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Abstract: In this paper, a novel, robust fin controller based on the backstepping control strategy
and sliding mode control is proposed to handle the problem of ship roll stabilization. First,
the mathematical model of the fin control system is established, including the modeling errors
and the external disturbances generated by sea waves. In order to address the side effects caused
by differential expansion, a command-filter is implemented within the backstepping controller
design. By introducing a new performance function and a corresponding error transformation,
the compensated tracking error can be bounded to achieve the desired prescribed dynamic and
steady-state responses. The sliding mode disturbance rejection control with prescribed performance
is realized by combining the disturbance observer. Simulations are presented to demonstrate the
effectiveness of the proposed control scheme.

Keywords: fin stabilizer; command-filtered backstepping; sliding mode control; prescribed
performance; disturbance observer

1. Introduction

During recent decades, the problem of ship roll stabilization has been increasingly tackled by
researchers due to a demand for higher cargo safety, on-board staff effectiveness, passenger comfort,
and on-board equipment operation [1–3]. In order to reduce the effect of roll motion, several solutions
have been devised. Examples include bilge keels, gyroscopic stabilizers, anti-rolling tanks, active fins,
and rudder roll stabilization [3]. Among these promising techniques, the fin stabilizer is one of the most
interesting devices due to its reliability, engineering feasibility and high efficiency. The effectiveness of
the fin stabilizer is demonstrated especially when the ship navigates at higher speeds, as it can provide
considerable damping to the ship roll angle and the corresponding roll rate [4].

As a key problem in sailing, environmental disturbances, such as waves, sea winds and
underwater currents, will damage the stability of the system and induce rolling. Some attempts
to deal with these disturbances can be found in [3–8]. Due to the difficulty in predicting the value of
external disturbances, Sun et al. [3] decoupled the fin hydrodynamic force and severe disturbances
using a force sensor and a novel mechanical decoupling method. Ghaemi et al. [4] reduced the
impact caused by unknown disturbances using a robust control method when the discrete fin
stabilizer system model is confronted with bounded additive disturbances. In [5], a self-tuning
proportion-integration-differentiation (PID) controller, based on two multilayer neural networks,
was constructed for suppressing the impact of the external disturbance with self-tuning PID gains. In
order to eliminate the moments induced by disturbance, in [6] a lift-feedback control of fin stabilizers
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based on a new measuring lift device was proposed. In [7], the simulation of the multi-island genetic
algorithm (MIGA) PID controller showed that the fin stabilizer is an effective method of roll angle
reduction in the presence of external disturbances. However, the aforementioned methods will
inevitably increase the controller design difficulty and the computational complexity of the control
system. In addition, the disturbance observer is capable of estimating the unknown disturbance while
integrated with other advanced control techniques. In [9], a nonlinear disturbance observer is proposed
the multilink robotic manipulators; this observer relaxes the constraints on the prior knowledge of the
acceleration signals. Zhang et al. [10] investigated the combination of the disturbance observer and the
prescribed performance control methods, which eliminate the impact of these external disturbances
effectively. In this study, the impact of the external disturbance was also suppressed through the
adoption of a nonlinear disturbance observer.

When performing certain tasks, the roll angle of a ship should be adjusted through an expected
dynamic process and the steady-state working performance. The controllers that are capable of
providing this desired dynamic process and steady-state performance are usually based on the
prescribed performance control [11–16]. In [11], a robust controller for a multi-input multi-output
(MIMO) system was proposed based on adaptive control with respect to the prescribed performance.
Bechlioulis et al. [12] proposed an adaptive prescribed performance controller where the error
convergence trajectory, the overshoot, and the steady-state error are constrained by a prescribed
performance function. The corresponding studies also investigated some actual systems, such as
flexible air-breathing hypersonic vehicles [13], variable stiffness actuated robots [14], and unknown
high-order nonlinear multi-agent systems [16]. Considering the superior characteristics of the
prescribed performance control, it may be one of the most effective strategies to provide an expected
performance for the ship rolling system.

