initial position was Θ =

90◦

60◦

60◦

60◦

30◦

30◦

, and the end posture was:

0.5625 0.1752 0.8080 −0.0228
−0.8248 0.1875 0.5335 0.6441
−0.0580 −0.9665 0.2500 0.7192

0 0 0 1

. (42)

All joint angles were solved with an algorithm, as shown in Table 11.

Table 11. Four inversely solved joint angle sets.

No. θ1/
◦ θ2/

◦ θ3/
◦ θ4/

◦ θ5/
◦ θ6/

◦

1 90.0000 60.0000 90.0000 −120.0000 −30.0000 −150.0000
2 90.0000 60.0000 90.0000 60.0000 30.0000 30.0000
3 116.7078 7.3801 90.0000 −177.4728 −14.4919 −89.1752
4 116.7078 7.3801 90.0000 2.5272 14.4919 90.8248

It is easy to verify that the four sets of joint angles are correct. Then, we kept the configuration of
the robot unchanged and modified the positive direction of the rotation of the robot joint, the positive
and negative of a and the value of d. This was used to verify whether the algorithm could cope with
parameter changes. The changed DH parameters are shown in Table 12.

Table 12. The DH parameters of Bot1 after changing the parameters.

n θ/◦ d/m a/m α/◦

1 θ1 0 −0.35 0
2 θ2 0 0.3 π/2
3 θ3 0 −0.5 0
4 θ4 0 0 π/2
5 θ5 0 0 π/2
6 θ6 0 0.1 0

Consequently, the initial position was Θ =

90◦

60◦

60◦

60◦

30◦

30◦

, and the end posture was:

0.5625 −0.8248 0.0580 −0.2036
0.1752 0.1875 0.9665 −0.1825
−0.8080 −0.5335 0.2500 0.4192

0 0 0 1

. (43)

All joint angles were computed with the algorithm, as shown in Table 13

Appl. Sci. 2019, 9, 4365 19 of 36

Table 13. Four inversely solved joint angle sets.

No. θ1/
◦ θ2/

◦ θ3/
◦ θ4/

◦ θ5/
◦ θ6/

◦

1 90.0000 60.0000 90.0000 −120.0000 −30.0000 −150.0000
2 90.0000 60.0000 90.0000 60.0000 30.0000 30.0000
3 −14.8218 −60.0000 90.0000 105.2403 −108.0015 51.7522
4 −14.8218 −60.0000 90.0000 −74.7597 108.0015 –128.2478

It is easy to verify that the four sets of joint angles are correct.
We constructed the robot Bot2, whose structure was z1 ‖ z2⊥z3 ‖ z4 ‖ z5 ‖ z6 based on basic

problem 3.5.1 and 3.6.6. Its DH parameters are shown in Table 14.

Table 14. The DH parameters of Bot2.

n θ/◦ d/m a/m α/◦

1 θ1 0.1 0.35 0
2 θ2 0.1 0.3 −π/2
3 θ3 0.1 0.3 π/2
4 θ4 0.1 0.25 0
5 θ5 0.1 0.2 0
6 θ6 0.1 0.1 0

The robot had three sub-chains, and the second type of sub-problem was firstly used to obtain
the sum of the rotation angle of the three segments. Then, algorithm turned into the third type
sub-problems for there were joint angles that had not been solved. In the third sub-problem, we could
use the basic problem 3.6.6 to solve, and then solve all joint angles.

Consequently, the initial position was Θ =

90◦

60◦

60◦

45◦

45◦

45◦

, and the end posture was:

−0.0474 0.6597 −0.7500 −0.9344
−0.7891 0.4356 0.4330 0.2573
0.6124 0.6124 0.5000 −0.0017

0 0 0 1

. (44)

All joint angles were solved with the algorithm, as shown in Table 15.

Table 15. Four inversely solved joint angle sets.

No. θ1/
◦ θ2/

◦ θ3/
◦ θ4/

◦ θ5/
◦ θ6/

◦

1 −150.0000 −60.0000 60.0000 −95.1093 100.7234 129.3859
2 −150.0000 −60.0000 60.0000 −9.6646 −100.7234 −114.6120
3 90.0000 60.0000 60.0000 45.0000 45.0000 45.0000
4 90.0000 60.0000 60.0000 84.7298 −45.0000 95.2702

It is easy to verify that the four sets of joint angles are correct.
In this group of experiments, the test subjects were two uncommon robots constructed by basic

questions. However, according to the proposed theory, these two robots had a closed inverse solution.
In the experiment, the inverse solution of both robots was solved correctly. In addition, for the first
robot, its configuration remains unchanged, but the link parameters were greatly modified, the correct

Appl. Sci. 2019, 9, 4365 20 of 36

result was obtained in the end. It could be seen that the algorithm had good versatility. As long as a
given robot can be described by three sub-problems, its closed-from solution can be obtained whether
it is in low degree of freedom or six degrees of freedom. At the same time, for the robot with the same
configuration, the change of the link parameters does not affect the inverse kinematics solution.

5.3. Verification Experiment for the Algorithm Continuity

This experiment would use the common Puma560 as the subject. In the experiment, the robot
should move according to the specified trajectory. We needed to observe whether the joint angle after
the inverse solution was continuous when solving the continuous space trajectory. This is important
in the actual movement of robot. If there is a jump or discontinuity in the joint space curve, it will
cause great impact to the motor, and the curve of the end also does not move according to the specified
trajectory. The DH parameters of the Puma560 robot are shown in Table 16.

Table 16. The DH parameters of the Puma560 robot.

n θ/◦ d/mm a/mm α/◦

1 θ1 0 0 π/2
2 θ2 0 43.18 0
3 θ3 150.03 20.3 −π/2
4 θ4 43.18 0 π/2
5 θ5 0 0 −π/2
6 θ6 0 0 0

The quantity of the vertical joints was judged following the input of the algorithm into the DH
model of the Puma560 robot. Subsequently, the algorithm entered the first type of sub-problem.
Then, joint decoupling was performed for J6 and J1⊥J2 ‖ J3⊥J4,a⊥J5,a,d. Based on basic problem 3.4.1,
the angle value of θ1 was obtained. In addition, after θ1 was obtained, 1

6T was obtained using to
the forward kinematics formula. After it was simplified, J2 ‖ J3⊥J4,a⊥J5,a,d⊥J6 formed a new robot
model and was substituted into the algorithm. Similarly, J2 ‖ J3⊥J4,a⊥J5,a,d was solved using basic
problem 3.2.2 and θ2 and θ3 were subsequently obtained. After the reduction in the DH parameters
and the transformational matrices, 4

6T and the robot model J4,a⊥J5,a,d⊥J6 were substituted into the
algorithm to solve the rational component in the second type of sub-problem. All joint angles were
solved at that time.

Consequently, the initial position was Θ =

25.5667◦

−0.0624◦

3.0736◦

−25.5975◦

87.2840◦

1.3005◦

, and the end execution posture was:

0 0 −1 0.4521
0 1 0 0.0499
1 0 0 0.4318
0 0 0 1

. (45)

All joint angles were computed with the algorithm, as shown in Table 17.
Here we also used the kinematic inverse function in the Robotics Toolbox, and could also find eight

groups of solutions, as shown in Table 18. It could be seen that part of the joint angles have exceeded
the scope of

[
−π π

]
. The reason is that there was no uniform inverse trigonometric function selected

in the Robotics Toolbox. In actual use, for example, the Beckhoff-C6920 controller and the Kollmorgen
RGM motor, both use real numbers to describe the motion of the motor rather than a positive real
number. Therefore, the method proposed in this paper had certain advantages from this point of view.

Appl. Sci. 2019, 9, 4365 21 of 36

Table 17. Eight inversely solved joint angle sets.

No. θ1/
◦ θ2/

◦ θ3/
◦ θ4/

◦ θ5/
◦ θ6/

◦

1 167.0434 89.6199 3.0711 −78.4733 166.7756 101.8339
2 167.0434 89.6199 3.0711 101.5267 −166.7756 −78.1661
3 167.0434 −179.9370 −177.6878 167.0362 92.3124 0.5341
4 167.0434 −179.9370 −177.6878 12.9638 −92.3124 −179.4659
5 25.5654 −0.0630 3.0711 −25.5998 87.2844 1.3006
6 25.5654 −0.0630 3.0711 154.4002 −87.2844 178.6994
7 25.5654 90.3801 −177.6878 −84.3875 154.2989 −83.7756
8 25.5654 90.3801 −177.6878 95.6125 −154.2989 96.2244

Table 18. Eight inversely solved joint angle sets by the Robotics Toolbox.

