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Featured Application: The proposed method is applied to the collaborative topological mapping
of coral reefs using visual information captured by humans and/or robots with the aim of creating
richer representations of the environment.

Abstract: One of the most important tasks when creating a map of visual information obtained
from different agents is finding common locations between the sets of images that enable them to
be fused into a single representation. Typical approaches focus on images obtained from the same
agent. However, in this paper, we focus on recognizing the same places in images captured by
different agents to create a topological map of coral reefs. The main components of the proposed
method are the voting scheme to find a sparse similarity matrix between different frames and an
effective method to match sequences of images exploiting the sparsity of the resulting similarity
matrix. We have applied our method to sequences of images obtained from coral reef explorations
performed by different agents. The presented method shows a good performance compared to other
well-established methods such as FABMAP. This demonstrates its ability to find common locations
from visual information gathered from different sources, which eases the collaboration between
humans and robots to map the environment.

Keywords: visual place recognition; underwater robotics; topological mapping; human-robot cooperation

1. Introduction

Although robots are widely used in underwater environments to create maps (topological maps
or seafloor mosaics), these are typically created by a single robotic agent without interaction or support
from other agents. Adding help from other agents can benefit the created map by enriching with more
information from cameras with better resolution or even with information from other points of view.
In addition to the use of other robotic agents, it can be helpful to include information captured by
humans into the mapping process. A diver could provide images from parts of the coral reef that are
of interest to other researchers. For example, while a robot can be programmed to follow a zig-zag
trajectory above a coral reef, a human can navigate the same environment closer to certain species
of coral, thereby providing detailed images from the areas of interest. However, creating a map of
information from more than one agent is not trivial, specifically because it is necessary to recognize the
same places in images taken with different cameras, under different environmental conditions, and
with different points of view. Moreover, the information captured by a diver can be more challenging
to handle with regard to point of view variations because it is more difficult for human explorers
in these environments to maintain a constant orientation and distance with respect to the seafloor
compared to robotic agents. Therefore, to recognize places in different images (loop closure detection),

Appl. Sci. 2019, 9, 261; doi:10.3390/app9020261 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2025-7212
https://orcid.org/0000-0002-0327-3851
http://dx.doi.org/10.3390/app9020261
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/2/261?type=check_update&version=2


Appl. Sci. 2019, 9, 261 2 of 22

whether they are captured by the same agent or not, one of the most relevant challenges to tackle is
generating a robust image description that allows the identification of two images taken from the same
place despite changes in appearance and point of view. It also should be distinctive enough to discard
two similar images from different places.

With respect to the image description, there are two main approaches: using a global descriptor
for the whole image (e.g., Pyramid Histogram of Oriented Gradients [1]) or describing an image with
respect to the contained local features (e.g., Speed-Up Robust Features [2]). However, combinations of
both approaches can also be applied. One of the most known methods for visual place recognition is
FAB-MAP [3], where local features are used to generate a Bag of Visual Words (BoVW) [4] to describe
images with respect to the frequency of occurrence of features contained in a codebook or dictionary.
This method uses a Chow-Liu tree to approximate the dependency between the occurrence of the
detected visual features. They have obtained very good results for outdoor environments despite the
existence of perceptual aliasing (i.e., images that are perceptually similar but from different scenes).
A dictionary or codebook for this kind of method is a collection of representative visual features that
can be found in the environment of interest and it is typically built by clustering similar local features
extracted from a sample of images of the environment. The use of a dictionary helps to improve the
efficiency of the method, as an image can be described only in terms of the presence of the features
contained in the dictionary.

The overall performance of a Bag of Visual Words method depends on having good features
in the codebook. It is important to mention that there are also approaches [5,6] that incrementally
create a dictionary, i.e., they cluster similar features into visual words as they are extracted. If a
feature is not similar to any of the existing features in the codebook, it is added as a new visual word.
In [5], instead of describing an image directly with regard to the frequency of occurrence of visual
words, they focus on registering in which images each word from the vocabulary appears; this enables
comparison between two images with respect to which visual words they share. Additionally, they
used a Bayesian filtering technique to recognize previously seen places. Recently, the efficiency of
incremental dictionaries has been improved by using binary features detected with ORB [7]. Moreover,
other approaches [8] have shown that it is possible to use the Bayesian filtering technique without
a dictionary. Instead, these store all of the features and index them within a kd-tree-based algorithm to
match them efficiently.