To simplify the controller design process with prescribed performance, many researchers focus
on the backstepping control strategy [17–25]. A novel backstepping control method was developed
in [17] for a class of uncertain system, and the stability of the system was examined under the impact
of artificial delays. In [18], an adaptive backstepping approach was proposed for the nonlinear systems
with quantized states to solve the discontinuity problem brought by state quantization. However,
the above backstepping methods inevitably have the problem of differential expansion, which will
damage the control performance and affect the stability of the system, especially for high-order systems.
In addition, the differential signals are easily affected by high-frequency disturbances or uncertainties.
In order to address this problem, Farrell et al. [20,21] utilized a compensated tracking error signal to
introduce the concept of the command filter so that the problem can be addressed. In [25], modified
error compensation signals were proposed along with new virtual control signals so as to ensure the
finite-time tracking performance for a class of nonlinear systems. Besides, the backstepping control
was applied to practical engineering by combining other advanced control methods like sliding mode
control for better control performance, which has been investigated by researchers [19,22]. In [19],
the proposed backstepping control strategy was incorporated with a predictive model control method
to maintain the DC-bus voltage in the photovoltaic (PV) grid-connected system. Xu et al. [22] integrated
adaptive sliding mode control with the command filter-based backstepping control strategy for the
linear induction motor with end effects, uncertain parameters and external disturbances to solve its
speed control problem. However, they have no assurance of the control performance and range of
tracking error.

Motivated by the aforementioned studies, an adaptive command filter-based backstepping
controller (CBC) is presented for the ship roll stabilization in this paper. The dynamic performance
and the steady-state of the compensated tracking error is guaranteed through the implementation
of the prescribed performance control strategy. To offset the impact caused by external disturbances,
a nonlinear disturbance observer is constructed and the stability of the whole system is examined via
Lyapunov stability criterion. Due to the time-delay in the estimation, a disturbance estimation error
may exist in the design of the proposed command-filter based backstepping controller. To eliminate the
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impact caused by this error, an adaptive control method is integrated with the design of the prescribed
performance controller. The main contributions of this study are as follows:

• To the best of the author’s knowledge, the result in this paper is the first attempt to incorporate a
prescribed performance control strategy in the ship rolling system control with adaptive sliding
mode control.

• Compared to some existing methods, the impact caused by the external disturbances and
the system uncertainty is taken into account, even with the estimation delay problem that
is eliminated by the adaptive control strategy.

This paper is organized as follows: In Section 2, the system dynamics, command filter and the
background knowledge for the prescribed performance control strategy are presented. In Section 3,
the command-filter based controller with prescribed performance is constructed and the effectiveness
of the disturbance observer is analyzed. Section 4 demonstrates the simulation results. Conclusions
and future work are presented in Section 5.

2. Problem Formulation

2.1. System Dynamic

We note that the ship roll angles may have a large range. As a result, the traditional ship motion
mathematical model, which is based on Conolly’s theory, is no longer applicable. According to some
reasonable simplifications, the ship roll dynamic equation in [1,26] is formulated as follows

φ̇ = p′
U
L

(1)

(
I′x + J′x

)
ṗ′ − A′p′ − B′

∣∣p′∣∣ p′ + W ′GM′φ = K′ − 2A′FCLα f l′f (2)

where φ is the rolling angle of the ship, I′x is the moments of inertia, J′x is the added inertia moments,
A′ and B′ are the so-called roll motion damping coefficients, GM is the initial metacentric height, α f is
the control moment generated by the fin stabilizer, K is the moment caused by the sea wave, L is the
ship length between ship perpendiculars, g is the gravity acceleration constant, ρ is the water density,
U is the ship speed, A f is the fin area, l f is the acting force arm of the fin stabilizer, and CL is the slope
of lift coefficient. Symbol ’′’ denotes dimensionless variables. According to Equations (1) and (2),
the dynamic equation of the rolling angle can be rewritten in the following way,

ṗ′ = a1φ + a2 p′ + a3 p′|p′|+ bα f + F (3)

where a1 = −W ′GM′/(I′x + J′x), a2 = A′/(I′x + J′x), a3 = B′/(I′x + J′x), b = −2A′FCLl′f /(I′x + J′x) and
F = K′/(I′x + J′x).