No. θ1/
◦ θ2/

◦ θ3/
◦ θ4/

◦ θ5/
◦ θ6/

◦

1 167.0434 89.6199 3.0711 −78.4733 166.7756 101.8339
2 167.0434 89.6199 3.0711 101.5267 −166.7756 −78.1661
3 167.0434 180.0624 182.3097 −167.0320 92.3124 0.5322
4 167.0434 180.0624 182.3097 12.9638 −92.3124 −179.4659
5 25.5654 90.3801 182.3097 −84.3875 154.2989 −83.7756
6 25.5654 90.3801 182.3097 95.6086 −154.2989 96.2197
7 25.5654 −0.0624 3.0736 −25.5975 87.2840 1.3005
8 25.5654 0.0624 3.0736 154.4025 −87.2840 −178.6995

The robot was instructed to move as per the Equation (51) spiral line with a step size of 0.01:
x = 0.3t

y = 0.2cos(2πt) − 0.2
z = 0.2sin(2πt)

, t ∈ [0, 1]. (46)

According to formula (40), with the fifth set of solutions selected. According to the joint angle,
the end position was recomputed with the motion trajectory shown in Figure 3. The joint angle was
inversely solved as per the end trajectory to obtain the continuous joint position, as shown in Figure 4.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 22 of 36

Table 18. Eight inversely solved joint angle sets by the Robotics Toolbox.

No. 𝜽𝟏/° 𝜽𝟐/° 𝜽𝟑/° 𝜽𝟒/° 𝜽𝟓/° 𝜽𝟔/°
1 167.0434 89.6199 3.0711 -78.4733 166.7756 101.8339
2 167.0434 89.6199 3.0711 101.5267 -166.7756 -78.1661
3 167.0434 180.0624 182.3097 -167.0320 92.3124 0.5322
4 167.0434 180.0624 182.3097 12.9638 -92.3124 -179.4659
5 25.5654 90.3801 182.3097 -84.3875 154.2989 -83.7756
6 25.5654 90.3801 182.3097 95.6086 -154.2989 96.2197
7 25.5654 -0.0624 3.0736 -25.5975 87.2840 1.3005
8 25.5654 0.0624 3.0736 154.4025 -87.2840 -178.6995

The robot was instructed to move as per the Equation (51) spiral line with a step size of 0.01:

𝑥 = 0.3𝑡𝑦 = 0.2 𝑐𝑜𝑠(2𝜋𝑡) − 0.2𝑧 = 0.2𝑠𝑖𝑛(2𝜋𝑡) , 𝑡 ∈ [0,1]. (46)

According to formula (40), with the fifth set of solutions selected. According to the joint angle,
the end position was recomputed with the motion trajectory shown in Figure 3. The joint angle was
inversely solved as per the end trajectory to obtain the continuous joint position, as shown in Figure
4.

Figure 3. The motion trajectory of the Puma560 robot.

Figure 4. The joint trajectory after the inverse kinematics solution.

Figure 3. The motion trajectory of the Puma560 robot.

As shown in Table 17, the algorithm could solve for multiple sets of joint angles, and it could be
confirmed via positive kinematics that all the joint angles were correct. In addition, in the planning
experiment of the Cartesian space trajectory, the joint angle inversely solved according to the target
trajectory is shown in Figure 4 and its curve changed continuously without jumps. In Figure 3, the end

Appl. Sci. 2019, 9, 4365 22 of 36

trajectory was recalculated from the obtained joint angle and was consistent with the planned trajectory.
This proved that the algorithm could correctly solve the inverse kinematics of the spatial trajectory.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 22 of 36

Table 18. Eight inversely solved joint angle sets by the Robotics Toolbox.

No. 𝜽𝟏/° 𝜽𝟐/° 𝜽𝟑/° 𝜽𝟒/° 𝜽𝟓/° 𝜽𝟔/°
1 167.0434 89.6199 3.0711 -78.4733 166.7756 101.8339
2 167.0434 89.6199 3.0711 101.5267 -166.7756 -78.1661
3 167.0434 180.0624 182.3097 -167.0320 92.3124 0.5322
4 167.0434 180.0624 182.3097 12.9638 -92.3124 -179.4659
5 25.5654 90.3801 182.3097 -84.3875 154.2989 -83.7756
6 25.5654 90.3801 182.3097 95.6086 -154.2989 96.2197
7 25.5654 -0.0624 3.0736 -25.5975 87.2840 1.3005
8 25.5654 0.0624 3.0736 154.4025 -87.2840 -178.6995

The robot was instructed to move as per the Equation (51) spiral line with a step size of 0.01:

𝑥 = 0.3𝑡𝑦 = 0.2 𝑐𝑜𝑠(2𝜋𝑡) − 0.2𝑧 = 0.2𝑠𝑖𝑛(2𝜋𝑡) , 𝑡 ∈ [0,1]. (46)

According to formula (40), with the fifth set of solutions selected. According to the joint angle,
the end position was recomputed with the motion trajectory shown in Figure 3. The joint angle was
inversely solved as per the end trajectory to obtain the continuous joint position, as shown in Figure
4.

Figure 3. The motion trajectory of the Puma560 robot.

Figure 4. The joint trajectory after the inverse kinematics solution. Figure 4. The joint trajectory after the inverse kinematics solution.

5.4. Real-Time Verification Experiment of the Algorithm

In the industry, the robot controller sends position information to the motor driver in a certain
cycle, the shorter the cycle, the better the real-time performance. For some occasions with high precision,
if the cycle is too long, a big error will occur in the outline of the end. In addition, if the desired end
trajectory is constantly changing, the controller is also required to be able to react and plan quickly
during the cycle. Therefore, real-time performance is an important performance indicator in the robot
controlling field. In order to improve the closed-loop period of the system, in addition to the purchase
of more powerful hardware devices, the more important factor is the operation speed of algorithm.
Therefore, this paper designed a verification experiment whose real-time performance was closed to
prove that the algorithm proposed in this paper was not only accurate but also efficient and fast.

The six-DOF KingKong robot built with a Beckhoff-C6920 controller and a Kollmorgen RGM
motor was used in the experiment testing the correctness and real-time performance of the algorithm.
The DH parameters of the robot are listed in Table 3. The C6920 controller in Figure 5. The C6920
controller used a 32-bit Windows 7 operating system and was equipped with an Intel Core i5 processor.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 23 of 36

As shown in Table 17, the algorithm could solve for multiple sets of joint angles, and it could be
confirmed via positive kinematics that all the joint angles were correct. In addition, in the planning
experiment of the Cartesian space trajectory, the joint angle inversely solved according to the target
trajectory is shown in Figure 4 and its curve changed continuously without jumps. In Figure 3, the
end trajectory was recalculated from the obtained joint angle and was consistent with the planned
trajectory. This proved that the algorithm could correctly solve the inverse kinematics of the spatial
trajectory.

5.4. Real-Time Verification Experiment of the Algorithm

In the industry, the robot controller sends position information to the motor driver in a certain
cycle, the shorter the cycle, the better the real-time performance. For some occasions with high
precision, if the cycle is too long, a big error will occur in the outline of the end. In addition, if the
desired end trajectory is constantly changing, the controller is also required to be able to react and
plan quickly during the cycle. Therefore, real-time performance is an important performance
indicator in the robot controlling field. In order to improve the closed-loop period of the system, in
addition to the purchase of more powerful hardware devices, the more important factor is the
operation speed of algorithm. Therefore, this paper designed a verification experiment whose real-
time performance was closed to prove that the algorithm proposed in this paper was not only
accurate but also efficient and fast.

The six-DOF KingKong robot built with a Beckhoff-C6920 controller and a Kollmorgen RGM
motor was used in the experiment testing the correctness and real-time performance of the algorithm.
The DH parameters of the robot are listed in Table 3. The C6920 controller in Figure 5. The C6920
controller used a 32-bit Windows 7 operating system and was equipped with an Intel Core i5
processor.

