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Abstract: Photovoltaic modules integrated into buildings may provide shading to windows, doors
and walls to protect against sun rays and at the same time generate ancillary electrical energy.
The study develops the methodology for calculating the shadow variation cast by overhangs on doors,
windows, carports, and calculates the annual incident energy (beam, diffuse and global energy) on
overhangs made up of conventional and bifacial PV modules. The methodology of the present study
is different from published articles including software programs. The study starts with shadows on
walls cast by a horizontal pole and follows by shadows on walls cast by horizontal plates, inclined
pole, inclined plate, and shaded area. The study deals also with overhangs placed one above the other.
The calculation of the diffuse radiation involves the calculation of view factors to sky, to ground and
between overhangs. In addition, the present study suggests using bifacial PV modules for overhangs
and calculates the contribution of the reflective energy (5% and more) from walls and ground to the
rear side of the bifacial PV module.
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1. Introduction

Photovoltaic modules are often integrated into the building envelope and may provide shading, and
at the same time perform as an ancillary source of electrical power. Building-integrated photovoltaics
(BIPV) are photovoltaic materials used for many years as replacements for conventional building
material in some parts of the building such as roofs, canopies, facades, solar carports and others.
Overhangs on south-facing walls in northern latitudes are protruding structures and are important in
shading windows and doors from undesired solar heat by blocking the sunlight during the summer
months. References that illustrate the concept of BIPV are in mentioned in [1–9] to name only a few.
There are many tools available for shading analysis and designing overhang shading structures (Solar
Pathfinder, SunEye, Pilkington, Autodesk ECOTECT, METEONORM, Shadow Analyser, Sombrero,
EnergyPlus, ESP-r, and many more). EnergyPlus is a building energy simulation program to model
energy consumption and water use in buildings. ESP-r is a program that simulates the energy and
environmental performance of buildings. Commercial ray tracing software programs are available
and may be used for shading analysis (3Delight, Anim8or, ASAP). Not many publications deal with
analytical expressions of the shadow variation on windows, walls and on grounds cast by overhang
structures [10–15]. The methodology of the present study is different to in the above-mentioned
articles including software programs. The study develops basic mathematical expressions, step by step,
for calculating the shadow variation cast by overhangs on windows, carports, and for calculating the
annual incident energy on overhangs made up of conventional and bifacial PV modules. The calculation
of the diffuse radiation involves the calculation of view factors to sky, to ground and between overhangs.
The study starts with the shadow on a wall cast by a horizontal pole and follows by shadows on a
wall cast by a horizontal plate, inclined pole, inclined plate, shaded areas and overhangs placed one
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above the other (see Figure 1). The present study provides an insight and methodology for calculating
shadows and incident radiation on PV modules deployed on overhangs in BIPV.
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Figure 1. Overhang photovoltaic (PV) collector (blue) on building façade.

2. Materials and Methods

The variation of shadows on vertical objects (walls, windows, doors, etc.) is important information
for designing shading elements to block solar heat in buildings. The following analysis starts with
shadows cast by poles and extends to plates.

2.1. Shadow on a South Facing Walls Cast by a Horizontal Pole

A horizontal pole bc of length H attached perpendicular to a wall, is shown in Figure 2. The right
edge “c” casts a shadow on the wall by the solar rays at point “a”.
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Figure 2. Horizontal pole attached perpendicular to a wall.

From Figure 2 it follows:
Fx = K sinγ, Fy = J sinα (1)

J = K/ cosα, H = K cosγ (2)

By substituting Equation (2) into Equation (1), we get the coordinates of the shadow point “a”, i.e.,
the shadow variation on the wall during the day maybe calculated:

Fx = H tanγ (3)

Fy = H tanα/cosγ (4)

where
sinα = sinφ sin δ+ cosφ cos δ cosω (5)

cotγ = [sinφ cosω− cosφ tan δ]/ sinω (6)

and
ω = 15T − 180 (7)
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α is the sun elevation angle, γ is the sun azimuth angle with respect to south, ω is the solar angle
(ω = 0 noon, ω < 0 morning and ω > 0 afternoon) and T is the solar time. The solar inclination angle δ
is given by:

δ = 23.45 sin
(284 + n)

365
(8)

Figure 3 shows the shadow component,Fx and Fy, of a pole attached prependicular to a wall at
the origin 0,0,0 calculated according Equations (3)–(8) for Tel Aviv (latitude φ = 32◦N) for the months
December to April on 21st day. The arrows indicate the shadow length at given hours beforenoon.
On vernal equinox (δ = 00) the Fy component is constant during the day. In afternoon hours, the
shadow is symmetrical with respect to the Y axis.
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Figure 3. Shadow trajectory by horizontal pole on a wall, December to April on 21st day.

