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Abstract: This paper deals with the parameter identification of a microbial batch process of glycerol
to 1,3-propanediol (1,3-PD). We first present a parameter identification model for the excess kinetics
of a microbial batch process of glycerol to 1,3-PD. This model is a nonlinear dynamic optimization
problem that minimizes the sum of the least-square and slope errors of biomass, glycerol, 1,3-PD,
acetic acid, and ethanol. Then, a two-stage method is proposed to efficiently solve the presented
dynamic optimization problem. In this method, two nonlinear programming problems are required
to be solved by a genetic algorithm. To calculate the slope of the experimental concentration data,
an integral equation of the first kind is solved by using the Tikhonov regularization. The proposed
two-stage method could not only optimally identify the model parameters of the biological process,
but could also yield a smaller error between the measured and computed concentrations than
the single-stage method could, with a decrease of about 52.79%. A comparative study showed
that the proposed two-stage method could obtain better identification results than the single-stage
method could.

Keywords: microbial batch process; parameter identification; optimization problem; nonlinear
programming; numerical differentiation; genetic algorithm

1. Introduction

There are widespread applications for 1,3-propanediol (1,3-PD) [1]. In the microbial production
of 1,3-PD, the bio-dissimilation of glycerol to 1,3-PD has attracted the interest of researchers since the
1980s because it possesses a relatively high yield and productivity [2]. In recent years, much research
has been conducted to improve the dissimilation process of glycerol from mathematical modeling,
biochemical analysis, process optimization, etc. [2–24]. For example, to describe the cell growth
kinetics of multiple-inhibitions and product formation in a continuous bio-dissimilation process, a
quantitative description has been given by Xiu et al. [3], Zeng and Deckwer [4], and Zeng and Biebl [5].
Lama et al. [6] addressed the metabolic engineering of Klebsiella pneumoniae J2B for the production
of 1,3-PD from glucose. Lee et al. [7] and Sun et al. [8] reviewed the advances in biological and
chemical methods for the conversion of glycerol into 1,3-PD. Vivek et al. [9] carried out a comparative
evaluation of the metabolite fluxes in 1,3-PD production of cell recycling, simple batch, and continuous
fermentation processes by using the Lactobacillus brevis N1E9.3.3 strain. Rodriguez et al. [10] addressed
the kinetic modeling of raw glycerol to 1,3-PD production by Shimwellia blattae. This kinetic model can
describe the influence of the initial glycerol concentration on 1,3-PD production. Liu et al. [11] presented
the bi-objective dynamic optimization of a nonlinear time-delay system to optimize 1,3-PD production
in a microbial batch process. Yuan et al. [12] gave an optimal control strategy of a nonlinear batch
system with a time delay to maximize 1,3-PD production. Hirokawa et al. [13] used the engineered
cyanobacterium Synechococcus elongatus to improve the production of 1,3-PD by optimizing the gene
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expression level of a metabolic pathway and operation conditions. Narisetty et al. [14] improved
1,3-PD production by maintaining physical conditions and optimizing media composition. To address
the multi-objective optimization of the continuous culture process of glycerol to 1,3-PD, Xu et al. [15]
proposed four optimization models and solved them with the normal-boundary intersection (NBI)
and weighted-sum (WS) methods. Xu and Li [16] proposed a multilevel programming method to
infer the common metabolic objective function for glycerol bio-dissimilation to 1,3-PD by Klebsiella
pneumoniae. This approach is more feasible and has a better prediction performance than the existing
method [16]. Xu and Wang [17] presented three parameter identification models of a microbial batch
process of glycerol to 1,3-PD to identify the parameter values of the nonlinear biological system
by considering three different error criteria of biomass, glycerol, 1,3-PD, acetic acid, and ethanol.
These parameter identification models are dynamic optimization problems. They can be solved by
transforming the original dynamic optimization problems into corresponding nonlinear programming
problems. However, the transformed nonlinear programming problems are difficult to solve for global
optimality. To deal with this difficulty, in this study, a two-stage method is proposed to efficiently
handle the parameter identification of the microbial batch process of glycerol to 1,3-PD.

In the following, we first present a parameter identification model for the excess kinetics of the
microbial batch process of glycerol to 1,3-PD by Klebsiella pneumoniae. Then, a two-stage method is
proposed to efficiently solve the presented dynamic optimization problem. Section 4 presents the
parameter identification results obtained by the proposed two-stage method. A comparative study is
also given to show that the proposed two-stage method can obtain better identification results than the
single-stage method. Finally, some brief conclusions of the present work are given in Section 5.

2. Parameter Identification Model for the Microbial Batch Process

2.1. Microbial Batch Process

Based on previous work [2], the material balance relationships of the microbial batch process of
glycerol to 1,3-PD by Klebsiella pneumoniae can be expressed as follows:

dX
dt

= µX, (1)

dCS

dt
= −qSX, (2)

dCPD

dt
= qPDX, (3)

dCHAc

dt
= qHAcX, (4)

dCEtOH

dt
= qEtOHX, (5)

t ∈ [t0, tN ], (6)

X(t0) = X0, CS(t0) = CS0, CPD(t0) = CPD0, CHAc(t0) = CHAc0, CEtOH(t0) = CEtOH0, (7)

µ = 0.67
CS

0.28 + CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
, (8)

qS = mS +
µ

Ym
S

+ ∆qm
S

CS

CS + K∗S
, (9)

qPD = mPD + µYm
PD + ∆qm

PD
CS

CS + K∗PD
, (10)

qHAc = mHAc + µYm
HAc + ∆qm

HAc
CS

CS + K∗HAc
, (11)
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qEtOH = mEtOH + µYm
EtOH + ∆qm