Figure 5. The C6920 controller.

Figure 6 displays the control framework for the entire system. When the controller received the
order of motion, the critical parameters of the locus equation were computed according to the order.
Subsequently, the position point at the next time point was planned in the Cartesian spatial planner.
Based on the position points in Cartesian space, the inverse kinematics solving method proposed
here was employed to obtain the position to be reached by each motor at the next time point. The
closed-loop circle of the motor controller was 2 ms. The controller sent the motion order to the RGM
motor via CanOpen. CanOpen is a high-level communication protocol based on the Controller Area
Network. It is often used in embedded systems and is a type of field bus commonly used in industrial
control.

Figure 5. The C6920 controller.

Figure 6 displays the control framework for the entire system. When the controller received the
order of motion, the critical parameters of the locus equation were computed according to the order.

Appl. Sci. 2019, 9, 4365 23 of 36

Subsequently, the position point at the next time point was planned in the Cartesian spatial planner.
Based on the position points in Cartesian space, the inverse kinematics solving method proposed here
was employed to obtain the position to be reached by each motor at the next time point. The closed-loop
circle of the motor controller was 2 ms. The controller sent the motion order to the RGM motor via
CanOpen. CanOpen is a high-level communication protocol based on the Controller Area Network.
It is often used in embedded systems and is a type of field bus commonly used in industrial control.Appl. Sci. 2019, 9, x FOR PEER REVIEW 24 of 36

Ikine

Cartesian space planner

Ikine

Motion

M
RGM14

M
RGM14

CanOpen

Beckhoff-C6920

M
RGM20

M
RGM14

M
RGM25

M
RGM25

Figure 6. Control structure of the system.

The number of vertical joints was judged according to the KingKong DH model. Then, the
algorithm assessed the first type of sub-problem. After joint decoupling was performed for 𝐽 , 𝐽 ⊥𝐽 ∥ 𝐽 ∥ 𝐽 ⊥ 𝐽 , was able to solve for 𝜃 using basic problem 3.2.1. After 𝜃 was obtained, 𝑇 and 𝐽 ∥ 𝐽 ∥ 𝐽 ⊥ 𝐽 , ⊥ 𝐽 were obtained using the forward kinematics formula. At the time, the robot
belonged to the second type of sub-problem and we could directly solve for 𝜃 + 𝜃 + 𝜃 , 𝜃 and 𝜃 .
Subsequently, basic problem 3.4.2 was used to solve for 𝜃 and 𝜃 + 𝜃 and to obtain 𝜃 and 𝜃 .

In this experiment, the robot would be commanded to move according to the specified spatial
trajectory in the real environment, and the acceleration process of the motor must be considered. A
common acceleration planning method is a seven-segment S curve. This method uses the square
wave Jerk curve as the input of the system, and the acceleration, velocity, and position quantities
obtained through the integrating of time, as is shown Figure 7.

(a)

(b)

(c)

(d)

Figure 7. (a) Displacement of the seven-segment S curve over time. (b) Velocity of the seven-segment
S curve over time. (c) Acceleration of the seven-segment S curve over time. (d) Jerk of seven-segment
S curve over time.

It can be seen from the figure that the acceleration curve of the seven-segment S-curve
constructed by square wave Jerk input is a linear piecewise function. Although it is continuous, but
there are a finite number of non-conductible breakpoints. If the acceleration can be made to have
higher order differentiable properties, the robot movement can be smoother.

In the Descartes spatial planner of the controller, the 15-segment S-curve spatial trajectory
planning method was used. When the objective position, S, and the maximum values of the curve, 𝑆, 𝑆, and 𝑆, are given, this method can provide a smooth curve and the speed utilization rate can
approximate the optimal solution. In 15-segment S planning, the jerk input uses the sine piecewise

Figure 6. Control structure of the system.

The number of vertical joints was judged according to the KingKong DH model. Then, the algorithm
assessed the first type of sub-problem. After joint decoupling was performed for J6, J1⊥J2 ‖ J3 ‖ J4⊥J5,a

was able to solve for θ1 using basic problem 3.2.1. After θ1 was obtained, 1
6T and J2 ‖ J3 ‖ J4⊥J5,a⊥J6

were obtained using the forward kinematics formula. At the time, the robot belonged to the second
type of sub-problem and we could directly solve for θ2 + θ3 + θ4,θ5 and θ6. Subsequently, basic
problem 3.4.2 was used to solve for θ2 and θ2 + θ3 and to obtain θ3 and θ4.

In this experiment, the robot would be commanded to move according to the specified spatial
trajectory in the real environment, and the acceleration process of the motor must be considered.
A common acceleration planning method is a seven-segment S curve. This method uses the square
wave Jerk curve as the input of the system, and the acceleration, velocity, and position quantities
obtained through the integrating of time, as is shown Figure 7.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 24 of 36

Ikine

Cartesian space planner

Ikine

Motion

M
RGM14

M
RGM14

CanOpen

Beckhoff-C6920

M
RGM20

M
RGM14

M
RGM25

M
RGM25

Figure 6. Control structure of the system.

The number of vertical joints was judged according to the KingKong DH model. Then, the
algorithm assessed the first type of sub-problem. After joint decoupling was performed for 𝐽 , 𝐽 ⊥𝐽 ∥ 𝐽 ∥ 𝐽 ⊥ 𝐽 , was able to solve for 𝜃 using basic problem 3.2.1. After 𝜃 was obtained, 𝑇 and 𝐽 ∥ 𝐽 ∥ 𝐽 ⊥ 𝐽 , ⊥ 𝐽 were obtained using the forward kinematics formula. At the time, the robot
belonged to the second type of sub-problem and we could directly solve for 𝜃 + 𝜃 + 𝜃 , 𝜃 and 𝜃 .
Subsequently, basic problem 3.4.2 was used to solve for 𝜃 and 𝜃 + 𝜃 and to obtain 𝜃 and 𝜃 .

In this experiment, the robot would be commanded to move according to the specified spatial
trajectory in the real environment, and the acceleration process of the motor must be considered. A
common acceleration planning method is a seven-segment S curve. This method uses the square
wave Jerk curve as the input of the system, and the acceleration, velocity, and position quantities
obtained through the integrating of time, as is shown Figure 7.

(a)

(b)

(c)

(d)

Figure 7. (a) Displacement of the seven-segment S curve over time. (b) Velocity of the seven-segment
S curve over time. (c) Acceleration of the seven-segment S curve over time. (d) Jerk of seven-segment
S curve over time.

It can be seen from the figure that the acceleration curve of the seven-segment S-curve
constructed by square wave Jerk input is a linear piecewise function. Although it is continuous, but
there are a finite number of non-conductible breakpoints. If the acceleration can be made to have
higher order differentiable properties, the robot movement can be smoother.

In the Descartes spatial planner of the controller, the 15-segment S-curve spatial trajectory
planning method was used. When the objective position, S, and the maximum values of the curve, 𝑆, 𝑆, and 𝑆, are given, this method can provide a smooth curve and the speed utilization rate can
approximate the optimal solution. In 15-segment S planning, the jerk input uses the sine piecewise

Figure 7. (a) Displacement of the seven-segment S curve over time. (b) Velocity of the seven-segment S
curve over time. (c) Acceleration of the seven-segment S curve over time. (d) Jerk of seven-segment S
curve over time.

Appl. Sci. 2019, 9, 4365 24 of 36

It can be seen from the figure that the acceleration curve of the seven-segment S-curve constructed
by square wave Jerk input is a linear piecewise function. Although it is continuous, but there are a
finite number of non-conductible breakpoints. If the acceleration can be made to have higher order
differentiable properties, the robot movement can be smoother.

In the Descartes spatial planner of the controller, the 15-segment S-curve spatial trajectory planning
method was used. When the objective position, S, and the maximum values of the curve,

.
S,

..
S, and

...
S ,

are given, this method can provide a smooth curve and the speed utilization rate can approximate the
optimal solution. In 15-segment S planning, the jerk input uses the sine piecewise function Equation (52)
to replace the jerk square wave input in the traditional seven-segment S curve. A schematic diagram
for the 15-segment S curve is shown in Figure 8.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 25 of 36

function Equation (52) to replace the jerk square wave input in the traditional seven-segment S curve.
A schematic diagram for the 15-segment S curve is shown in Figure 8.