We define x = [x1, x2]
T = [φ, p′]T as the state vector, y = φ = x1 as the output and u = α f as the

control input. Considering the unknown part in the modeling process and the uncertainty caused by
the external sea wave, the dynamic Equation (3) can be written as

ẋ1 =
U
L

x2 (4)

ẋ2 = a1x1 + a2x2 + a3x2|x2|+ bu + F (5)

y = x1. (6)

Denoting f (x) = a1x1 + a2x2 + a3x2|x2|, c = U/L. The system dynamic equation can be
simplified as follows

ẋ1 = cx2 (7)
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ẋ2 = f (x) + bu + F. (8)

2.2. Command Filter

In order to mitigate the impact of the differential expansion as well as of the input saturation
problem, Farrell et al. [20,21] introduced a constrained command filter in the design of the backstepping
control strategy. The corresponding command filter, which is depicted in Figure 1 is as follows[

q̇1

q̇2

]
=

[
q2

2ξωn

[
SR

(
ω2

n
2ξωn

(SM(u)− q1)
)
− q2

]] (9)

where [
q1

q2

]
=

[
xc

ẋc

]
, u = xd

and ξ and ωn are the damping and the bandwidth of the filter, respectively, SR(·) and SM(·) represent
the rate and the magnitude limits, respectively.

Figure 1. The structure of the constrained command filter.

2.3. Prescribed Performance Control and Error Transformation

To guarantee the transient and steady-state performance, the prescribed performance control
strategy is adopted here. The objective is to translate the prescribed performance into tracking error
constraints and cause the compensated tracking error signals z̄1(defined later) to exhibit the desired
transient and steady-state performance.

In order to achieve the desired control objective, the so-called performance function is proposed,
which bounds the system’s performance. The definition of the performance function is as follows:

Definition 1 ([11]). A smooth function ρ(t) : R+ → R+ will be called as a performance function if it satisfies

(1) ρ(t) is positive and decreasing
(2) limt→∞ ρ(t) = ρ∞ > 0.

The function ρ(t) is conventionally selected as

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞ (10)

where ρ0, ρ∞ and l are positive scalars. By using the performance function, the compensated tracking
error z̄1 is bounded by the following constraints,{

−Mρ(t) < z̄1(t) < ρ(t), z̄1(0) > 0

−ρ(t) < z̄1(t) < Mρ(t), z̄1(0) < 0
(11)

where 0 ≤ M ≤ 1. According to the performance function (10) and the performance constraints (11),
if the initial value of the compensated tracking error z̄1 satisfies 0 ≤ |z̄1(0)| < ρ0, the behavior of z̄1(t)
will be governed by the performance function ρ(t) and the convergence speed of the compensated
tracking error can be bounded by the performance function as well.
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In order to transform the constrained system performance into an equivalent unconstrained
one, an error transformation is proposed here with respect to the system dynamics, the compensated
tracking error and the performance constraints in (11). More specifically, the error transformation
function is defined as

z̄1(t) = ρ(t)L(ε(t)) (12)

where ε(t)is the transformed error and L(·) is a smooth, strictly increasing and invertible function.
In addition, L(·) possesses the following properties.

−M < L(ε) < 1, z̄1(0) > 0 (13)

− 1 < L(ε) < M, z̄1(0) < 0 (14) lim
ε→−∞

L(ε) = −M,

lim
ε→∞
L(ε) = 1,

z̄1(0) > 0 (15)

 lim
ε→−∞

L(ε) = −1,

lim
ε→∞
L(ε) = M,

z̄1(0) < 0. (16)

A function L, which satisfies all the constraints, can be selected as

L(ε) =
{

eε−Me−ε

eε+e−ε , if z̄1(0) > 0
Meε−e−ε

eε+e−ε , if z̄1(0) < 0.
(17)

From the error transformation function (12) and the definition of function L, the transformation
error can be rewritten as

ε(t) = L−1
(

z̄1(t)
ρ(t)

)
. (18)

Remark 1. Once ε remains bounded, whenever z̄1(0) > 0, it can be obtained that −M < L(ε) < 1.
From ρ(t) > 0 and (12), it can be found that −Mρ(t) < z̄1(t) < ρ(t). Otherwise, whenever z̄1(0) < 0, it can
be obtained that −ρ(t) < z̄1(t) < Mρ(t). Therefore, the error transformation function can guarantee the
prescribed performance of the whole system.

2.4. Problem Formulation

In this paper, a novel command-filter backstepping control method is investigated for the ship
rolling system in the following aspects:

(1) By designing a proper backstepping control method that integrates the command-filter technique,
the system output x1, namely the rolling angle, can be uniformly ultimately bounded.

(2) The compensated tracking error z̄1 can obtain the prescribed transient and steady-state
performance with respect to the proposed control strategy.