EtOH
CS

CS + K∗EtOH
, (12)

where t denotes the culture time (h); t0 ≥ 0 and tN > 0 are the initial and terminal times of the
culture process, respectively (h); X denotes the biomass (g/L); CS denotes the substrate (glycerol)
concentration (mmol/L); CPD denotes the concentration of product 1,3-PD (mmol/L); CHAc denotes
the concentration of product acetic acid (mmol/L); CEtOH denotes the concentration of product
ethanol (mmol/L); X0, CS0, CPD0, CHAc0, and CEtOH0 are the initial values of X, CS, CPD, CHAc,
and CEtOH, respectively; µ denotes the specific growth rate of cells (1/h); qS denotes the specific
consumption rate of substrate glycerol (mmol/(g·h)); qPD, qHAc, qEtOH denote the specific formation
rates of products 1,3-PD, acetic acid, and ethanol, respectively (mmol/(g·h)); mS is the maintenance
term of glycerol consumption under substrate-limited conditions (mmol/(g·h)); mPD, mHAc, and
mEtOH denote the maintenance terms of corresponding product formation under substrate-limited
conditions, respectively (mmol/(g·h)); Ym

S denotes the maximum growth yield (g/mmol); Ym
PD, Ym

HAc,
and Ym

EtOH are the product yield of the corresponding products (mmol/g); ∆qm
S is the maximum

increment of the glycerol consumption rate under substrate-sufficient conditions (mmol/(g·h)); ∆qm
PD,

∆qm
HAc, and ∆qm

EtOH are the maximum increments of the corresponding product formation rate under
substrate-sufficient conditions (mmol/(g·h)); and K∗S , K∗PD, K∗HAc, and K∗EtOH denote the saturation
constants of glycerol and corresponding products in the excess terms, respectively (mmol/L).

By introducing Equations (8)–(12) into Equations (1)–(5), Equations (1)–(7) have the following
formulations:

dX
dt = 0.67 XCS

0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
,

dCS
dt = −mSX− 0.67

Ym
S

CSX
0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
− ∆qm

S
CSX

CS+K∗S
,

dCPD
dt = mPDX +

0.67Ym
PDCSX

0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

PD
CSX

CS+K∗PD
,

dCHAc
dt = mHAcX +

0.67Ym
HAcCSX

0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

HAc
CSX

CS+K∗HAc
,

dCEtOH
dt = mEtOHX +

0.67Ym
EtOHCSX

0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

EtOH
CSX

CS+K∗EtOH
,

t ∈ [t0, tN ],

X(t0) = X0, CS(t0) = CS0, CPD(t0) = CPD0, CHAc(t0) = CHAc0, CEtOH(t0) = CEtOH0.

2.2. Parameter Identification Model

To identify the values of the parameters mS, mPD, mHAc, mEtOH, Ym
S , Ym

PD, Ym
HAc, Ym

EtOH, ∆qm
S , ∆qm

PD,
∆qm

HAc, ∆qm
EtOH, K∗S , K∗PD, K∗HAc, and K∗EtOH in Equations (1)–(12), we propose the following parameter

identification model for the microbial batch process of glycerol to 1,3-PD:

min F = 1
N

N
∑

j=1

[
(X(tj)− Xe(tj))

2/X2
max

]
+ 1

N

N
∑

j=1

[
(

.
X(tj)−

.
Xe(tj))

2
/

.
X

2
max

]
+ 1

N

N
∑

j=1

[
(CS(tj)− CSe(tj))

2/C2
S max

]
+ 1

N

N
∑

j=1

[
(

.
CS(tj)−

.
CSe(tj))

2
/

.
C

2
S max

]
+ 1

N

N
∑

j=1

[
(CPD(tj)− CPDe(tj))

2/C2
PD max

]
+ 1

N

N
∑

j=1

[
(

.
CPD(tj)−

.
CPDe(tj))

2
/

.
C

2
PD max

]
+ 1

N

N
∑

j=1

[
(CHAc(tj)− CHAce(tj))

2/C2
HAc max

]
+ 1

N

N
∑

j=1

[
(

.
CHAc(tj)−

.
CHAce(tj))

2
/

.
C

2
HAc max

]
,

+ 1
N

N
∑

j=1

[
(CEtOH(tj)− CEtOHe(tj))

2/C2
EtOH max

]
+ 1

N

N
∑

j=1

[
(

.
CEtOH(tj)−

.
CEtOHe(tj))

2
/

.
C

2
EtOH max

]
(13)
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subject to satisfying

dX
dt

= 0.67
XCS

0.28 + CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
, (14)

dCS
dt = −mSX− 0.67

Ym
S

CSX
0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
− ∆qm

S
CSX

CS+K∗S
, (15)

dCPD
dt = mPDX +

0.67Ym
PDCSX

0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

PD
CSX

CS+K∗PD
, (16)

dCHAc
dt = mHAcX +

0.67Ym
HAcCSX

0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

HAc
CSX

CS+K∗HAc
, (17)

dCEtOH
dt = mEtOHX +

0.67Ym
EtOHCSX

0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

EtOH
CSX

CS+K∗EtOH
, (18)

t ∈ [t0, tN ], (19)

X(t0) = X0, CS(t0) = CS0, CPD(t0) = CPD0, CHAc(t0) = CHAc0, CEtOH(t0) = CEtOH0, (20)

µ = 0.67
CS

0.28 + CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
≥ 0, (21)

qS = mS +
0.67
Ym

S

CS
0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

S
CS

CS+K∗S
≥ 0, (22)

qPD = mPD +
0.67Ym

PDCS
0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

PD
CS

CS+K∗PD
≥ 0, (23)

qHAc = mHAc +
0.67Ym

HAcCS
0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

HAc
CS

CS+K∗HAc
≥ 0, (24)

qEtOH = mEtOHX +
0.67Ym

EtOHCSX
0.28+CS

(
1− CS

2039

)(
1− CPD

939.5

)(
1− CHAc

1026

)(
1− CEtOH

360.9

)
+ ∆qm

EtOH
CSX

CS+K∗EtOH
≥ 0, (25)

m̂S ≤ mS ≤ mS, (26)

m̂PD ≤ mPD ≤ mPD, (27)

m̂HAc ≤ mHAc ≤ mHAc, (28)

m̂EtOH ≤ mEtOH ≤ mEtOH, (29)