Compared with the traditional seven-segment S curve, the 15-segment curve proposed in this
paper was constructed by sinusoidal function. We know that sinusoidal functions have infinite
differentiable properties. Therefore, the acceleration curve of the 15-segment S curve also has infinite
differentiable properties. The curve obtained by this planning method is smoother.

 ℎ (𝑡) = ⎩⎪⎨
⎪⎧ 𝑠𝑖𝑛 𝑛𝑡 𝑥 ∈ [0,]1 𝑥 ∈ [, + 𝑚]𝑐𝑜𝑠 𝑛(𝑡 − 𝑚) 𝑥 ∈ [+ 𝑚, + 𝑚]. (47)

In Equation (47), 𝑛 is an adjustable parameter to adjust the rising speed of the jerk curve and 𝑚
depends on the maximum values of 𝑆 and 𝑆.

(a)

(b)

(c)

(d)

Figure 8. (a) Displacement of the 15-segment S curve over time. (b) Velocity of the 15-segment S curve
over time. (c) Acceleration of the 15-segment S curve over time. (d) Jerk of 15-segment S curve over
time.

The initial position of the KingKong robot was Θ = ⎣⎢⎢
⎢⎢⎡ 0°−60°120°−135°−45°−45° ⎦⎥⎥

⎥⎥⎤, as shown in Figure 9.

(a) (b)

Figure 9. (a) Robot in its initial position from the front. (b) Robot in its initial position from the side.

At that time, based on the forward kinematics computation, the end posture was:

Figure 8. (a) Displacement of the 15-segment S curve over time. (b) Velocity of the 15-segment S curve
over time. (c) Acceleration of the 15-segment S curve over time. (d) Jerk of 15-segment S curve over time.

Compared with the traditional seven-segment S curve, the 15-segment curve proposed in this
paper was constructed by sinusoidal function. We know that sinusoidal functions have infinite
differentiable properties. Therefore, the acceleration curve of the 15-segment S curve also has infinite
differentiable properties. The curve obtained by this planning method is smoother.

hn(t) =

sinπ2 nt x ∈

[
0, 1

n

]
1 x ∈

[
1
n , 1

n + m
]

cosπ2 n(t−m) x ∈
[

1
n + m, 2

n + m
] . (47)

In Equation (47), n is an adjustable parameter to adjust the rising speed of the jerk curve and m
depends on the maximum values of

..
S and

...
S .

The initial position of the KingKong robot was Θ =

0◦

−60◦

120◦

−135◦

−45◦

−45◦

, as shown in Figure 9.

Appl. Sci. 2019, 9, 4365 25 of 36

Appl. Sci. 2019, 9, x FOR PEER REVIEW 25 of 36

function Equation (52) to replace the jerk square wave input in the traditional seven-segment S curve.
A schematic diagram for the 15-segment S curve is shown in Figure 8.

Compared with the traditional seven-segment S curve, the 15-segment curve proposed in this
paper was constructed by sinusoidal function. We know that sinusoidal functions have infinite
differentiable properties. Therefore, the acceleration curve of the 15-segment S curve also has infinite
differentiable properties. The curve obtained by this planning method is smoother.

 ℎ (𝑡) = ⎩⎪⎨
⎪⎧ 𝑠𝑖𝑛 𝑛𝑡 𝑥 ∈ [0,]1 𝑥 ∈ [, + 𝑚]𝑐𝑜𝑠 𝑛(𝑡 − 𝑚) 𝑥 ∈ [+ 𝑚, + 𝑚]. (47)

In Equation (47), 𝑛 is an adjustable parameter to adjust the rising speed of the jerk curve and 𝑚
depends on the maximum values of 𝑆 and 𝑆.

(a)

(b)

(c)

(d)

Figure 8. (a) Displacement of the 15-segment S curve over time. (b) Velocity of the 15-segment S curve
over time. (c) Acceleration of the 15-segment S curve over time. (d) Jerk of 15-segment S curve over
time.

The initial position of the KingKong robot was Θ = ⎣⎢⎢
⎢⎢⎡ 0°−60°120°−135°−45°−45° ⎦⎥⎥

⎥⎥⎤, as shown in Figure 9.

(a) (b)

Figure 9. (a) Robot in its initial position from the front. (b) Robot in its initial position from the side.

At that time, based on the forward kinematics computation, the end posture was:

Figure 9. (a) Robot in its initial position from the front. (b) Robot in its initial position from the side.

At that time, based on the forward kinematics computation, the end posture was:
−0.5536 0.8124 0.1830 −0.4961
0.5000 0.5000 −0.7071 −0.1330
−0.6660 −0.3000 −0.6830 0.0895

0 0 0 1

. (48)

The algorithm was used to obtain the inverse solution and eight sets of joint angles, as shown in
Table 19. According to formula (40) the fourth set of solutions was selected and applied in the motion
control logic.

Table 19. Eight sets of reversely solved joint angles.

No. θ1/
◦ θ2/

◦ θ3/
◦ θ4/

◦ θ5/
◦ θ6/

◦

1 0 38.3143 −80.0936 146.7793 45.0000 135.0000
2 0 −35.7525 80.0936 60.6588 45.0000 135.0000
3 0 47.6172 −120.0000 −2.6172 −45.0000 −45.0000
4 0 −60.0000 120.0000 −135.0000 −45.0000 −45.0000
5 −159.2347 −125.5572 −120.8932 −16.9043 136.5570 −15.1304
6 −159.2347 126.1566 120.8932 −150.4045 136.5570 −15.1304
7 −159.2347 −140.7508 −79.3110 136.7071 −136.5570 164.8696
8 −159.2347 145.8820 79.3110 51.4522 −136.5570 164.8696

The spatial planning was as follows. The experiment used a spiral line as the expected end
trajectory. The parameter equation of the end trajectory spiral line is:

x = 0.15 cos(2πt) − 0.15
y = 0.15 sin(πt)

z = 0.05t
, t ∈ [0, 5] . (49)

First, according to Equation (50), the arc length of the spiral line is:

l =

∫ 5

0

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

dt = 2.3694 m. (50)

Given
.
Smax = 0.125 m/s,

..
Smax = 0.025 m/s,

...
Smax = 0.01 m/s, and n = 1, the 15-segment S curve

was used to plan the end arc length. The total time consumed was 28.1821 s. The variation curve at
each stage of the trajectory is shown in Figure 10.

Appl. Sci. 2019, 9, 4365 26 of 36

Appl. Sci. 2019, 9, x FOR PEER REVIEW 26 of 36

−0.5536 0.8124 0.1830 −0.49610.5000 0.5000 −0.7071 −0.1330−0.6660 −0.3000 −0.6830 0.08950 0 0 1 . (48)

The algorithm was used to obtain the inverse solution and eight sets of joint angles, as shown in
Table 19. According to formula (40) the fourth set of solutions was selected and applied in the motion
control logic.

Table 19. Eight sets of reversely solved joint angles.

No. 𝜽𝟏/° 𝜽𝟐/° 𝜽𝟑/° 𝜽𝟒/° 𝜽𝟓/° 𝜽𝟔/°
1 0 38.3143 -80.0936 146.7793 45.0000 135.0000
2 0 -35.7525 80.0936 60.6588 45.0000 135.0000
3 0 47.6172 -120.0000 -2.6172 -45.0000 -45.0000
4 0 -60.0000 120.0000 -135.0000 -45.0000 -45.0000
5 -159.2347 -125.5572 -120.8932 -16.9043 136.5570 -15.1304
6 -159.2347 126.1566 120.8932 -150.4045 136.5570 -15.1304
7 -159.2347 -140.7508 -79.3110 136.7071 -136.5570 164.8696
8 -159.2347 145.8820 79.3110 51.4522 -136.5570 164.8696

The spatial planning was as follows. The experiment used a spiral line as the expected end
trajectory. The parameter equation of the end trajectory spiral line is:

𝑥 = 0.15 cos(2𝜋𝑡) − 0.15𝑦 = 0.15 sin(𝜋𝑡)𝑧 = 0.05𝑡 , 𝑡 ∈ [0,5]. (49)

First, according to Equation (50), the arc length of the spiral line is:

 ℓ = (𝑑𝑥𝑑𝑡) + (𝑑𝑦𝑑𝑡) + (𝑑𝑧𝑑𝑡) 𝑑𝑡 = 2.3694 m. (50)

Given 𝑆 = 0.125 m/s，𝑆 = 0.025 m/s，𝑆 = 0.01 m/s, and 𝑛 = 1 , the 15-segment S
curve was used to plan the end arc length. The total time consumed was 28.1821 s. The variation
curve at each stage of the trajectory is shown in Figure 10.

