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Abstract: Recently, ellipsometry and polarization imaging using photoelastic modulators (PEMs)
have been applied to a wide spectral range, from vacuum ultraviolet to the mid-infrared wavelengths.
To ensure high accuracy polarization performance, the accurate calibration of the retardation of PEM
is crucial. In this report, the dispersion of the retardation of the PEM is studied. According to the
operational principle of PEM, their retardation can be separated into independent dispersion and
driving terms. The effect attributed to the dispersion on PEM retardation calibration is experimentally
explored. These experiments indicate that the dispersion term can be defined in advance using the
refractive index of the photoelastic crystal under incident light, and that the driving term is directly
proportional to the amplitude of the driving voltage. The calibration method for the retardation
amplitude of the PEM, which considers dispersion, is also demonstrated. The results show that
the relative deviation between the calibration and actual measurement values of PEM retardation
amplitude are less than 1%. This study presents an accurate way to calibrate the PEM retardation
and supports the application of PEMs in a wide range of wavelengths.

Keywords: polarization modulation; photoelastic modulator; dispersion of the retardation;
retardation calibration

1. Introduction

A photoelastic modulator (PEM) is a dynamic retarder with variable retardation based on the
photoelastic effect [1,2], whereby the piezoelectric actuator excites and maintains the mechanical
vibration in the photoelastic crystal when a sinusoidal driving voltage is applied, which typically
forms a stress standing wave and results in a periodic variation of birefringence in the photoelastic
crystal, and thus the phase and polarization states of the incident light are modulated by the temporal
modulation birefringence. The PEM retarder is similar to a waveplate with a fixed retardation axis
and sinusoidally varying retardation values. Compared to the other polarization modulators, such
as Faraday rotator, electro-optic modulator, and liquid crystal variable retarder, PEMs have a high
modulation frequency, a high modulation purity and efficiency, good retardation stability and a large
acceptance angle and aperture, which provides accurate and flexible modulation of the polarization
state of the incident light over a wide range of wavelengths, from vacuum ultraviolet (UV) (~l20 nm) to
mid-infrared (mid-IR) (~16 µm) [3]. Since their introduction, PEMs have been successfully applied to
optical rotation measurements, circular dichroism measurements, ellipsometry, polarization imaging,
etc. [4–8].
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To ensure the highly accurate polarization performance of the PEM, the user is required to
accurately calibrate its retardation. Recently, ellipsometry and polarization imaging using PEM have
been applied to a wide spectral range, from the vacuum visible to the mid-IR wavelengths [7,9,10].
Due to the dispersion of the retardation of the PEM, its accurate calibration at a number of wavelengths
is a complex problem. In 1999, Theodore C. Oakberg concluded that voltages applied on the half-wave
retardation amplitudes of the PEM were a variable in the wavelengths, which revealed the dispersion
phenomenon of the PEM [11]. Until now, there has been no detailed PEM calibration method
considering the differences induced by different wavelengths of the incident light, which has been
reported. For single wavelength light, the observation oscilloscope waveform and the application
of Bessel functions are the two typical PEM calibration methods [12]. The oscilloscope waveform
observation method can be used to calibrate the PEM retardation amplitude of a half-wave or radians,
when a flattop waveform is observed on the oscilloscope. For the method using Bessel function zeros,
the retardation amplitudes of the PEM are set to 2.405, 3.872 and 5.136 rad, respectively, when the
zeroth, first, and second Bessel functions are zero, and the corresponding harmonic components are
nulled. The two methods can only calibrate the PEM retardation for the special values mentioned
above. The method that uses the ratio of multiple-harmonic components is developed to calibrate
large numbers of retardation amplitudes of the PEM [13,14]. The calibration of the PEM retardation at
any amplitude for incident light with different wavelengths combined with this method is a promising
area for further investigation.

In this report, based on the fundamental principle of photoelastic modulation, we present the
principle analysis of the dispersion of the PEM and experimentally explore the effect attributed to the
dispersion on the calibration of the PEM retardation. Furthermore, we also demonstrate an optimized
calibration method for the PEM retardation, which considers the dispersion.

2. Principle Analysis of the Dispersion of the PEM

The photoelastic modulation effect is a type of artificial birefringence phenomenon, the discovery
of which has led to the development of a series of optical modulation devices. The most commonly
used PEMs are the two-dimensional symmetric shape PEMs with large aperture and low static residual
birefringence, using a piezoelectric actuator mounted on a photoelastic crystal. Typically, a −18.5◦

X-cut quartz crystal plate is chosen as the piezoelectric actuator, and there are several types of isotropic
materials, such as fused silica, CaF2, ZnSe, and monocrystalline silicon, which can be used as the
photoelastic crystal, enabling the extension of the spectral range from UV to terahertz. The structures
and vibration forms of the PEMs are shown in Figure 1.
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Figure 1. Schematic diagram of two-dimensional symmetric photoelastic modulators (PEMs) with 
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Figure 1. Schematic diagram of two-dimensional symmetric photoelastic modulators (PEMs) with
stretching and contraction vibrations.