Ŷm
S ≤ Ym

S ≤ Ym
S , (30)

Ŷm
PD ≤ Ym

PD ≤ Ym
PD, (31)

Ŷm
HAc ≤ Ym

HAc ≤ Ym
HAc, (32)

Ŷm
EtOH ≤ Ym

EtOH ≤ Ym
EtOH, (33)

∆q̂m
S ≤ ∆qm

S ≤ ∆qm
S , (34)

∆q̂m
PD ≤ ∆qm

PD ≤ ∆qm
PD, (35)

∆q̂m
HAc ≤ ∆qm

HAc ≤ ∆qm
HAc, (36)

∆q̂m
EtOH ≤ ∆qm

EtOH ≤ ∆qm
EtOH, (37)

K̂∗S ≤ K∗S ≤ K∗S, (38)

K̂∗PD ≤ K∗PD ≤ K∗PD, (39)

K̂∗HAc ≤ K∗HAc ≤ K∗HAc, (40)

K̂∗EtOH ≤ K∗EtOH ≤ K∗EtOH. (41)

In Equations (13)–(41), the objective function F is the sum of the least-square and slope errors
of biomass (X), glycerol (CS), 1,3-PD (CPD), acetic acid (CHAc), and ethanol (CEtOH); Xe(tj), CSe(tj),
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CPDe(tj), CHAce(tj), and CEtOHe(tj) are the measured data for biomass, glycerol, 1,3-PD, acetic acid,
and ethanol at the sampling time tj (j = 1, 2, · · · , N), respectively; X(tj), CS(tj), CPD(tj), CHAc(tj),
and CEtOH(tj) denote the computed concentrations for biomass, glycerol, 1,3-PD, acetic acid, and
ethanol at tj, respectively; Xmax, CSmax, CPDmax, CHAcmax, and CEtOHmax are the maximum measured
concentrations of biomass, glycerol, 1,3-PD, acetic acid, and ethanol in [t0, tN ], respectively; N is the
number of sampled data points;

.
Xe(tj),

.
CSe(tj),

.
CPDe(tj),

.
CHAce(tj), and

.
CEtOHe(tj) are the approximate

experimental slopes for biomass, glycerol, 1,3-PD, acetic acid, and ethanol at tj, respectively;
.

X(tj),
.
CS(tj),

.
CPD(tj),

.
CHAc(tj), and

.
CEtOH(tj) are the computed slopes for biomass, glycerol, 1,3-PD, acetic

acid, and ethanol at tj, respectively;
.

Xmax,
.
CSmax,

.
CPDmax,

.
CHAcmax, and

.
CEtOHmax are the maximum

experimental slopes of biomass, glycerol, 1,3-PD, acetic acid, and ethanol in [t0, tN ], respectively; m̂S,
m̂PD, m̂HAc, m̂EtOH, Ŷm

S , Ŷm
PD, Ŷm

HAc, Ŷm
EtOH, ∆q̂m

S , ∆q̂m
PD, ∆q̂m

HAc, ∆q̂m
EtOH, K̂∗S , K̂∗PD, K̂∗HAc, and K̂∗EtOH are the

lower bounds of parameters mS, mPD, mHAc, mEtOH, Ym
S , Ym

PD, Ym
HAc, Ym

EtOH, ∆qm
S , ∆qm

PD, ∆qm
HAc, ∆qm

EtOH,
K∗S , K∗PD, K∗HAc, and K∗EtOH, respectively; and mS, mPD, mHAc, mEtOH, Ym

S , Ym
PD, Ym

HAc, Ym
EtOH, ∆qm

S , ∆qm
PD,

∆qm
HAc, ∆qm

EtOH, K∗S, K∗PD, K∗HAc, and K∗EtOH are the upper bounds of parameters mS, mPD, mHAc, mEtOH,
Ym

S , Ym
PD, Ym

HAc, Ym
EtOH, ∆qm

S , ∆qm
PD, ∆qm

HAc, ∆qm
EtOH, K∗S , K∗PD, K∗HAc, and K∗EtOH, respectively.

For the parameter identification model in Equations (13)–(41), we have the following remarks:

1. The inequality constraints in Equations (21)–(25) keep the specific growth rate µ, specific
consumption rate qS, and specific formation rates qPD, qHAc, and qEtOH within certain physically
and chemically feasible limits;

2. Obviously, the parameter identification model in Equations (13)–(41) is a nonlinear dynamic
optimization problem with complex constraints. Therefore, it is difficult to solve for
global optimality.

3. Two-Stage Method for the Parameter Identification Model

In this work, we propose a two-stage method to efficiently solve the presented parameter
identification model in Equations (13)–(41). This method addresses the parameter identification
problem in Equations (13)–(41) through a two-stage procedure instead of directly solving it.