(a) (b) (c) (d)

Figure 10. (a) Displacement of the spatial trajectory over time. (b) Velocity of the spatial trajectory over
time. (c) Acceleration of the spatial trajectory over time. (d) Jerk of the spatial trajectory over time.

The arc length obtained according to Equation (50) was used to rewrite the parametric equation:
x = 0.15 cos

(
l

0.1581

)
− 0.15

y = 0.15 sin
(

l
0.1581

)
z = 0.1581 l

, l ∈ [0, l] . (51)

In summary, the position curve in Cartesian space and its various derivatives could be obtained,
together with the planned position curves of each joint and their various derivatives, as shown in
Figures 11–16.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 27 of 36

Figure 10. (a) Displacement of the spatial trajectory over time. (b) Velocity of the spatial trajectory
over time. (c) Acceleration of the spatial trajectory over time. (d) Jerk of the spatial trajectory over
time.

The arc length obtained according to Equation (50) was used to rewrite the parametric equation:

 ⎩⎪⎨
⎪⎧𝑥 = 0.15 𝑐𝑜𝑠(𝑙0.1581) − 0.15𝑦 = 0.15 𝑠𝑖𝑛(𝑙0.1581)𝑧 = 0.1581 𝑙 , 𝑙 ∈ [0, ℓ]. (51)

In summary, the position curve in Cartesian space and its various derivatives could be obtained,
together with the planned position curves of each joint and their various derivatives, as shown in
Figures 11–16.

(a) (b) (c) (d)

Figure 11. (a) Displacement of axis I over time. (b) Velocity of axis I over time. (c) Acceleration of axis
I over time. (d) Jerk of axis I over time.

(a) (b) (c) (d)

Figure 11. (a) Displacement of axis I over time. (b) Velocity of axis I over time. (c) Acceleration of axis I
over time. (d) Jerk of axis I over time.

Appl. Sci. 2019, 9, 4365 27 of 36

Appl. Sci. 2019, 9, x FOR PEER REVIEW 27 of 36

Figure 10. (a) Displacement of the spatial trajectory over time. (b) Velocity of the spatial trajectory
over time. (c) Acceleration of the spatial trajectory over time. (d) Jerk of the spatial trajectory over
time.

The arc length obtained according to Equation (50) was used to rewrite the parametric equation:

 ⎩⎪⎨
⎪⎧𝑥 = 0.15 𝑐𝑜𝑠(𝑙0.1581) − 0.15𝑦 = 0.15 𝑠𝑖𝑛(𝑙0.1581)𝑧 = 0.1581 𝑙 , 𝑙 ∈ [0, ℓ]. (51)

In summary, the position curve in Cartesian space and its various derivatives could be obtained,
together with the planned position curves of each joint and their various derivatives, as shown in
Figures 11–16.

(a) (b) (c) (d)

Figure 11. (a) Displacement of axis I over time. (b) Velocity of axis I over time. (c) Acceleration of axis
I over time. (d) Jerk of axis I over time.

(a) (b) (c) (d)

Figure 12. (a) Displacement of axis II over time. (b) Velocity of axis II over time. (c) Acceleration of
axis II over time. (d) Jerk of axis II over time.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 28 of 36

Figure 12. (a) Displacement of axis II over time. (b) Velocity of axis II over time. (c) Acceleration of
axis II over time. (d) Jerk of axis II over time.

(a) (b) (c) (d)

Figure 13. (a) Displacement of axis III over time. (b) Velocity of axis III over time. (c) Acceleration of
axis III over time. (d) Jerk of axis III over time.

(a) (b) (c) (d)

Figure 14. (a) Displacement of axis IV over time. (b) Velocity of axis IV over time. (c) Acceleration of
axis IV over time. (d) Jerk of axis IV over time.

Figure 13. (a) Displacement of axis III over time. (b) Velocity of axis III over time. (c) Acceleration of
axis III over time. (d) Jerk of axis III over time.

Appl. Sci. 2019, 9, 4365 28 of 36

Appl. Sci. 2019, 9, x FOR PEER REVIEW 28 of 36

Figure 12. (a) Displacement of axis II over time. (b) Velocity of axis II over time. (c) Acceleration of
axis II over time. (d) Jerk of axis II over time.

(a) (b) (c) (d)

Figure 13. (a) Displacement of axis III over time. (b) Velocity of axis III over time. (c) Acceleration of
axis III over time. (d) Jerk of axis III over time.

(a) (b) (c) (d)

Figure 14. (a) Displacement of axis IV over time. (b) Velocity of axis IV over time. (c) Acceleration of
axis IV over time. (d) Jerk of axis IV over time.

Figure 14. (a) Displacement of axis IV over time. (b) Velocity of axis IV over time. (c) Acceleration of
axis IV over time. (d) Jerk of axis IV over time.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 29 of 36

(a) (b) (c) (d)

Figure 15. (a) Displacement of axis V over time. (b) Velocity of axis V over time. (c) Acceleration of
axis V over time. (d) Jerk of axis V over time.

(a) (b) (c) (d)

Figure 16. (a) Displacement of axis VI over time. (b) Velocity of axis VI over time. (c) Acceleration of
axis VI over time. (d) Jerk of axis VI over time.

Figure 17 shows the position after the robot has finished its run. The curve of the actual motion
of the robot in Cartesian space was calculated from the forward kinematics and is shown together
with the planned spatial curve in Figure 18. After the run was completed, the actual motion curve of
each joint was acquired from the controller, as shown in Figure 19.

Figure 15. (a) Displacement of axis V over time. (b) Velocity of axis V over time. (c) Acceleration of
axis V over time. (d) Jerk of axis V over time.

Appl. Sci. 2019, 9, 4365 29 of 36

Appl. Sci. 2019, 9, x FOR PEER REVIEW 29 of 36

(a) (b) (c) (d)

Figure 15. (a) Displacement of axis V over time. (b) Velocity of axis V over time. (c) Acceleration of
axis V over time. (d) Jerk of axis V over time.

(a) (b) (c) (d)

Figure 16. (a) Displacement of axis VI over time. (b) Velocity of axis VI over time. (c) Acceleration of
axis VI over time. (d) Jerk of axis VI over time.

Figure 17 shows the position after the robot has finished its run. The curve of the actual motion
of the robot in Cartesian space was calculated from the forward kinematics and is shown together
with the planned spatial curve in Figure 18. After the run was completed, the actual motion curve of
each joint was acquired from the controller, as shown in Figure 19.

Figure 16. (a) Displacement of axis VI over time. (b) Velocity of axis VI over time. (c) Acceleration of
axis VI over time. (d) Jerk of axis VI over time.

Figure 17 shows the position after the robot has finished its run. The curve of the actual motion of
the robot in Cartesian space was calculated from the forward kinematics and is shown together with
the planned spatial curve in Figure 18. After the run was completed, the actual motion curve of each
joint was acquired from the controller, as shown in Figure 19.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 30 of 36

(a) (b)

Figure 17. (a) Posture of the robot after completion of its run from the front. (b) Posture of the robot
after completion of its run from the side.

Figure 18. Robot end trajectory.

Figure 19. The joint trajectory after the inverse kinematics solution.

In the fourth experiment, the Beckhoff controller, which is commonly used in the industry, was
used and the general algorithm was implemented in the controller. The robot controller sends motion
commands to the drive at a certain period. This requires the controller to complete the kinematic
inverse solution within a specified amount of time to ensure the continuity. A shorter period results
in a higher real-time performance. The period used in this article was 2 ms. The 2 ms cycle is sufficient
to meet the general accuracy requirements. For example, in Ref. [5] the medical robot can accept a
closed loop period of 20 ms. In other words, the proposed algorithm in this paper could achieve a

Figure 17. (a) Posture of the robot after completion of its run from the front. (b) Posture of the robot
after completion of its run from the side.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 30 of 36

(a) (b)

Figure 17. (a) Posture of the robot after completion of its run from the front. (b) Posture of the robot
after completion of its run from the side.