2.2. Shadow on Walls Cast by Horizontal Plate

A horizontal plate bcde of length L and width H, attached perpendicular to a wall on side bd
located above a window (not shown), is shown in Figure 4. The trajectory of the shadow on the
window is shown in Figure 5 on 21st January before noon (blue lines) and at 12:00 noon (dashed lines).
A plate may be considered as composed of an infinite number of poles; therefore Equations (3)–(8)
are applied to obtain the shadow trajectory on the window. At 08:00 the shadow takes the form of a
parallelogram (blue) and at noon time the shadow is rectangular (yellow).

Now we extend the calculation of a shadow on a wall for the case where the plate is inclined with
an angle ε downwards, see Figure 6.

From Figure 6 we write:
H = A sin ε, Py = Fy + A cos ε

and by substituting in Equation (4) we calculate the coordinates of point “a”, i.e., Px(see Equation (3))
and Py:

Px = A sin ε tanγ (9)

Py = (A sin ε tanα/ cosγ) + Acosε (10)

The shadow variation (Equations (9), (10)) on the wall during the day may now be obtained
similarly to the procedure for the horizontal plate.
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Figure 6. Inclined plate attached to a wall.

2.3. Shadow of a Horizontal Pole on a Horizontal Plate

A horizontal pole bc of length H attached perpendicular to a wall at point b (origin 0,0,0), is shown
in Figure 7. The plate is located at a distance R under the pole. The right edge "c" of the pole casts a
shadow at point F on the plate, and point “d” cast a shadow at point E, i.e., the length dc of the pole
cast the shadow EF on the plate at a right angle to the wall. The length bd of the pole cast a shadow bE
on the wall. The shadow length EF is given by (see Appendix A in [16]):

EF = ZF = H(1−R/Fy) (11)

and the distance OE is:
OE = XF = RFx/Fy (12)

where Fx and Fy is given in Equations (3) and (4), respectively.
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Figure 7. Shadow of a horizontal pole on a horizontal plate.

Figure 8 shows the shadow componenet,EF and OE, of a pole H = 0.941m attached prependicular
to a wall at a distance R = 3.0m above a horizontal plate, calculated according to Equations (11)–(12)
for Tel Aviv (latitude φ = 32◦N) for the months May, June and July on the 21st day. The arrows indicate
the shadow length at given hours before noon.
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2.4. Shadow of an Inclined Pole on a Horizontal Plate

Proceeding with our analysis, we develop now the expression for a shadow cast on a horizontal
plate by an inclined pole of length A attached downwards to a wall with an angle ε with respect to
the wall, see Figure 9. Based on Appendix A in [16] and after some mathematical manipulation one
obtains the coordinates of points F and E, respectively:

XF =
Px(R−A cos ε)

Py −A cos ε
(13)

YF = R (14)

ZF =
A sin ε(Py −R)

Py −A cos ε
(15)

XE = RPx/Py (16)

YE = R (17)

ZE = 0 (18)
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2.5. Shadow by Inclined Plates

We now analyze the mutual shading by two parallel plates, one above the other, attached to a wall
and inclined with an angle ε downwards. The length and width of the plates are L and A, respectively,
as shown in Figure 10.
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Figure 10. Inclined plates one above another.

Based on Appendix A in [16], the length of segments g and EF are given by:

g = (R× Px)/Py (19)

EF = A(1−R/Py) (20)

R = A cos ε+ D (21)

The shaded area is given by:
EF× (L− g) (22)

and the relative shaded area Ssh is given by:

Ssh =
EF
A
·
(L− g)

L
= (1−

R
Py

) · (1−
Px ·R
Py · L

) (23)

For the case of horizontal plates (ε = 90◦) we have (see Equation (21) R = D, g = (D ×
Px)/Py, EF = A(1−D/Py) and by substituting in Equations (9) and (10) we obtain:

EF = (H tanα−R cosγ)/tanα (24)