The frequency of the length stretching vibration of the piezoelectric actuator matches with the
natural frequency of the vibration of the photoelastic crystal. Based on the inverse piezoelectric effect,
the mechanical vibration in the photoelastic crystal is excited and maintained by the piezoelectric
actuator, which typically forms a stress standing wave and results in a periodic variation of the
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birefringence, while the phase and polarization states of the incident light are modulated by the
variable birefringence. When a sinusoidal voltage (V = V0 sin 2π f t, where V0 is the voltage amplitude
and f is the resonant frequency) is applied to the piezoelectric actuator, the stress standing wave in the
photoelastic crystal can be expressed as [15]

T(x,y,z,t) = T0 cos
πx
L

cos
πy
L

sin(2π f t− ϕ), (1)

where L is the length of the photoelastic crystal, and spatial variables x and y extend from −L/2 to L/2.
The amplitude of the stress, T0, is proportional to the V0 and can simply be defined as T0 = kV0, k is a
coefficient related to the inverse piezoelectric effect of the actuator and the mount between the actuator
and the photoelastic crystal, and ϕ is the phase delay between the vibration in the photoelastic crystal
and the driving voltage. Further, the stress induced by the birefringence in the photoelastic crystal can
be expressed as

nx
′ = n0 − 1

2 n0
3(−P11T(x) + P12T(y))

ny
′ = nz

′ = n0 − 1
2 n0

3(−P12T(x) + P11T(y))

}
, (2)

where n0 is the refractive index of the isotropic material, while P11 and P12 are the photoelastic constants.
When the light beam propagates in the PEM along with the z-axis, the phase and polarization states of
the incident light are periodically modulated along the x and y-axes by the variable birefringence. The
modulation retardation of the PEM can be described as

δ =
2π

λ
(ny
′ − nx

′)d =
π

λ
n0

3(P12 − P11)(T(x) + T(y))d, (3)

where λ is the wavelength of the incident light, and d is the thickness of the photoelastic crystal.
According to the Equations (1) and (2), Equation (3) can be rewritten as

δ =
π

λ
n0

3dkV0(P12 − P11)(cos
πx
L

+ cos
πy
L
) sin(2π f t− ϕ). (4)

Thus, we can define the retardation of the PEM as δ = δ0 sin(2π f t− ϕ), and the amplitude of
the PEM retardation δ0 can be further written as δ0 = N(λ)T(V0)

using the method of the separation of

variables, where N(λ) is defined as N(λ) =
n0

3

λ , which can be attributed to the dispersion of the PEM

retardation. Therefore, N(λ) =
n0

3

λ is denoted as the dispersion term, and T(V0)
, which is proportional

to the applied voltage amplitude V0 and defined as T(V0)
= KV0, is denoted as the driving term. Here,

the simplification coefficient K = πdk(P12 − P11)(cos πx
L + cos πy

L ), representing the driving efficiency
of the PEM, can be considered as a summary of the characteristics of the PEM, such as geometric
features, the inverse piezoelectric effect of the actuator, the photoelastic effect of the crystal, and the
mount between the actuator and the photoelastic crystal. Although the values of K are slightly different
for individual PEMs, they can be accurately calibrated after the PEM is manufactured and the location
of the incident light beam is established. Thus, the retardation of PEM can be simplified as

δ0 = N(λ)KV0. (5)

3. Experiment

In order to study the dispersion of the retardation of the PEM and obtain an accurate calibration
method for the PEM retardation, a fused silica PEM was employed, which was widely applied at the
visible light range using fused silica as the photoelastic crystal. The fused silica PEM was custom made
by our research group, while the photoelastic crystal was a regular octagon fused silica disk with an
edge length of 22.50 mm and a thickness of 16.00 mm. The mounted piezoelectric actuator was an
−18.5◦ x-cut quartz plate with a size of 6.48 mm × 51.08 mm × 19.18 mm. A field programmable
gate array (FPGA) provided square wave signals, and an LC oscillator circuit transformed the square



Appl. Sci. 2019, 9, 341 4 of 11

wave signals to sinusoidal high voltage for the operation of the PEM. The frequency and amplitude
of the sinusoidal driving voltage could be regulated by the FPGA and a power supply, respectively.
The FPGA, the LC oscillator circuit, and the power supply constitute the PEM controller while the
optical head comprises the fused silica disk and the quartz plate. The experimental system for the
measurement and calibration of the PEM retardation is illustrated in Figure 2.
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Figure 2. Schematic diagram of the experimental system. The inset shows a PEM device.