Figure 18. Robot end trajectory.

Figure 19. The joint trajectory after the inverse kinematics solution.

In the fourth experiment, the Beckhoff controller, which is commonly used in the industry, was
used and the general algorithm was implemented in the controller. The robot controller sends motion
commands to the drive at a certain period. This requires the controller to complete the kinematic
inverse solution within a specified amount of time to ensure the continuity. A shorter period results
in a higher real-time performance. The period used in this article was 2 ms. The 2 ms cycle is sufficient
to meet the general accuracy requirements. For example, in Ref. [5] the medical robot can accept a
closed loop period of 20 ms. In other words, the proposed algorithm in this paper could achieve a

Figure 18. Robot end trajectory.

Appl. Sci. 2019, 9, 4365 30 of 36

Appl. Sci. 2019, 9, x FOR PEER REVIEW 30 of 36

(a) (b)

Figure 17. (a) Posture of the robot after completion of its run from the front. (b) Posture of the robot
after completion of its run from the side.

Figure 18. Robot end trajectory.

Figure 19. The joint trajectory after the inverse kinematics solution.

In the fourth experiment, the Beckhoff controller, which is commonly used in the industry, was
used and the general algorithm was implemented in the controller. The robot controller sends motion
commands to the drive at a certain period. This requires the controller to complete the kinematic
inverse solution within a specified amount of time to ensure the continuity. A shorter period results
in a higher real-time performance. The period used in this article was 2 ms. The 2 ms cycle is sufficient
to meet the general accuracy requirements. For example, in Ref. [5] the medical robot can accept a
closed loop period of 20 ms. In other words, the proposed algorithm in this paper could achieve a

Figure 19. The joint trajectory after the inverse kinematics solution.

In the fourth experiment, the Beckhoff controller, which is commonly used in the industry, was
used and the general algorithm was implemented in the controller. The robot controller sends motion
commands to the drive at a certain period. This requires the controller to complete the kinematic
inverse solution within a specified amount of time to ensure the continuity. A shorter period results in
a higher real-time performance. The period used in this article was 2 ms. The 2 ms cycle is sufficient
to meet the general accuracy requirements. For example, in Ref. [5] the medical robot can accept a
closed loop period of 20 ms. In other words, the proposed algorithm in this paper could achieve
a closed-loop period higher than industrial demand in equipment commonly used in the industry.
The fast closed-loop period means that the algorithm has higher computational efficiency.

Since our algorithm could decompose complex inverse motion problems into several sub-problems
and solve them one by one, all joint angles could be solved accurately and quickly. The final experimental
results show that the system could complete the inverse solution of the kinematics within the specified
period. This allows the algorithm to run stably in situations with real-time requirements.

Figure 8 shows the end curve planned to use 15 S-curve segments. The apparent rise and fall
process in the jerk curve could be seen. This allows the entire curve to have a smoother transition at
start–stop. Based on Equation (46) and the plan in Figure 10, the angular curve of each joint could be
obtained, as shown in Figures 11–16.

It can be seen from Figures 11–16 that all joint motion curves, as well as the various derivative
curves could be ensured to start from 0 during the start-up phase smoothly. The continuous and smooth
was kept in the whole moving process. Moreover, the curve was smoothly reduced to zero during the
stop phase. Especially the fourth derivative had kept the continuous and smooth fluctuations, which
was the effect that could not be realized through traditional planning method. This paper introduced
the joint curve obtained through using the traditional seven-segment planning there to facilitate the
comparison, as shown in Figures 20–25. It can be clearly seen that the Jerk curve of each joint had an
obvious jump phenomenon during the start–stop phase. Meanwhile, thumbing changes occurred in
the operation process. These problems would cause the motor to operate unstably in the end.

Appl. Sci. 2019, 9, 4365 31 of 36

Appl. Sci. 2019, 9, x FOR PEER REVIEW 31 of 36

closed-loop period higher than industrial demand in equipment commonly used in the industry. The
fast closed-loop period means that the algorithm has higher computational efficiency.

Since our algorithm could decompose complex inverse motion problems into several sub-
problems and solve them one by one, all joint angles could be solved accurately and quickly. The
final experimental results show that the system could complete the inverse solution of the kinematics
within the specified period. This allows the algorithm to run stably in situations with real-time
requirements.

Figure 8 shows the end curve planned to use 15 S-curve segments. The apparent rise and fall
process in the jerk curve could be seen. This allows the entire curve to have a smoother transition at
start–stop. Based on Equation (46) and the plan in Figure 10, the angular curve of each joint could be
obtained, as shown in Figures 11–16.

It can be seen from Figures 11–16 that all joint motion curves, as well as the various derivative
curves could be ensured to start from 0 during the start-up phase smoothly. The continuous and
smooth was kept in the whole moving process. Moreover, the curve was smoothly reduced to zero
during the stop phase. Especially the fourth derivative had kept the continuous and smooth
fluctuations, which was the effect that could not be realized through traditional planning method.
This paper introduced the joint curve obtained through using the traditional seven-segment planning
there to facilitate the comparison, as shown in Figure 20–25. It can be clearly seen that the Jerk curve
of each joint had an obvious jump phenomenon during the start–stop phase. Meanwhile, thumbing
changes occurred in the operation process. These problems would cause the motor to operate
unstably in the end.

(a) (b) (c) (d)

Figure 20. (a) Displacement of axis I over time by using seven segments S-curve. (b) Velocity of axis
I over time by using seven segments S-curve. (c) Acceleration of axis I over time by using seven
segments S-curve. (d) Jerk of axis I over time by using seven segments S-curve.

Figure 20. (a) Displacement of axis I over time by using seven segments S-curve. (b) Velocity of axis I
over time by using seven segments S-curve. (c) Acceleration of axis I over time by using seven segments
S-curve. (d) Jerk of axis I over time by using seven segments S-curve.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 32 of 36

(a) (b) (c) (d)

Figure 21. (a) Displacement of axis II over time by using seven segments S-curve. (b) Velocity of axis
II over time by using seven segments S-curve. (c) Acceleration of axis II over time by using seven
segments S-curve. (d) Jerk of axis II over time by using seven segments S-curve.

(a) (b) (c) (d)

Figure 22. (a) Displacement of axis III over time by using seven segments S-curve. (b) Velocity of axis
III over time by using seven segments S-curve. (c) Acceleration of axis III over time by using seven
segments S-curve. (d) Jerk of axis III over time by using seven segments S-curve.

Figure 21. (a) Displacement of axis II over time by using seven segments S-curve. (b) Velocity of axis
II over time by using seven segments S-curve. (c) Acceleration of axis II over time by using seven
segments S-curve. (d) Jerk of axis II over time by using seven segments S-curve.

Appl. Sci. 2019, 9, 4365 32 of 36

Appl. Sci. 2019, 9, x FOR PEER REVIEW 32 of 36

(a) (b) (c) (d)

Figure 21. (a) Displacement of axis II over time by using seven segments S-curve. (b) Velocity of axis
II over time by using seven segments S-curve. (c) Acceleration of axis II over time by using seven
segments S-curve. (d) Jerk of axis II over time by using seven segments S-curve.

(a) (b) (c) (d)

Figure 22. (a) Displacement of axis III over time by using seven segments S-curve. (b) Velocity of axis
III over time by using seven segments S-curve. (c) Acceleration of axis III over time by using seven
segments S-curve. (d) Jerk of axis III over time by using seven segments S-curve.

Figure 22. (a) Displacement of axis III over time by using seven segments S-curve. (b) Velocity of axis
III over time by using seven segments S-curve. (c) Acceleration of axis III over time by using seven
segments S-curve. (d) Jerk of axis III over time by using seven segments S-curve.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 33 of 36

(a) (b) (c) (d)

Figure 23. (a) Displacement of axis IV over time by using seven segments S-curve. (b) Velocity of axis
IV over time by using seven segments S-curve. (c) Acceleration of axis IV over time by using seven
segments S-curve. (d) Jerk of axis IV over time by using seven segments S-curve.