Appl. Sci. 2019, 9, 4280 7 of 14

g = R sinγ/ tanα (25)

and the shaded area is
Ssh = EF× (L− g) (26)

where 0 ≤ EF ≤ A and 0 ≤ g ≤ L; EF ≥ 0 and g ≥ 0; otherwise EF = 0 and g = 0 and Ssh
≥ 0 for

non-negative values for both EF and g otherwise Ssh = 0.
For long collectors, L >> H, the shaded area is given by L(H − x) (see Figure 11) where

x = k cos(γs − γc) (27)

and
k = R/ tanα (28)
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Substituting Equation (28) in Equation (27) we get:

x = R cos(γs − γc)/ tanα (29)

and the relative shaded area is given by:

Ssh =
L(H − x)

L×H
= 1−

R cos(γs − γc)

H tanα
(30)

The exposed width x is bounded by the width H of the collector; see Figure 11, i.e., Ssh
≥ 0.

3. Results

3.1. Shaded Area

The relative shaded area, in percentage, on a bottom collector cast by an overhang top collector,
horizontally installed, is depicted in Figure 12. The collector is of a long edge L and a width H = 0.941m.
The figure shows the daily variation of the relative shaded area on April 21st (dotted lines) and on
June 21st (solid lines), for three distances D = 1.0, 2.0, 3.0 m. The starting and leaving times of the
solar rays on the bottom collector are denoted by Tcr and Tcs , respectively. On April 21st, no shading
occurs between about 09:30 and 14:30 on the bottom collector for D = 3.0m. The shaded area is smaller
in winter months.
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Figure 12. Daily variation of percentage shaded area on the bottom collector on April ( . . . ) and June
(___) 21st, H = 0.941m, D = 1.0, 2.0, 3.0 m.

The relative shaded area, in percentage, on the ground cast by an overhang roof of a carport is
depicted in Figure 13. The roof is of a long edge and the overhang width is H = 5.0 m. The figure
shows the daily variation of the relative shaded area on April 21st (dotted lines) and on June 21st (solid
lines), for two distances D = 3.0, 5.0 m. At noon hours in summer months, the solar rays still penetrate
the parking area, and in winter months the parking area enjoys the sun.
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3.2. Incident Radiation on Overhang PV Collectors

In this section we develop the equations for the incident solar radiation on a single and on multiple
overhangs attached to south-facing vertical walls.

3.2.1. Single Overhang Collector

The global solar irradiance Gε, in (W/m2) , incident on an inclined overhang PV collector with an
angle ε consists of the direct beam Gb, diffuse irradiance on a horizontal plane Gdh, reflected irradiance
from the wall above the overhang, and the sky and wall view factors:

Gε = Gb · cosθ+ FH→sky ·Gdh + re fwall · FH→wall ·Gg (31)

where θ is the angle between the solar beam and the normal to the collector given by [16]:

cosθ = cos β sinα+ sin β cosα cos(γs − γc) (32)

The angles involved in solar calculation are shown in Figure 14.
α is the sun elevation angle; β is the collector inclination angle with respect to horizontal plane,

β = 90− ε (ε is the collector angle with respect to the wall) and γ = γs − γc is the difference between
the sun and collector azimuths with respect to south. Gg is the global incident irradiance on the wall;
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FH→sky is the view factor of the surface H to sky; FH→wall is the view factor of the surface H to wall;
re f wall is the reflectance of the wall above the collector.
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The collector is open to sky therefore the view factor to sky of a single collector is [17]:

FH→sky = (1 + cosβ)/2 = (1 + sin ε)/2 (33)

and view factor of the collector to the wall is given by:

FH→wall = (1− cos β)/2 = (1− sin ε)/2 (34)

The reflected irradiance, re f wall
· FH→wall ·Gg, of the wall on the collector is small with respect to

the beam and diffuse irradiance. For ε = 60◦, for example,F f
H→wall = 0.067 and multiplying by a high

reflectance coefficient of the wall would result only in about 2% of the global irradiance Gε.
The yearly direct beam incident irradiation on the top collector, qtop

b , per unit area, is given in
Wh/m2 by:

qtop
b =

n=365∑
n=1

TS∑
TR

Gb cosθ∆T (35)

and the diffuse incident radiation qtop
d , per unit area, in Wh/m2 is given (see Equation (33)) by:

qtop
d = (

1 + sin ε
2

) ×
n=365∑
n=1

TSS∑
TSR

Gdh∆T (36)

where ∆T is the summation time interval (for solar data sampled every hour ∆T = 1) from sun rise
TR to sunset TS on the collector for the beam irradiance, and from sun rise TSR to sun set TSS for the
diffuse irradiance. The other summation is from January 1 (n = 1) to December 31 (n = 365).