(3) In order to offset the impact caused by external disturbances, a disturbance observer is proposed
in this paper to provide the estimation of the external disturbances during the design of the
command-filter backstepping controller.

For the development of the prescribed performance controller with command-filter backstepping
method, the following assumptions are required:

Assumption 1 ([11]). The rolling angle ϕ, its derivative ϕ̇ and the acceleration of the rolling angle ϕ̈

are bounded.

Assumption 2 ([9]). The disturbance is bounded and it satisfies |F| ≤ F̄, where F̄ is a positive scalar.
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3. Main Result

3.1. Command-Filter Based Controller Design with Prescribed Performance

In this section, a command-filter based backstepping controller with prescribed performance is
designed. Firstly, some new error variables are defined as follows,

z1 = x1 − xc
1 (19)

z2 = x2 − xc
2 (20)

where the definitions of xc
1 and xc

2 are along with the classic command-filter backstepping controller
design in [22]. In addition, xc

1 = xd
1 and xd

1 is the desired rolling angle signal. xc
2 is the output of the

command-filter. The compensated tracking error z̄1 is defined as

z̄1 = z1 − ζ1 (21)

and the ζ1 signal is chosen as
ζ̇1 = −k1ζ1 + (xc

2 − xd
2) (22)

where xd
2 is the desired value of x2, which can be utilized to stabilize the outer loop.

In order to obtain the prescribed performance, the stability of the transformation error ε(t) should
be validated. By taking the derivation of ε(t) with respect to time, it yields

ε̇ =
∂L−1

∂(z̄1/ρ)

1
ρ

(
ẋ1 − ẋc

1 − ζ̇1 −
ρ̇z̄1

ρ

)
= r(cx2 − ẋc

1 − ζ̇1 + ν)

(23)

where r = ∂L−1

∂(z̄1/ρ)
1
ρ , ν = − ρ̇z̄1

ρ . And for the inner loop, an integral sliding mode surface is given
as follows

s = z2 + a
∫ t

0
zm/n

2 dt (24)

where a is a positive scalar, m and n are add integers satisfying n > m > 0. The reaching law for the
sliding mode surface is selected as

ṡ = −k3s− τsign(s) (25)

where k3 > 0 and τ > 0 are two positive real scalars. Before presenting the first main result of this
study, the desired virtual controller xd

2 is selected as

xd
2 = −k1ζ1 + ẋc

1 − ν− k2ε (26)

and the controller ud is chosen as

u = b−1
(
− f (x) + ẋc

2 − azm/n
2 − k3s− τsign(s)− F̄sign(s)

)
. (27)

Theorem 1. For the rolling angle dynamic system (7) and (8), suppose that Assumptions 1 and 2 hold,
the transformation error ε(t) and z2 are asymptotically stable by the proposed virtual controller (26) and the
sliding mode controller (27) while z̄1 converges to the neighbor domain of 0 with the prescribed performance.

Proof of Theorem 1. In this position, the Lyapunov function is selected as

V1 =
1
2r

ε2 +
1
2

s2 (28)
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Taking the derivation of V1 with respect to time, it yields

V̇1 = ε ·
(

x2 − ẋc
1 − ζ̇1 + ν

)
+ s

(
ż2 + azm/n

2

)
= ε ·

(
x2 − ẋc

1 + k1ζ1 − xc
2 + xd

2 + ν
)
+ s

(
ż2 + azm/n

2

)
.

(29)

Substituting (26) into (29), it can be obtained that

V̇1 = −k2 · ε2 + εz2 + s
(

f (x) + bu + F− ẋc
2 + azm/n

2

)
, (30)

and the following relationship holds as

ε · z2 ≤
1
2

ε2 +
1
2

z2
2 ≤

1
2

ε2 +
1
2

s2.

Substituting the sliding mode controller (27) into (30),

V̇1 ≤ −
(

k2 −
1
2

)
· ε2 +

1
2

s2 + s
(

f (x) + bu + F− ẋc
2 + azm/n

2

)
≤ −

(
k2 −

1
2

)
· ε2 −

(
k3 −

1
2

)
s2 + s (F− F̄sign(s))− τ|s|

≤ −
(

k2 −
1
2

)
· ε2 −

(
k3 −

1
2

)
s2 ≤ 0.

(31)

This implies that, with the implement of the proposed virtual controller, the transformation
errors ε and z2 are asymptotically stable. Meanwhile, the dynamic and steady-state response of the
compensated tracking error z̄1 is guaranteed through the prescribed performance by selecting a proper
value of M. This completes the proof.