(a) (b) (c) (d)

Figure 24. (a) Displacement of axis V over time by using seven segments S-curve. (b) Velocity of axis
V over time by using seven segments S-curve. (c) Acceleration of axis V over time by using seven
segments S-curve. (d) Jerk of axis V over time by using seven segments S-curve.

Figure 23. (a) Displacement of axis IV over time by using seven segments S-curve. (b) Velocity of axis
IV over time by using seven segments S-curve. (c) Acceleration of axis IV over time by using seven
segments S-curve. (d) Jerk of axis IV over time by using seven segments S-curve.

Appl. Sci. 2019, 9, 4365 33 of 36

Appl. Sci. 2019, 9, x FOR PEER REVIEW 33 of 36

(a) (b) (c) (d)

Figure 23. (a) Displacement of axis IV over time by using seven segments S-curve. (b) Velocity of axis
IV over time by using seven segments S-curve. (c) Acceleration of axis IV over time by using seven
segments S-curve. (d) Jerk of axis IV over time by using seven segments S-curve.

(a) (b) (c) (d)

Figure 24. (a) Displacement of axis V over time by using seven segments S-curve. (b) Velocity of axis
V over time by using seven segments S-curve. (c) Acceleration of axis V over time by using seven
segments S-curve. (d) Jerk of axis V over time by using seven segments S-curve.

Figure 24. (a) Displacement of axis V over time by using seven segments S-curve. (b) Velocity of axis
V over time by using seven segments S-curve. (c) Acceleration of axis V over time by using seven
segments S-curve. (d) Jerk of axis V over time by using seven segments S-curve.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 34 of 36

(a) (b) (c) (d)

Figure 25. (a) Displacement of axis VI over time by using seven segments S-curve. (b) Velocity of axis
VI over time by using seven segments S-curve. (c) Acceleration of axis VI over time by using seven
segments S-curve. (d) Jerk of axis VI over time by using seven segments S-curve.

Figure 18 shows the actual run in Cartesian space. It could be seen that the actual motion
trajectory coincided with the planned motion trajectory. The mean square error of the two tracks was
calculated to be 7.8265 × 10−10 m. This data shows that the error between the actual trajectory and the
target trajectory was extremely small. This shows that the inverse solution of the robot had higher
accuracy.

6. Conclusions

Based on the DH model, this study proposed a universal algorithm for finding an inverse
kinematics closed-form solution. This algorithm divided the inverse kinematics problem related to
robots with a closed-form solution into three sub-problems assuming that the algebraic equation had
a formula solution. The solvability conditions for the three types of sub-problems were analyzed to
derive a formula solution. If a serial robot can be described with these three types of sub-problems,
the robot will definitely have a closed-form solution. Meanwhile, the formula solution based on such
a problem could quickly solve for all the joint angles. This method was not only applicable to six-
DOF robots with a closed-form solution but also to low-DOF robots with the same solution form. In
addition, establishing an algorithm based on the DH model provides a concise and efficient tool for
selecting sub-problems and a real-time inverse kinematics solution for the motion controller of a
serial robot. To verify the correctness and real-time performance of the algorithm, we presented four
experimental designs. The first three experiments were conducted on MATLAB with a series of robot
to verify the completeness, universality, and continuity of this algorithm.

In the first experiment, the completeness of the algorithm was verified. The experiment used a
low-degree-of-freedom robot with closed inverse solutions to prove that the algorithm could solve
its closed inverse solution, and the algorithm would be terminated for the robot without closed
inverse solutions to avoid infinite loop. This was used to prove the completeness of the algorithm. In
the second experiment, two uncommon robots were constructed through using some basic problems,
but the closed inverse solution could still be solved. Therefore, it could be known that the closed
inverse solution of the series robots constructed by basic problems could be solved. Meanwhile, for
these robots whose structure was not changed but the link parameter was changed, the closed inverse
solution of them could also be solved correctly, which indicates that the algorithm had certain
versatility in solving the closed inverse solution problem. In the third experiment, the common
Puma560 robot was used as the experimental object. In the experiment, a spatial curve was planned.

Figure 25. (a) Displacement of axis VI over time by using seven segments S-curve. (b) Velocity of axis
VI over time by using seven segments S-curve. (c) Acceleration of axis VI over time by using seven
segments S-curve. (d) Jerk of axis VI over time by using seven segments S-curve.

Figure 18 shows the actual run in Cartesian space. It could be seen that the actual motion trajectory
coincided with the planned motion trajectory. The mean square error of the two tracks was calculated
to be 7.8265 × 10−10 m. This data shows that the error between the actual trajectory and the target
trajectory was extremely small. This shows that the inverse solution of the robot had higher accuracy.

Appl. Sci. 2019, 9, 4365 34 of 36

6. Conclusions

Based on the DH model, this study proposed a universal algorithm for finding an inverse
kinematics closed-form solution. This algorithm divided the inverse kinematics problem related to
robots with a closed-form solution into three sub-problems assuming that the algebraic equation had
a formula solution. The solvability conditions for the three types of sub-problems were analyzed to
derive a formula solution. If a serial robot can be described with these three types of sub-problems, the
robot will definitely have a closed-form solution. Meanwhile, the formula solution based on such a
problem could quickly solve for all the joint angles. This method was not only applicable to six-DOF
robots with a closed-form solution but also to low-DOF robots with the same solution form. In addition,
establishing an algorithm based on the DH model provides a concise and efficient tool for selecting
sub-problems and a real-time inverse kinematics solution for the motion controller of a serial robot.
To verify the correctness and real-time performance of the algorithm, we presented four experimental
designs. The first three experiments were conducted on MATLAB with a series of robot to verify the
completeness, universality, and continuity of this algorithm.

In the first experiment, the completeness of the algorithm was verified. The experiment used a
low-degree-of-freedom robot with closed inverse solutions to prove that the algorithm could solve its
closed inverse solution, and the algorithm would be terminated for the robot without closed inverse
solutions to avoid infinite loop. This was used to prove the completeness of the algorithm. In the
second experiment, two uncommon robots were constructed through using some basic problems, but
the closed inverse solution could still be solved. Therefore, it could be known that the closed inverse
solution of the series robots constructed by basic problems could be solved. Meanwhile, for these robots
whose structure was not changed but the link parameter was changed, the closed inverse solution
of them could also be solved correctly, which indicates that the algorithm had certain versatility in
solving the closed inverse solution problem. In the third experiment, the common Puma560 robot was
used as the experimental object. In the experiment, a spatial curve was planned. The correct joint angle
sequence was obtained and the changes of the joint angle curve were continuously without jumping
after been inversely solved by the algorithm. Which indicates that the algorithm could guarantee the
continuity of its mapping on the inverse solution problem.

The fourth experiment was conducted on a six-DOF robotic platform built using a Beckhoff-C6920
controller and an RGM motor to verify the real-time performance of the algorithm using the above
hardware platform. The spatial and joint positions were computed with a close-loop cycle of 2 ms and
were transmitted to the motor via CanOpen. The results demonstrated the ability of the algorithm
to solve the three sub-problems within a specified cycle and to compute the appropriate joint angles.
Moreover, the curve was continuous. This paper used a completely new approach to study the inverse
kinematics of serial robots. In this study, the conditions for the existence of the closed-form inverse
kinematic solution of a serial robot were completed and the basic theory of robotics was perfected.
Based on this method, a general closed-form inverse kinematics algorithm based on the DH model
was implemented, which had not been done in previous studies. Importantly, this method is a
general-purpose algorithm that can be used in industrial fields in real time. This increases the versatility
of the universal serial robot motion controller.

However, the algorithm still has shortcomings. First, the algorithm only targets serial robots and
the moving joints are not included in the solution model. This limits the scope of application of the
algorithm, due to its inability to solve the cases of SCARA robots or other parallel robots. In addition,
the algorithm cannot solve the problem when the robot passes through a singular point; singular
points are avoided via restrictions implemented in the software. Moreover, because the algorithm is a
purely analytical method, it is difficult to combine with other numerical methods to solve the problem
of singular points.

Author Contributions: Conceptualization, W.S.; methodology, W.S. and L.X.; software, W.S.; writing—original
draft preparation, W.S.; writing—review and editing, W.S., L.X., H.B., L.Q.; supervision, L.Q., funding acquisition,
L.X.

Appl. Sci. 2019, 9, 4365 35 of 36

Funding: Supported by: National Key R&D Program of China (2016YFC0803000, 2016YFC0803005).