3.1. Two-Stage Method

We first rewrite the parameter identification problem in Equations (13)–(41) as

min F =
1
N

N

∑
j=1

5

∑
i=1

[
(xi(tj)− xie(tj))

2/x2
i max

]
+

1
N

N

∑
j=1

5

∑
i=1

[
(

.
xi(tj)−

.
xie(tj))

2/
.
x2

i max

]
, (42)

subject to satisfying
dx1

dt
= µ(x, p)x1, (43)

dx2

dt
= −qS(x, p)x1, (44)

dx3

dt
= qPD(x, p)x1, (45)

dx4

dt
= qHAc(x, p)x1, (46)

dx5

dt
= qEtOH(x, p)x1, (47)

t ∈ [t0, tN ], (48)

x(t0) = x0, (49)
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µ(x, p) =
0.67x2

0.28 + x2

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
≥ 0, (50)

qS(x, p) = p1 +
0.67x2

p5(0 .28 + x2)

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
+

p9x2

x2 + p13
≥ 0, (51)

qPD(x, p) = p2 +
0.67p6x2

0.28 + x2

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
+

p10x2

x2 + p14
≥ 0, (52)

qHAc(x, p) = p3 +
0.67p7x2

0.28 + x2

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
+

p11x2

x2 + p15
≥ 0, (53)

qEtOH(x, p) = p4 +
0.67p8x2

0.28 + x2

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
+

p12x2

x2 + p16
≥ 0, (54)

pl ≤ p ≤ pu, (55)

where x ∈ R5, x0 ∈ R5, xe ∈ R5, xmax ∈ R5, p ∈ R16, pl ∈ R16, and pu ∈ R16 have the following formulations:

x = (x1, x2, x3, x4, x5)
T = (X, CS, CPD, CHAc, CEtOH)

T,

x0 = (x10, x20, x30, x40, x50)
T = (X0, CS0, CPD0, CHAc0, CEtOH0)

T,

xe = (x1e, x2e, x3e, x4e, x5e)
T = (Xe, CSe, CPDe, CHAce, CEtOHe)

T,

xmax = (x1max, x2max, x3max, x4max, x5max)
T = (Xmax, CSmax, CPDmax, CHAcmax, CEtOHmax)

T,

p = (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16)
T

= (mS, Ym
S , ∆qm

S , K∗S , mPD, Ym
PD, ∆qm

PD, K∗PD, mHAc, Ym
HAc, ∆qm

HAc, K∗HAc, mEtOH, Ym
EtOH, ∆qm

EtOH, K∗EtOH)
T,

pl = (pl
1
, pl

2, pl
3, pl

4, pl
5, pl

6, pl
7, pl

8, pl
9, pl

10, pl
11, pl

12, pl
13, pl

14, pl
15, pl

16)
T

= (m̂S, Ŷm
S , ∆q̂m

S , K̂∗S , m̂PD, Ŷm
PD, ∆q̂m

PD, K̂∗PD, m̂HAc, Ŷm
HAc, ∆q̂m

HAc, K̂∗HAc, m̂EtOH, Ŷm
EtOH, ∆q̂m

EtOH, K̂∗EtOH)
T,

pu = (pu
1 , pu

2 , pu
3 , pu

4 , pu
5 , pu

6 , pu
7 , pu

8 , pu
9 , pu

10, pu
11, pu

12, pu
13, pu

14, pu
15, pu

16)
T

= (mS, Ym
S , ∆qm

S , K∗S, mPD, Ym
PD, ∆qm

PD, K∗PD, mHAc, Ym
HAc, ∆qm

HAc, K∗HAc, mEtOH, Ym
EtOH, ∆qm

EtOH, K∗EtOH)
T

.

The general method for solving a dynamic optimization problem depends on the discretization of
dynamic system equations within the framework of the direct transcription [25–27]. By using a certain
discretization technique, one can convert an infinite-dimensional dynamic optimization problem into
a finite-dimensional, large-scale, nonlinear programming problem. To discretize the dynamic system
equations, a collocation method should be used. For example, we can use the first-order Runge–Kutta
(RK) method and higher-order RK methods, such as the implicit trapezoidal method, to discretize the
dynamic system equations.

The implicit trapezoidal method is applied here to discretize the dynamic system in Equations (43)–(47).
The discretized equations are written as

x1(tj) = x1(tj−1) + 0.5ηj[µ(x(tj), p)x1(tj) + µ(x(tj−1), p)x1(tj−1)], (56)

x2(tj) = x2(tj−1) + 0.5ηj[−qS(x(tj), p)x1(tj)− qS(x(tj−1), p)x1(tj−1)], (57)

x3(tj) = x3(tj−1) + 0.5ηj[qPD(x(tj), p)x1(tj) + qPD(x(tj−1), p)x1(tj−1)], (58)

x4(tj) = x4(tj−1) + 0.5ηj[qHAc(x(tj), p)x1(tj) + qHAc(x(tj−1), p)x1(tj−1)], (59)

x5(tj) = x5(tj−1) + 0.5ηj[qEtOH(x(tj), p)x1(tj) + qEtOH(x(tj−1), p)x1(tj−1)], (60)

where ηj = tj − tj−1, j = 1, 2, · · · , N.
The implicit trapezoidal equations (56)–(60) help reduce the dimension of the dynamic

optimization problem in Equations (42)–(55), but they still involve a large-scale nonlinear programming
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problem. To reduce the computation time, we use the following modified formulations of the implicit
trapezoidal method by applying experimental data to Equations (56)–(60):

x1(tj) = x1e(tj−1) + 0.5ηj[µ(xe(tj), p)x1e(tj) + µ(xe(tj−1), p)x1e(tj−1)], (61)

x2(tj) = x2e(tj−1) + 0.5ηj[−qS(xe(tj), p)x1e(tj)− qS(xe(tj−1), p)x1e(tj−1)], (62)

x3(tj) = x3e(tj−1) + 0.5ηj[qPD(xe(tj), p)x1e(tj) + qPD(xe(tj−1), p)x1e(tj−1)], (63)

x4(tj) = x4e(tj−1) + 0.5ηj[qHAc(xe(tj), p)x1e(tj) + qHAc(xe(tj−1), p)x1e(tj−1)], (64)

x5(tj) = x5e(tj−1) + 0.5ηj[qEtOH(xe(tj), p)x1e(tj) + qEtOH(xe(tj−1), p)x1e(tj−1)], (65)

where j = 1, 2, · · · , N.
Replacing Equations (43)–(47) with Equations (61)–(65), we can convert the dynamic optimization

problem in Equations (42)–(55) into the following nonlinear programming problem:

min F =
1
N

N

∑
j=1

5

∑
i=1

[
(xi(tj)− xie(tj))