A xenon lamp monochromator (Omni-λ 200, Zolix Instruments Co., Ltd., Beijing, China), in the
light range of 400–800 nm, with a spectral band less than 1 nm, was used as the light source. The
light source was collimated to pass through a polarizer, the center of the fused silica PEM, and an
analyzer to be detected by a Si photodetector (FPDA510-FC, Thorlabs China, Shanghai, China). Both
the polarizer and analyzer were Glan-Taylor polarizers with an extinction ratio greater than 100,000:1,
and the transmission axes of the polarizer and the analyzer were orthogonal in an arrangement of
45◦ and −45◦, respectively. The modulation fast axis of the PEM was set to 0◦. According to the
polarization analysis [16], the light intensity arriving at the photodetector can be expressed as

I =
I0

4
(1− cos δ), (6)

where I0 is the total intensity of the incident light. The retardation δ = δ0 sin(2π f t− ϕ) can be further
expanded using Bessel function of the first kind, and Equation (6) can be rewritten as

I =
I0

4
(1− (J0(δ0) + 2∑

2k
J2k(δ0) cos(2kπ f t− ϕ))), (7)

where J0(δ0) is the zeroth order of the Bessel function, k is a positive integer, and J2k(δ0) is the (2k)th
order of the Bessel function. An Altera EP3C FPGA is used to provide the PEM driving signal,
to maintain a fast and precise 12-bit analog-to-digital converter clock frequency, and then to complete
the digital signal processing [17,18]. Multiple even harmonic components such as the second, the forth
harmonics can be achieved as 

V2 f =
I0
2 J2(δ0)

V4 f =
I0
2 J4(δ0)

. . .

. (8)

The multiple harmonic components are directly proportional to the light intensity and the Bessel
function. By using the ratio of multiple harmonic components, the retardation amplitude of the PEM
can be calibrated by

V4 f

V2 f
=

J4(δ0)

J2(δ0)
. (9)
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The influence of the intensity fluctuation of the light source can be effectively eliminated, and this
calibration method is insensitive to the misalignment of the polarizer and analyzer transmission axes.
The amplitudes of the driving voltage were set to 82 V, 70 V and 64 V, respectively. The driving voltage
and the modulation signals are shown in Figure 3a, and the ratio of the second and forth harmonic
components are shown in Figure 3b,c.
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Figure 3. Modulation signals and the ratio of multiple harmonic components. (a) Waveform as shown
on the oscilloscope at λ = 0.4 µm; channel V represents the driving voltage signal, with a peak driving
voltage of 164 V (with amplitude of V0 = 82 V), and channel I is the modulation signal, with a peak
value of 13.2 mV; (b) ratio of the second and forth harmonic components in the experiment, where the
wavelength of the incident light was increased by 10 nm increments for about 4.5 s, from 0.4 µm to
0.8 µm; (c) mean value of the ratio of the second and forth components varied in the wavelength range
of 0.4–0.8 µm, obtained by the averaging of the ratios shown in (b) for every light wavelength.

The modulation signal in Figure 3a was acquired by the FPGA and the harmonic components
obtained by use of the digital phase-locked technique. The ratio of the second and forth harmonic
components in the experiment was obtained. As can be seen in Figure 3b,c, the ratio decreases with the
increase in the wavelength, and it is directly proportional with the driving voltage at the same light
wavelength. Combing Equation (8) and the Bessel function, the ratios shown in Figure 3b,c can be used
to calibrate the retardation amplitude δ0 of the PEM; the calibration results are shown in Figure 4a.
The retardation amplitude also decreases with the increase in the wavelength and shows a noticeable
dispersion. To eliminate the difference in the δ0 values due to the wavelength, we also observed the
retardance (λ · δ0), as shown in Figure 4b.
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Figure 4. (a) Amplitude of the PEM retardation δ0 and (b) PEM retardance.