Conflicts of Interest: The authors declare there is no conflict of interest regarding the publication of this paper.

References

1. Xiao, W.; Strauß, H.; Loohß, T.; Hoffmeister, H.W.; Hesselbach, J. Closed-form inverse kinematics of 6R
milling robot with singularity avoidance. Prod. Eng. 2011, 5, 103–110. [CrossRef]

2. Wang, L.; Fallavollita, P.; Zou, R.; Chen, X.; Weidert, S.; Navab, N. Closed-form inverse kinematics for
interventional C-arm X-ray imaging with six degrees of freedom: Modeling and application. IEEE Trans.
Med. Imaging 2012, 31, 1086–1099. [CrossRef] [PubMed]

3. Khan, A.; Cheng, X.; Zhang, X.; Quan, W.L. Closed form inverse kinematics solution for 6-DOF underwater
manipulator. In Proceedings of the 2015 International Conference on Fluid Power and Mechatronics (FPM),
Harbin, China, 5–7 August 2015; pp. 1171–1176.

4. Bunathuek, N.; Laksanacharoen, P. Inverse kinematics analysis of the three-legged reconfigurable spherical
robot II. In Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics
(ICCAR), Nagoya, Japan, 22–24 April 2017; pp. 31–35.

5. Bai, L; Yang, J.; Chen, X.; Jiang, P.; Liu, F.; Zheng, F.; Sun, Y. Solving the Time-Varying Inverse Kinematics
Problem for the Da Vinci Surgical Robot. Appl. Sci. 2019, 9, 546. [CrossRef]

6. Hartenberg, R.S. A Kinematic Notation for Lower-Pair Mechanism Based on Matrices. Trans. ASME J. Appl. Mech.
1955, 22, 215–221.

7. Raghaven, M.; Roth, B. Kinematic analysis of the 6R manipulator of general geometry. In Proceedings of the
International Symposium on Robotics Research, Hanoi, Vietnam, 6–10 October 2019; pp. 263–269.

8. Penrose, R. On Best Approximate Solutions of Linear Matrix Equations. Proc. Camb. Philos. Soc. 1956, 52, 17.
[CrossRef]

9. Siciliano, B. A Closed-loop Inverse Kinematic Scheme for On-line Joint-based Robot Control. Robotica 1990,
8, 231–243. [CrossRef]

10. Wampler, C.W.I. Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped
Least-Squares Methods. IEEE Trans.Syst. Man Cybern. 1986, 16, 93–101. [CrossRef]

11. Kelemen, M.; Virgala, I.; Lipták, T.; Miková, L’.; Filakovský, F.; Bulej, V. A Novel Approach for a Inverse
Kinematics Solution of a Redundant Manipulator. Appl. Sci. 2018, 8, 2229. [CrossRef]

12. Reiter, A.; Muller, A.; Gattringer, H. On Higher Order Inverse Kinematics Methods in Time-Optimal Trajectory
Planning for Kinematically Redundant Manipulators. IEEE Trans. Ind. Inform. 2018, 14, 1681–1690. [CrossRef]

13. Feng, Y.; Wang, Y.; Wei, S. A novel hybrid electromagnetism-like algorithm for solving the inverse kinematics
of robot. Ind. Robot 2011, 38, 429–440. [CrossRef]

14. Yin, F.; Wang, Y.N.; Wei, S.N. Inverse Kinematic Solution for Robot Manipulator Based on Electromagnetism-like
and Modified DFP Algorithms. Acta Autom. Sin. 2011, 37, 74–82. [CrossRef]

15. Paul, R.P.; Shimano, B. Kinematic Control Equations for Simple Manipulators. In Proceedings of the IEEE
Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, San Diego, CA,
USA, 10–12 January 1979.

16. Pieper, D.L. The Kinematics of Manipulators under Computer Control. Ph.D. Thesis, Stanford University,
Stanford, CA, USA, 1968.

17. John, J.C. Inverse kinematics of the manipulator. In Introduction to Robotics: Mechanics and Control; Pearson:
London, UK, 2005; pp. 87–88.

18. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control, 2nd ed.; Springer
Publishing Company, Incorporated: London, UK, 2010; pp. 76–82.

19. Cui, H.-X.; Feng, K.; Li, H.-L.; Han, J.-H. Singularity avoidance of 6R decoupled manipulator using improved
Gaussian distribution damped reciprocal algorithm. Ind. Robot 2017, 44, 324–332. [CrossRef]

20. Murray, R.M.; Sastry, S.S.; Li, Z. A Mathematical Introduction to Robotic Manipulation; CRC Press, Inc.: Florida,
FL, USA, 1994; p. 292.

21. Kahan, W. Lectures on Computational Aspects of Geometry; University of California: Berkeley, CA, USA, 1983.
22. Paden, B. Kinematics and Control Robot Manipulators. Ph.D. Thesis, Department of Electrical Engineering and

Computer Sciences, University of California, Berkeley, CA, USA, 1986. Available online: https://10.1109/ACSSC.
1985.671441 (accessed on 8 October 2018). [CrossRef]

http://dx.doi.org/10.1007/s11740-010-0283-9
http://dx.doi.org/10.1109/TMI.2012.2185708
http://www.ncbi.nlm.nih.gov/pubmed/22293978
http://dx.doi.org/10.3390/app9030546
http://dx.doi.org/10.1017/S0305004100030929
http://dx.doi.org/10.1017/S0263574700000096
http://dx.doi.org/10.1109/TSMC.1986.289285
http://dx.doi.org/10.3390/app8112229
http://dx.doi.org/10.1109/TII.2018.2792002
http://dx.doi.org/10.1108/01439911111132111
http://dx.doi.org/10.3724/SP.J.1004.2011.00074
http://dx.doi.org/10.1108/IR-09-2016-0243
https://10.1109/ACSSC.1985.671441
https://10.1109/ACSSC.1985.671441
http://dx.doi.org/10.1109/ACSSC.1985.671441

Appl. Sci. 2019, 9, 4365 36 of 36

23. Wang, H.; Lu, X.; Cui, W.; Zhang, Z.; Li, Y.; Sheng, C. General inverse solution of six-degrees-of freedom
serial robots based on the product of exponentials model. Assem. Autom. 2018, 38, 361–367. [CrossRef]

24. An, H.S.; Seo, T.W.; Lee, J.W. Generalized solution for a sub-problem of inverse kinematics based on product
of exponential formula. J. Mech. Sci. Technol. 2018, 32, 2299–2307. [CrossRef]

25. Corke, P.I.J.I.R.; Magazine, A. A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag. 1996, 3, 24–32.
[CrossRef]

26. Jazar, R.N. Inverse kinematics. In Theory of Applied Robotics; Springer: Berkeley, CA, USA, 2010; pp. 222–234.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1108/AA-10-2017-122
http://dx.doi.org/10.1007/s12206-018-0441-0
http://dx.doi.org/10.1109/100.486658
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Kinetic Models
	Standard DH Parameters
	Forward Kinematics Formula
	Decoupling of the End Linkage
	Translational Relation of the Rotational Component
	Solving the Trigonometric Equation

	Analysis of The Inverse Kinematics Problem
	Three Types of Sub-Problems Related to Closed-Form Inverse Kinematics
	The First Type of Sub-problem
	First Three Joint Configured as z1 z2z3a
	First Three Joint Configured as z1 z2z3
	First Three Joint Configured as z1z2 z3

	Solving the Second Type of Sub-Problem
	Three Mutually Perpendicular Sub-Chains
	Two Mutually Perpendicular Sub-Chains

	The Third Type of Sub-Problem
	Sub-Chain Length as [1,0,0]
	Sub-Chain Length as [2,0,0]
	Sub-Chain Length as [2,1,0] and [1,1,0]
	Sub-Chain Length as [1,2,0]
	Sub-Chain Length as [2,0,1] or [1,0,1]
	Sub-Chain Length as [1,0,2]

	Summary

	Algorithm Design for Universal Inverse Kinematics
	Experiments
	Verification Experiment for Algorithm Completeness
	Verification Experiment of Algorithm Versatility
	Verification Experiment for the Algorithm Continuity
	Real-Time Verification Experiment of the Algorithm

	Conclusions
	References