3.2.2. Multiple Overhang Collectors

In multiple overhang collectors the top collector casts a shadow on the bottom collector forming a
shaded area as shown in the Figure 11.

The yearly direct beam incident irradiation on the bottom collector, qb
b , per unit area, is given in

Wh/m2 by:

qbot.
b =

n=365∑
n=1

TS∑
TR

Gb cosθ(1− Ssh)∆T (37)

where Ssh is given by Equation (29).
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The yearly diffuse incident irradiation on the bottom collector, qbot.
d , per unit area, is given in

Wh/m2 by:

qbot.
d = Fbot.

d

n=365∑
n=1

TSS∑
TSR

Gdh∆T (38)

where the sky view factor Fbot.
d of the bottom collector is calculated based on the “Crossed-String

Method” [18], see Figure 15:

Fb
d =

AC + BC−AB
2AC

(39)

resulting in:

Fbot.
d =

H + D + H cos ε− [D2 + (H sin ε)2]
1/2

2H
(40)
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The yearly global incident irradiation on the top and bottom collectors, respectively, in Wh/m2, are,

qtop
y = qtop

b + qtop
d (41)

qbot.
y = qbot.

b + qbot.
d (42)

Multiplying Equations (41) and (42) by the collector area H × L results in the collectors’ yearly
incident energies in Wh. Table 1 shows the results of yearly incident energies, in kWh, on the top
and bottom PV overhang collectors for three distances R = 1.0, 2.0, 3.0 m, H = 0.941m, L = 30m, ε =
70◦(β = 20◦), (see Figure 11 and Equations (35)–(38), (40)–(42)) for Tel Aviv (latitude φ = 32◦N).
Eb−top, Ed−top, Eg−top are the beam, diffuse and global energy on the top collector, respectively and
Eb−bot., Ed−bot., Eg−bot. are the beam, diffuse and global energy on the bottom collector, respectively. The
percent difference in global energy between the top and bottom collectors are 48.87, 32.95, 24.48%, for
R = 1.0, 2.0, 3.0 m, respectively. This difference stems from shading on the bottom collector and from
its lower sky view factor.

Table 1. Annual incident energies on top and bottom PV overhang collectors, H = 0.941m, L = 30m, ε =
70◦; see Figure 11.

R(m) Distance Eb−top(kWh)
Beam-top

Ed−top(kWh)
Diffuse-top

Eg−top(kWh)
Global-top

Eb−bot.(kWh)
Beam-bottom

Ed−bot.(kWh)
Diffuse-bottom

Eg−bot.(kWh)
Global-bottom

1.0 38,644 15,297 53,941 20,654 6,928 27,582
2.0 38,644 15,297 53,941 27,418 8,750 36,168
3.0 38,644 15,297 53,941 30,805 9,392 40,197

3.3. Bifacial PV Modules

Bifacial PV modules have been developed with the purpose of enhancing the power output over
conventional (mono-facial) PV modules because bifacial modules can absorb solar radiation from both
the front and the rear side. Their applications are useful when the nearby ground or other surfaces are
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highly reflective [19–22]. The application and mainly the physics of bifacial cells are presented in the
dissertation [19]. A study by simulation and field testing of vertical installed bifacial modules appear
in [20]. Reference [21] compares the performance of vertical and south facing bifacial PV collector
fields. A recent article [22] on simulating the energy yield of a bifacial photovoltaic plant investigates
the influence of ground size, cast ground shadow and ground reflectivity on the energy yield. The only
reference, as far as we know, on bifacial PV modules suggested for window shading by overhangs
is mentioned in [23]. The overhang uses white semitransparent reflector sheet placed behind the
bifacial modules to enhance the reflected radiation on the rear side of the PV module. The present
study suggests using bifacial PV modules in its natural manner without providing additional external
reflective material, i.e., using the natural reflectance from walls and grounds of the building to assess
the additional energy contribution of the rear side of the PV bifacial module.