2/x2
i max

]
+

1
N

N

∑
j=1

5

∑
i=1

[
(

.
xi(tj)−

.
xie(tj))

2/
.
x2

i max

]
, (66)

subject to satisfying

x1(tj) = x1e(tj−1) + 0.5ηj[µ(xe(tj), p)x1e(tj) + µ(xe(tj−1), p)x1e(tj−1)], j = 1, 2, · · · , N, (67)

x2(tj) = x2e(tj−1) + 0.5ηj[−qS(xe(tj), p)x1e(tj)− qS(xe(tj−1), p)x1e(tj−1)], j = 1, 2, · · · , N, (68)

x3(tj) = x3e(tj−1) + 0.5ηj[qPD(xe(tj), p)x1e(tj) + qPD(xe(tj−1), p)x1e(tj−1)], j = 1, 2, · · · , N, (69)

x4(tj) = x4e(tj−1) + 0.5ηj[qHAc(xe(tj), p)x1e(tj) + qHAc(xe(tj−1), p)x1e(tj−1)], j = 1, 2, · · · , N, (70)

x5(tj) = x5e(tj−1) + 0.5ηj[qEtOH(xe(tj), p)x1e(tj) + qEtOH(xe(tj−1), p)x1e(tj−1)], j = 1, 2, · · · , N, (71)

x(t0) = x0, (72)

µ(x, p) =
0.67x2

0.28 + x2

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
≥ 0, (73)

qS(x, p) = p1 +
0.67x2

p5(0 .28 + x2)

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
+

p9x2

x2 + p13
≥ 0, (74)

qPD(x, p) = p2 +
0.67p6x2

0.28 + x2

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
+

p10x2

x2 + p14
≥ 0, (75)

qHAc(x, p) = p3 +
0.67p7x2

0.28 + x2

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
+

p11x2

x2 + p15
≥ 0, (76)

qEtOH(x, p) = p4 +
0.67p8x2

0.28 + x2

(
1− x2

2039

)(
1− x3

939.5

)(
1− x4

1026

)(
1− x5

360.9

)
+

p12x2

x2 + p16
≥ 0, (77)

pl ≤ p ≤ pu. (78)

To efficiently solve the nonlinear programming problem in Equations (66)–(78), we first regard
µ(tj)(j = 0, 1, · · · , N), qS(tj), qPD(tj), qHAc(tj), and qEtOH(tj) as the identified parameters and rewrite
it as

min F =
1
N

N

∑
j=1

5

∑
i=1

[
(xi(tj)− xie(tj))

2/x2
i max

]
+

1
N

N

∑
j=1

5

∑
i=1

[
(

.
xi(tj)−

.
xie(tj))

2/
.
x2

i max

]
, (79)

subject to satisfying

x1(tj) = x1e(tj−1) + 0.5ηj[µ(tj)x1e(tj) + µ(tj−1)x1e(tj−1)], j = 0, 1, · · · , N, (80)
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x2(tj) = x2e(tj−1) + 0.5ηj[−qS(tj)x1e(tj)− qS(tj−1)x1e(tj−1)], j = 0, 1, · · · , N, (81)

x3(tj) = x3e(tj−1) + 0.5ηj[qPD(tj)x1e(tj) + qPD(tj−1)x1e(tj−1)], j = 0, 1, · · · , N, (82)

x4(tj) = x4e(tj−1) + 0.5ηj[qHAc(tj)x1e(tj) + qHAc(tj−1)x1e(tj−1)], j = 0, 1, · · · , N, (83)

x5(tj) = x5e(tj−1) + 0.5ηj[qEtOH(tj)x1e(tj) + qEtOH(tj−1)x1e(tj−1)], j = 0, 1, · · · , N, (84)

x(t0) = x0, (85)

µl
j ≤ µ(tj) ≤ µu

j , j = 0, 1, · · · , N, (86)

ql
Sj ≤ qS(tj) ≤ qu

Sj, j = 0, 1, · · · , N, (87)

ql
PDj ≤ qPD(tj) ≤ qu

PDj, j = 0, 1, · · · , N, (88)

ql
HAcj ≤ qHAc(tj) ≤ qu

HAcj, j = 0, 1, · · · , N, (89)

ql
EtOHj ≤ qEtOH(tj) ≤ qu

EtIGj, j = 0, 1, · · · , N, (90)

where µl
j, ql

Sj, ql
PDj, ql

HAcj, and ql
EtOHj are the lower bounds of µ(tj), qS(tj), qPD(tj), qHAc(tj), and

qEtOH(tj), respectively; and µu
j , qu

Sj, qu
PDj, qu

HAcj, and qu
EtOHj are the upper bounds of µ(tj), qS(tj),

qPD(tj), qHAc(tj), and qEtOH(tj), respectively.
For the parameter identification problem in Equations (79)–(90), we have the following remarks:

1. In the computation of the optimization problem in Equations (79)–(90), the slopes
.
xi(tj)

(i = 1, 2, · · · , 5) in the objective function of Equation (79) can be computed by the following
formulations:

.
x1(tj) = µ(tj)x1e(tj),

.
x2(tj) = −qS(tj)x1e(tj),
.
x3(tj) = qPD(tj)x1e(tj),
.
x4(tj) = qHAc(tj)x1e(tj),
.
x5(tj) = qEtOH(tj)x1e(tj).

The slopes
.
xie(tj)(i = 1, 2, · · · , 5) of experimental data can be estimated by the method given in

Section 3.2;
2. The optimization problem in Equations (79)–(90) is a relatively simple quadratic programming

problem compared to the nonlinear programming problem in Equations (66)–(78). Thus, it is easy
to obtain the globally optimal solution of the problem in Equations (79)–(90) with the available
quadratic programming algorithms.