Remark 2. In Theorem 1, it can be seen found that the transformation ε is asymptotically stable and this
guarantees that ε will converge to 0. However, the value of M cannot be set to 0 as as ε(t) will become infinite.
Therefore, the time response of z̄1 is uniformly ultimately bounded.

Remark 3. For the design of the proposed sliding mode controller, the upper bound of the disturbance F should
be known in advance. This reduces the applicability of the proposed control strategy in real industrial processes.
This drawback will be eliminated in the following subsection.

3.2. Command-Filter Based Controller Design with Prescribed Performance and Disturbance Observer

In this subsection, a disturbance observer is proposed in order to provide a better estimation of
the disturbance in the design of the command-filter based controller with prescribed performance.
The structure of command-filtered backstepping integral sliding mode control with prescribed
performance for ship roll stabilization strategy developed in this study is shown in Figure 2.

From (8), it can be obtained that

F = − f (x) + bu + ẋ2. (32)

Therefore, the disturbance observer for (32) is designed as follows

F̂ = λ + l f (x1, x2) (33)

λ̇ = −loλ + lo
(
− f (x) + bu− l f (x1, x2)

)
(34)
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where l f (x1, x2) = lox2 and lo is a positive scalar. In addition, the estimation error F̃ is defined as
F̃ = F− F̂. With the implement of the disturbance observer, the impact caused by disturbance can
be offset.

Due the estimation time delay, the estimation error still exists before the disturbance observer can
give an accurate estimation of the disturbance. It is reasonable to assume that the estimation error F̃
satisfies that |F̃| ≤ κ. The proposed controller is modified as

u = b−1
(
− f (x) + ẋc

2 − azm/n
2 − k3s− τsign(s)− F̂− κ̂sign(s)

)
(35)

˙̂κ = εs · sign(s) (36)

where κ and ε are positive scalars.

 Disturbance
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Roll Dynamic
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Figure 2. The structure of the proposed method in this paper.

Theorem 2. For the rolling angle dynamic system (7) and (8), suppose that Assumptions 1–2 hold,
the transformation error ε(t) and z2 are asymptotically stable by the proposed virtual controller (26) and
the sliding mode controller (35) with the disturbance observer (33) while z̄1 converges to the neighbor domain of
0 with the prescribed performance.

Proof of Theorem 2. Considering the following Lyapunov function

V2 =
1
2r

ε2 +
1
2

s2 +
1
2

F̃2 +
1
2ε

κ̃2, (37)

denoting κ̃ = κ − κ̂, it can be obtained

V̇2 ≤ −
(

k2 −
1
2

)
· ε2 +

1
2

s2 + s
(

f (x) + bu + F− ẋc
2 + azm/n

2

)
− F̃ ˙̂F− κ̃ ˙̂κ

≤ −
(

k2 −
1
2

)
· ε2 −

(
k3 −

1
2

)
s2 + s

(
F− F̂− κ̂sign(s)

)
− κ̃s · sign(s)

− F̃
(
−loλ + lo

(
− f (x) + bu− l f (x1, x2)

)
+ l̇ f (x1, x2).

) (38)
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Due to (32)–(34),

V̇2 ≤ −
(

k2 −
1
2

)
· ε2 −

(
k3 −

1
2

)
s2 + s

(
F̃− κ̂sign(s)

)
− κ̃s · sign(s)

− F̃
(
−lo F̂ + lo (− f (x) + bu)) + l̇ f (x1, x2)

)
≤ −

(
k2 −

1
2

)
· ε2 −

(
k3 −

1
2

)
s2 + s

(
F̃− κ · sign(s)

)
+ sκ · sign(s)

− sκ̂ · sign(s)− κ̃s · sign(s)− F̃
(
−lo F̂ + loF

)
≤ −

(
k2 −

1
2

)
· ε2 −

(
k3 −

1
2

)
s2 − lo F̃2.

(39)

Remark 4. It implies that the error system still can be stable while the upper bound of the lumped disturbance
is no longer needed here. It implies that the proposed prescribed performance control strategy possesses the real
industrial potential in the ship stabilizer design with the implement of the nonlinear disturbance observer.

Remark 5. In order to eliminate the chattering phenomenon in the simulation verification phase, the
discontinuous terms sign(s) in (27) and (35) are replaced by the saturation functions sat(s/δ), where δ

is known as the boundary layer thickness of saturation function.