The global incident irradiance Gε, in (W/m2), on the front side of the PV collector modules inclined
by ε with respect to a wall is given by [24] (see Figure 16):

Gε = Gb · cosθ+ F f
H→sky ·Gdh + re f f

wall · F
f
H→wall ·Gg (43)

The global incident irradiance on the rear side of the PV collector modules consists of the irradiance
from ground, from shaded wall S and from unshaded wall:

Gε = al · Fr
H→grd. ·Gdh + re fwall.s · Fr

H→wall.sGdh + re fwall.ush · Fr
H→wall.ush ·Gg (44)

where F f
H→sky is the view factor of front surface H to sky; F f

H→wall is the view factor of the front surface
H to wall; Fr

H→grd. is the view factor of the rear surface H to ground; Fr
H→wall.s is the view factor of rear

side surface to shaded wall; Fr
H→wall.ush is the view factor of rear surface H to unshaded wall; al is the

ground albedo; re f f
wall is the reflectance of the wall above the collector; re fwall.s is the reflectance of the

shaded wall; re fwall.ush is the reflectance of the unshaded wall below the collector.
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The different view factor expressions were developed in [24] and adaptations were made to the
configuration in Figure 16. In multiple overhangs, the bottom of the top collector receives also reflected
radiation from the top of the bottom collector.

The view factor of the rear-side of the collector to shaded wall is developed in [24] and is:

Fr
H→wall.s =

H + S− [H2 + S2
− 2HS cos ε]1/2

2H
(45)

Note that the shaded wall S varies with time during the day with the position of the sun, see
Figure 5.
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The view factor of the rear-side of the collector to unshaded wall is given in [24] and after
manipulation we get:

Fr
H→wall.ush =

Wwall.ush+[H2+S2
−2HS cos ε]1/2

2H
−[(S−H cos ε+Wwall.ush)

2+(H sin ε)2]
1/2

2H

(46)

The view factor between the rear-side of collector to the ground is based on [24] and after
manipulation the view factor is:

Fr
H→grd. =

H − S−Wwall.ush + [(H sin ε)2 + (S−H cos ε+ Wwall.ush)
2]

1/2

2H
(47)

Bifacial PV Overhang

The contribution of the annual energy on the rear side of the bifacial overhang collector is
demonstrated by an example for the following overhang given data:

H = 0.941m, L = 30m, S + Wwall.ush = 3.0m, ε = 700, al = 0.1, re fwall.s = 0.1, re fwall.ush = 0.4

The rear side annual energy components are (using Equations (44)–(47)): ground reflected energy:
1055 kWh ; shaded wall reflected energy: 684 kWh ; unshaded wall reflected energy: 1281 kWh .

The total annual reflected incident energy on the rear side of the overhang collector amounts to
3020 kWh, comprising 5.6% of the front side overhang energy. Based on the above-mentioned energies
one may calculated the energy contribution for different reflectance coefficients of the ground, shaded
wall and unshaded wall.

4. Discussion

Not much analytical work has been published on the shadow variation on windows, walls and
grounds including shaded areas cast by protruding structures such as overhangs. There are many
tools available for shading analysis and designing overhang shading structures; however, they do not
provide the insight and the mathematical methodology how these tools were derived, what are the
assumptions, what was considered and was neglected. The general analytical expressions developed
in the present study specify explicitly the various parameters of shading by overhangs and permit the
flexibility in parameter variation. Based on the methodology and the expressions, one may extend the
study on shadows for different overhang configurations. The novel contribution of the present study
includes also the incident radiation on PV overhang collectors, installed one above the other, in the
presence of shading. The effect of the sky view factor affecting the diffuse radiation on PV collectors
was recently introduced and implemented in the calculation of incident radiation on PV modules on
overhangs. A novel application of bifacial PV modules was introduced in the present study including
the computation of the energy gain of the rear side of the bifacial PV modules.

5. Conclusions

Building integrated photovoltaic structures are playing nowadays an important role in solar
electric energy generation. Photovoltaic modules integrated into buildings may provide shading to
windows, doors and carports, and, at the same time, generate electrical energy. The study develops
basic mathematical expressions, step by step, for shadows cast by overhangs (single and multiple
overhangs placed one above the other) and calculates the annual incident energy (beam, diffuse and
global energy) on overhangs made up of PV modules. The calculation of the diffuse incident radiation
involves the view factors to sky, to ground and between overhangs. The present study suggests using
bifacial PV modules for overhangs to increase the PV output power contributed by the reflective energy
from walls and ground to the rear side of the bifacial PV module. A power gain of more than 5% was
demonstrated. The new approach for analyzing shadows cast by overhangs and the determination
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of the incident radiation on PV overhang collectors provides an inside and methodology of shadow
analysis on protruding structures in BIPV.
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