Let the optimal values of µ(tj)(j = 0, 1, · · · , N), qS(tj), qPD(tj), qHAc(tj), and qEtOH(tj) be µ∗(tj),
q∗S(tj), q∗PD(tj), q∗HAc(tj), and q∗EtOH(tj), respectively. Substituting µ∗(tj), q∗S(tj), q∗PD(tj), q∗HAc(tj),
and q∗EtOH(tj) into µ(x, p), qS(x, p), qPD(x, p), qHAc(x, p), and qEtOH(x, p), respectively, we have the
following 4(N + 1) nonlinear equations:

p1 +
µ∗(tj)

p5
+

p9x2e(tj)

x2e(tj) + p13
= q∗S(tj), j = 0, 1, · · · , N, (91)

p2 + p6µ∗(tj) +
p10x2e(tj)

x2e(tj) + p14
= q∗PD(tj), j = 0, 1, · · · , N, (92)

p3 + p7µ∗(tj) +
p11x2e(tj)

x2e(tj) + p15
= q∗HAc(tj), j = 0, 1, · · · , N, (93)
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p4 + p8µ∗(tj) +
p12x2e(tj)

x2e(tj) + p16
= q∗EtOH(tj), j = 0, 1, · · · , N. (94)

After solving the nonlinear Equations (91)–(94), we can obtain the values of the identified parameters
pk(j = 1, 2, · · · , 16). This goal can be achieved by solving the following optimization problem:

min F =
N

∑
j=0

[F2
1 (tj) + F2

2 (tj) + F2
3 (tj) + F2

4 (tj)], (95)

subject to satisfying
pl ≤ p ≤ pu. (96)

In this problem, F1(tj), F2(tj), F3(tj), and F4(tj) have the following formulations

F1(tj) = p1 +
µ∗(tj)

p5
+

p9x2e(tj)

x2e(tj) + p13
− q∗S(tj), j = 0, 1, · · · , N,

F2(tj) = p2 + p6µ∗(tj) +
p10x2e(tj)

x2e(tj) + p14
− q∗PD(tj), j = 0, 1, · · · , N,

F3(tj) = p3 + p7µ∗(tj) +
p11x2e(tj)

x2e(tj) + p15
− q∗HAc(tj), j = 0, 1, · · · , N,

F4(tj) = p4 + p8µ∗(tj) +
p12x2e(tj)

x2e(tj) + p16
− q∗EtOH(tj), j = 0, 1, · · · , N.

The optimal values of the identified parameters pk(k = 1, 2, · · · , 16) can be obtained by solving
the problem in Equations (95) and (96) with the available optimization solver.

3.2. Computing the Slopes of Experimental Data

As stated in the optimization problem in Equations (79)–(90), the objective of Equation (79)
involves the slopes

.
xie(tj) of 5N experimental data. These experimental slopes can be estimated

by some numerical methods, such as the artificial neural network method [28] and the cubic spline
interpolation algorithm [29]. In this work, based on the Tikhonov regularization method [30], we
present the following procedures to estimate the experimental slopes

.
xie(tj).

We first divide the time interval [t0, tN ] into NK − 1 equidistant subintervals [t0, t0 + l],· · · ,[t0 +

rl, t0 + (r + 1)l],· · · ,[t0 + (NK − 2)l, tN ](l = (tN − t0)/(NK − 1), r = 0, 1, 2, · · · , NK − 2), such that
tj ∈ {t0, t0 + l, t0 + 2l, · · · , t0 + rl, t0 + (r + 1)l, · · · , t0 + (NK − 2)l, tN}(j = 0, 1, · · · , N). Then, we
compute the slopes (denoting them as dis, s = 1, 2, · · · , NK) at t0 + rl (r = 0, 1, 2, · · · , NK − 2) by the
following equations:

ei = (BTB + 0.48βTβ)
−1

BTyi, i = 1, 2, · · · , 5,

where
ei = (di1, di2, · · · , diNK , xi(t0))

T,

yi = (xie(t0), xie(t1), · · · , xie(tN))
T,

β =


1 −2 1 0 0 · · · 0 0
0 1 −2 1 0 · · · 0 0
...

. . . . . . . . . . . .
...

...
0 · · · 0 1 −2 1 0 0

,

B = [ A E ].
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Here, both the matrix A = (Ajs)(N+1)×NK
and vector E = (1, 1, · · · , 1)T ∈ RN are obtained by

the numerical integral xij =
NK
∑

s=1
Ajsdis + xi(t0), i = 1, 2, · · · , 5, j = 0, 1, · · · , N of integral equations

xi(t) =
∫ t

t′=t0
di(t′)dt′ + xi(t0), i = 1, 2, · · · , 5.

4. Optimization Results and Discussion

In this work, we applied the Tikhonov regularization method given in Section 3.2 to estimate the
experimental slopes

.
xie(tj) and used the genetic algorithm in MATLABTM software to solve both the

optimization problems of Equations (79)–(90) and of Equations (95) and (96). In the implementation
of the genetic algorithm, we set all the algorithm parameters to be the default values. Experimental
concentration data xie(tj)(i = 1, 2, · · · , 5) were drawn from Feng and Xiu [31] and Xu and Wang [17].
The initial point x0 of the studied system was selected as (0.1905, 400.043, 0, 0, 0)T. The parameter NK
used in the Tikhonov regularization method was set to be 502. The lower and upper bounds for the
optimized variables µ(tj)(j = 0, 1, · · · , N), qS(tj), qPD(tj), qHAc(tj), and qEtOH(tj) and the identified
parameters pk(k = 1, 2, · · · , 16) are given in Tables 1 and 2, respectively.

Table 1. The lower and upper bounds in the optimization problem of Equations (79)–(90).