4. Simulation

To validate the proposed command-filter based sliding mode controller and evaluate prescribed
performance of the compensated tracking error, the corresponding simulation is carried out and the
roll stabilization performance is also tested, as shown in Figures 3–8 in this section. The particulars
of the ship are shown as follows: the ship length is 175 m, the ship speed is 12.43 Kn, the fin area
is 12 m2, the acting force arm of the stabilizer fin is 16 m, the lift coefficient of fin stabilizer is 2.1,
the initial metacentric height is 0.3 m, the inertia I′x = 0.0000176, the additional inertia J′x = 0.0000034,
and the damping coefficient A′ = −1.2552× e−5, B′ = −4.725× e−8.

In addition, the parameters of the proposed controller are selected as k1 = 4, k2 = 4, k3 = 3,
ρ0 = 0.001, M = 0.5, ρ∞ = 0.0005 , τ = 0.1 , a = 0.5, b = −7.165, and ε = 2. The original state of the
ship rolling angle is assumed as φ(0) = 0◦. In addition, the initial state of the nonlinear disturbance
observer is selected as 0 as well.

In addition, the six-level sea wave momentum that acts on the ship body is gathered from a real
environment and depicted in Figure 3. In order to offset the impact caused by the sea wave momentum,
the corresponding estimation of the sea wave is demonstrated in Figure 4. It can be noticed that the
estimation of the external disturbance, which is also known as sea wave momentum, can fit the real
time curve of the sea wave with desired performance at the time point of 10 s.

In order to validate the effectiveness of the proposed prescribed performance control strategy,
the time response of the compensated tracking error z̄1 is shown in Figure 5. It can be noticed that the
amplitude of the compensated tracking error z̄1 is bounded by the prescribed performance function
ρ(t). Hence, the dynamic performance and the steady-state of the compensated tracking error z̄1 is
guaranteed. Consequently, the ship’s rolling angle can provide a desired dynamic process and the
steady-state output, which is demonstrated in Figure 6, with respect to the impact caused by the
six-level sea wave momentum.
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Figure 3. The six-level sea wave momentum.
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Figure 4. The value of the disturbance observer.
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Figure 5. The time response of the compensated tracking error z̄1.
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Figure 6. The time curves of ship rolling angle with different control methods.
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Figure 7. The time response of fin control angle α f .
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Figure 8. The time response of fin rate.

As is shown in Figures 6–8, different control strategies are examined through numerical
simulations. When the control input is absent, the roll angle cannot be stabilized with respect to
the external disturbance within a reasonable amount of time and the amplitude of the rolling angle
varies within a relatively large range. The traditional PID controller improves performance significantly
compared to the previous situation without control, however, the roll motion response of the ship still



Appl. Sci. 2019, 9, 4288 12 of 13

changes within an undesirable range. The conventional CBC exhibits better performance than PID
with the smaller ship rolling angle. In contrast, the proposed controller in this paper performs better
than the PID controller and CBC, and it can be seen that the ship’s roll angle in the proposed controller
operation is evidently constrained in the neighborhood of 0 owing to the introduction of prescribed
performance. In addition, Figures 7 and 8 indicate that the control input generated by the proposed
control strategy is bounded to less than 10◦ and 5◦/s, which is known as the fin control angle a f and
fin rate, which demonstrates our strategy’s superior performance when compared to the traditional
PID controller and CBC.

5. Conclusions

In this paper, a command-filter based backstepping sliding mode controller with prescribed
performance is established to realize the ship roll stabilization. First, the impact of external disturbances
is eliminated by the formulated nonlinear disturbance observer. Second, the differential expansion
problem is avoided through the implementation of a command filter-based backstepping control
method. Third, the dynamic performance and the steady-state of the ship rolling angle is guaranteed
under our proposed controller by integrating the prescribed performance technique, which ensures
the relatively precise tracking performance. The robustness of the proposed control strategy is verified,
in that the ship rolling angle exhibits as relatively small with little change when facing the six-level sea
wave momentum. Moreover, the favorable control performance of the proposed controller is validated
by comparison with the conventional PID and CBC, which indicates that the proposed controller takes
effect on the ship roll stabilization.

In future work, the fin stabilizer saturation problem will be addressed through a modified control
strategy and applied in experimental cases.
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