As can be seen in Figure 4b, the PEM retardance also decreases slightly with the increase in the
wavelength and shows a dispersion characteristic. According to the theoretical analysis concluded in
Equation (5), it is suggested that the retardance dispersion is introduced by the dispersion of the fused
silica photoelastic crystal. According to Reference [19], the dispersion of the refractive index of the
fused silica can be described by the Sellmeier equation as

n0
2 − 1 =

0.6961663λ2

λ2 − (0.0684043)2 +
0.4079426λ2

λ2 − (0.1162414)2 +
0.8974794λ2

λ2 − (9.896161)2 ;

thus, the dispersion terms in Equation (5) are obtained in the wavelength range of 0.4–0.8 µm, as shown
in Figure 5a.
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By using the retardation amplitude δ0 of the PEM, shown in Figure 4b, and the dispersion term,
shown in Figure 5a, the driving term was determined at different driving voltages. As can be seen
in Figure 5b, the driving term, as a function of the incident light wavelength, is nearly constant. The
mean value and standard deviation of the driving term is also determined and summarized in Table 1.

Table 1. Mean value and standard deviation of the driving term.

Driving Voltage (V) Driving Term (µm·rad)

Mean Value Standard Deviation

64 0.38654 3.6 × 10−4

70 0.42166 3.6 × 10−4

82 0.49376 4.0 × 10−4

The mean value is directly proportional to the driving voltage, and the standard deviation is less
than 4.0 × 10−4 µm·rad. The results shown in Figure 5b and Table 1 indicate that the driving term
is non-dispersive.

4. Discussion

A calibration method for the retardation amplitude of the PEM in a wide wavelength range, which
considers the dispersion, can be easily found. The calibration method can be determined as follows:

(i) First, the calibration of the dispersion term, N(λ) = n0
3

λ can be defined by using the Sellmeier
equation describing the refractive index of the photoelastic crystal under the incident light wavelength,
as illustrated in Figure 5a; (ii) then, the driving term, T(V0)

= KV0 can be calibrated by obtaining
the retardation amplitudes of the PEM at different driving voltages applied on a single wavelength
incident light.

To further verify the validity and maneuverability of the calibration method, the monochromator
was replaced by a diode laser at center wavelength of 532 nm as the incident light source. We varied
the driving voltage of the PEM from 25.6 V to 95 V, and obtained the PEM retardation amplitudes,
as shown in Figure 6a. The PEM retardation shows a good linear relationship with the driving voltage.
The equation of the fitting line is δ0 = 0.0353V0 + 0.0012; therefore, the driving efficiency coefficient can
be accurately calibrated using Equation (5), where the slope of the fitting line N(λ=0.532µm)K = 0.0353
corresponds to the driving efficiency coefficient K = 0.0353/N(λ=0.532µm) = 0.0353/(1.4613/0.532) =
6.02× 10−3. Then, the amplitudes of the PEM retardation can be calibrated for different incident light
wavelengths at different driving voltages, by combining the dispersion term and the driving efficiency
coefficient. The driving voltage was set to 85.5 V, and the calibration curve of the amplitudes of the
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PEM retardation was determined by substituting the dispersion term, the driving efficiency coefficient
K = 6.02× 10−3, and the driving voltage V0 = 85.5V. The calibration curve is shown in Figure 6b.
The light source was changed back to the monochromator, the PEM retardation amplitudes were also
measured for the incident light wavelength in the range of 0.4–0.8 µm, and the actual measurement
values are also recorded in Figure 6b.
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As can be seen in Figure 6b, the actual measured values of δ0 are in agreement with the calibration
values. The calibration results show that the deviation between the calibration values and the
measurement values, ∆δ0 = 3.534− 3.500 = 0.034 rad, is maximal when the wavelength of the incident
light is 0.46 µm. The maximal deviation that corresponds to the relative deviation is ∆δ0

δ0
= 0.034

3.500 = 1%,
which indicates the calibration method for the PEM retardation is accurate.

5. Conclusions

In summary, experimental studies have been carried out on the dispersion of the retardation
amplitude of a PEM. The retardation amplitude can be separated into independent dispersion and
driving terms. Specifically, the dispersion of the retardation of the PEM is due to the dispersion term,
resulting from the difference in the incident light wavelengths and the dispersion of the refractive
index of the photoelastic crystal. Therefore, the dispersion item can be defined in advance by using
the Sellmeier equation, which describes the refractive index of the photoelastic crystal under incident
light. The driving term is directly proportional to the amplitude of the driving voltage, and the
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driving efficiency coefficient can be accurately calibrated for different driving voltages under a single
wavelength incident light. The calibration of the retardation amplitude of the PEM, which considers
the dispersion at a wide range of wavelengths, was demonstrated. The relative deviation between the
measurement and calibration results was less than 1%. The study in this report can be used as a suitable
reference for the accurate retardation calibration of PEM applications at a wide range of wavelengths.
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