Parameter Lower Bound Upper Bound

µ(t0) 0 0.67
µ(t1) 0 0.67
µ(t2) 0 0.67
µ(t3) 0 0.67
µ(t4) 0 0.67
qS(t0) 0 100
qS(t1) 0 100
qS(t2) 0 100
qS(t3) 0 100
qS(t4) 0 100

qPD(t0) 0 100
qPD(t1) 0 100
qPD(t2) 0 100
qPD(t3) 0 100
qPD(t4) 0 100

qHAc(t0) 0 100
qHAc(t1) 0 100
qHAc(t2) 0 100
qHAc(t3) 0 100
qEtOH(t0) 0 100
qEtOH(t1) 0 100
qEtOH(t2) 0 100
qEtOH(t3) 0 100
qEtOH(t4) 0 100

Figure 1 presents the optimal values of the variables µ(tj)(j = 0, 1, · · · , N), qS(tj), qPD(tj), qHAc(tj),
and qEtOH(tj), obtained by solving the optimization problem in Equations (79)–(90) in the first stage of
the two-stage method. Applying these optimal values to the optimization problem in Equations (95)
and (96) and then solving it in the second stage of the two-stage method, we could obtain the optimal
values of 16 identified parameters pk(k = 1, 2, · · · , 16). These results are shown in Table 2. Table 2
also gives the lower and upper bounds for identified parameters pk(k = 1, 2, · · · , 16). Table 3 shows
the comparison between the proposed two-stage method and the single-stage method applied in
Reference [17]. As can be seen in the total error function F value, the proposed two-stage method in
this work could yield a smaller error between the measured and computed concentrations than the
single-stage method applied in Reference [17], with a decrease of about 52.79%. This conclusion clearly
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shows the tractability and effectiveness of the proposed two-stage method in handling the parameter
identification of the microbial batch process of glycerol to 1,3-PD.

Table 2. The lower bounds, upper bounds, and optimal values of the identified parameters.

Parameter Lower Bound Optimal Value Upper Bound

p1 1 4.945 5
p2 0.0001 0.024 2
p3 10 10.075 50
p4 1 20.427 30
p5 −5 −4.823 −1
p6 10 34.755 100
p7 1 4.246 50
p8 1 23.830 100
p9 −2 −0.285 −0.01
p10 10 19.235 50
p11 1 1.113 10
p12 10 86.994 100
p13 −10 −4.554 −0.01
p14 2 20.192 50
p15 1 2.370 20
p16 10 95.515 100
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Table 3. Comparison between the proposed two-stage method and the single-stage approach from
Reference [17].

Method Proposed Two-Stage Method Single-Stage Method from Reference [17]

F 0.245 0.519

Figures 2 and 3 present the comparisons of biomass, glycerol, 1,3-PD, acetic acid, and ethanol
between the experimental data and the computed values for the parameter identification of the
microbial batch process. From Figures 2 and 3, we can see that the calculated concentrations with
the proposed two-stage method were better fitted to the experimental data than with the single-stage
method. To further measure the goodness-of-fit of the model, the coefficient of determination in
statistical analysis was used as a metric. The coefficient of determination of the presented study was
0.9994 (0.9994 is closer to 1), and was larger than the coefficient of determination (0.9243) obtained by
the single-stage method, with an improvement of about 8.13%. This concludes that the biological model
obtained by the two-stage method provided better goodness-of-fit for the experimental concentration
data than the single-stage method did.
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5. Conclusions

This paper addressed the problem of parameter identification for a microbial batch process of
glycerol to 1,3-PD. A two-stage method was proposed to efficiently solve the presented parameter
identification problem. In the first stage of this method, a simple quadratic programming problem is
first required to be solved. The optimized variables of this quadratic programming problem are the
specific growth rate µ, specific consumption rate qS, and specific formation rates qPD, qHAc, and qEtOH

at time tj(j = 0, 1, · · · , N). Applying the optimization results of the quadratic programming problem
to the second stage of the proposed two-stage method, we can obtain the values of the 16 identified
parameters. A comparative study was conducted and showed that the proposed two-stage method
could obtain better identification results than the single-stage method could. Although the two-stage
method was proposed here to identify the parameters of a microbial batch process of glycerol to 1,3-PD,
it can also be applied to the parameter identification of other biological systems.

Author Contributions: G.X., D.L., and W.T. contributed to the design and implementation of the research, to the
analysis of the results, and to the writing of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant number
11101051), the Liaoning Provincial Natural Science Foundation of China (Grant number 20180550839), and the
Basic Research Fund of Liaoning Education Department (Grant number LF2017002).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Biebl, H.; Menzel, K.; Zeng, A.-P.; Deckwer, W.-D. Microbial production of 1,3-propanediol. Appl. Microbiol.
Biotechnol. 1999, 52, 289–297. [CrossRef] [PubMed]

2. Xiu, Z.; Song, B.; Wang, Z.; Sun, L.; Feng, E.; Zeng, A.-P. Optimization of dissimilation of glycerol to
1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochem. Eng. J. 2004, 19,
189–197. [CrossRef]

3. Xiu, Z.; Zeng, A.-P.; Deckwer, W.-D. Multiplicity and stability analysis of microorganisms in continuous
culture: Effects of metabolic overflow and growth inhibition. Biotechnol. Bioeng. 1998, 57, 251–261. [CrossRef]

4. Zeng, A.-P.; Deckwer, W.-D. A kinetic model for substrate and energy consumption of microbial growth
under substrate-sufficient conditions. Biotechnol. Prog. 1995, 11, 71–79. [CrossRef] [PubMed]

5. Zeng, A.-P.; Biebl, H. Bulk-chemicals from biotechnology: The case of microbial production of 1,3-propanediol
and the new trends. In Tools and Applications of Biochemical Engineering Science; Schüger, K., Zeng, A.-P., Eds.;
Springer: Berlin/Heidelberg, Germany, 2002; Volume 74, pp. 239–259, ISBN 978-3-540-45736-7.

6. Lama, S.; Seol, E.; Park, S. Metabolic engineering of Klebsiella pneumoniae J2B for the production of
1,3-propanediol from glucose. Bioresour. Technol. 2017, 245, 1542–1550. [CrossRef]

http://dx.doi.org/10.1007/s002530051523
http://www.ncbi.nlm.nih.gov/pubmed/10531640
http://dx.doi.org/10.1016/j.bej.2003.12.005
http://dx.doi.org/10.1002/(SICI)1097-0290(19980205)57:3&lt;251::AID-BIT1&gt;3.0.CO;2-G
http://dx.doi.org/10.1021/bp00031a010
http://www.ncbi.nlm.nih.gov/pubmed/7765990
http://dx.doi.org/10.1016/j.biortech.2017.05.052


Appl. Sci. 2019, 9, 337 15 of 16

7. Lee, C.S.; Aroua, M.K.; Daud, W.M.A.W.; Cognet, P.; Pérès-Lucchese, Y.; Fabre, P.-L.; Reynes, O.; Latapie, L.
A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew. Sustain.
Energy Rev. 2015, 42, 963–972. [CrossRef]

8. Sun, Y.; Shen, J.; Yan, L.; Zhou, J.; Jiang, L.; Chen, Y.; Yuan, J.; Feng, E.; Xiu, Z. Advances in bioconversion of
glycerol to 1,3-propanediol: Prospects and challenges. Process Biochem. 2018, 71, 134–146. [CrossRef]

9. Vivek, N.; Aswathi, T.V.; Sven, P.R.; Pandey, A.; Binod, P. Self-cycling fermentation for 1,3-propanediol
production: Comparative evaluation of metabolite flux in cell recycling, simple batch and continuous
processes using Lactobacillus brevis N1E9.3.3 strain. J. Biotechnol. 2017, 259, 110–119. [CrossRef]

10. Rodriguez, A.; Wojtusik, M.; Masca, F.; Santos, V.E.; Garcia-Ochoa, F. Kinetic modeling of 1,3-propanediol
production from raw glycerol by Shimwellia blattae: Influence of the initial substrate concentration.
Biochem. Eng. J. 2017, 117, 57–65. [CrossRef]

11. Liu, C.; Gong, Z.; Teo, K.L.; Loxton, R.; Feng, E. Bi-objective dynamic optimization of a nonlinear time-delay
system in microbial batch process. Optim. Lett. 2018, 12, 1249–1264. [CrossRef]

12. Yuan, J.; Liu, C.; Zhang, X.; Xie, J.; Feng, E.; Yin, H.; Xiu, Z. Optimal control of a batch fermentation process
with nonlinear time-delay and free terminal time and cost sensitivity constraint. J. Process Control 2016, 44,
41–52. [CrossRef]

13. Hirokawa, Y.; Maki, Y.; Hanai, T. Improvement of 1,3-propanediol production using an engineered
cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic
pathway and production conditions. Metab. Eng. 2017, 39, 192–199. [CrossRef] [PubMed]

14. Narisetty, V.; Astray, G.; Gullón, B.; Castro, E.; Parameswaran, B.; Pandey, A. Improved 1,3-propanediol
production with maintained physical conditions and optimized media composition: Validation with
statistical and neural approach. Biochem. Eng. J. 2017, 126, 109–117. [CrossRef]

15. Xu, G.; Liu, Y.; Gao, Q. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to
1,3-propanediol. J. Biotechnol. 2016, 219, 59–71. [CrossRef] [PubMed]

16. Xu, G.; Li, C. Identifying the shared metabolic objectives of glycerol bioconversion in Klebsiella pneumoniae
under different culture conditions. J. Biotechnol. 2017, 248, 59–68. [CrossRef] [PubMed]

17. Xu, G.; Wang, M. Parameter identification of a biological process: A comparative study. In Proceedings of
the 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing,
China, 8–10 July 2016; IEEE Computer Society: Los Alamitos, CA, USA, 2016; pp. 1034–1038.

18. Xu, G.; Wang, D.; Li, C. Optimization of continuous bioconversion process of glycerol to 1,3-propanediol.
Int. J. Bioautomation 2018, 22, 199–212. [CrossRef]

19. Wischral, D.; Zhang, J.; Cheng, C.; Lin, M.; De Souza, L.M.G.; Pessoa, F.L.P.; Pereira, N., Jr.; Yang, S.
Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor:
Process optimization and metabolic engineering. Bioresour. Technol. 2016, 212, 100–110. [CrossRef] [PubMed]

20. Silva, J.P.; Almeida, Y.B.; Pinheiro, I.O.; Knoelchelmann, A.; Silva, J.M.F. Multiplicity of steady states in a
bioreactor during the production of 1,3-propanediol by Clostridium butyricum. Bioprocess Biosyst. Eng. 2015,
38, 229–235. [CrossRef] [PubMed]

21. Wang, L.; Lin, Q.; Loxton, R.; Teo, K.L.; Cheng, G. Optimal 1,3-propanediol production: Exploring the
trade-off between process yield and feeding rate variation. J. Process Control 2015, 32, 1–9. [CrossRef]

22. Kumar, V.; Durgapal, M.; Sankaranarayanan, M.; Somasundar, A.; Rathnasingh, C.; Song, H.; Seung, D.;
Park, S. Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol
production by Klebsiella pneumoniae J2B. Bioresour. Technol. 2016, 214, 432–440. [CrossRef]

23. Hirokawa, Y.; Maki, Y.; Tatsuke, T.; Hanai, T. Cyanobacterial production of 1,3-propanediol directly from
carbon dioxide using a synthetic metabolic pathway. Metab. Eng. 2016, 34, 97–103. [CrossRef] [PubMed]
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