It is important to remark that the aforementioned approaches describe the images with regard
to local features extracted with methods such as SIFT [9]. However, global image descriptors have
also been used for place recognition. For example, in RatSLAM [10] a scan line intensity profile is
used to globally describe images extracted from a suburb. A scan line is a one-dimensional vector
formed by summing the intensity values in each column of the image. In [11], a patch-normalized
reduced panoramic image of the surroundings is used directly as the descriptor. Despite the simplicity
of the aforementioned descriptors, they both have been shown to perform well. However, for place
recognition tasks, the global descriptors are more negatively affected if the images were captured
from different points of view compared to describing scenes with local features. There are methods
that combine both kinds of descriptors, for example in [12], where they use a Pyramid Histogram
of Oriented Gradients (PHOG) [1] as a global descriptor to summarize neighboring images in the
environment and local features detected with FAST [13] and described using a binary descriptor to
find the similarities between the images. Recently, Convolutional Neural Networks (CNNs) have
been used to generate global descriptor for images. For example, a pre-trained CNN, OverFeat [14],
has been utilized to describe scenes and to match them to recognize places [15]. In [16], descriptors
extracted from the CNN proposed in [17] are thoroughly evaluated for visual place recognition tasks.
They found that the use of CNN-based descriptors can improve the recognition of places when there
are changes in points of view and appearance.

The previous approaches have focused on recognizing places by finding similarities between
single images, however, other methods are based on matching sequences of images. The objective
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of matching sequences is to gain robustness against changes in the environment. For example,
SeqSLAM [18] has been used to recognize places across different hours of the day or seasons of the
year. More recently, in [19], they adapted SeqSLAM to include metric information and different filtering
techniques to map outdoor environments. Inspired by SeqSLAM, other methods have been proposed
that focus on reducing its time complexity. In [20], they proposed the use of a particle filter to avoid
computing matching scores for all of the candidate sequences in the map. Other methods search
among sequences defined by the most likely initial matching images [21]. An important drawback
to notice is that those methods are designed to look for matching sequences in a given set of images
obtained from a previous navigation in the environment.

Despite the extraordinary results obtained by the aforementioned methods, their direct application
to underwater environments is not always possible, mainly due to the inherent challenges of these
places such as changes in illumination, color degradation, variable conditions in the environment
due to sea currents, and low density of reliable visual features for tracking. Despite of that, in [22],
the authors propose a method based on the use of an incremental BoVW to describe underwater
imagery and generated good results. In [23], they used a Bayesian filtering technique similar to the
one proposed in [8] to find loop closures in images obtained from explorations of coral reefs. There
are other works that also perform mapping tasks in underwater environments using information
from other sensors in addition to images. In [24,25] RatSLAM has been extended to underwater
environments by combining information from cameras, Doppler velocity logs (DVLs), and inertial
measurement units (IMU). In [26] the problem of Simultaneous Localization and Mapping (SLAM) is
tackled with a non-linear optimization framework adapted from [27] fusing information from a sensor
suite composed of stereo cameras, an IMU, a Sonar and a pressure sensor. These works have obtained
very good results in challenging environments. However, in this work, we are interested on creating the
topological maps only with images as this will facilitate the incorporation of information, particularly
for humans as they will only required a camera.

In terms of multi-robot mapping, a remarkable system that has achieved good results in
underwater environments is described in [28]. They combine information from the cameras mounted
on each robot with the relative positions between them being relayed by acoustic signals. They have
applied this approach successfully to real-life scenarios, thereby obtaining 3D representations of the
explored underwater environment. However, the application of this approach requires the use of
information from other sensors, which may not be available in other multi-robot systems.

Another approach that creates a mosaic of the floor with images obtained from a multi-robot
system is MGRAPH [29]. This method fuses mosaics from a swarm of unmanned aerial vehicles
to create a bigger representation of the environment. The place recognition component is based on
directly matching ORB features between the current image and the ones near to it using geographic
information obtained from a Global Positioning System mounted on each member of the swarm.
While it has generated good results, this approach has only been tested in aerial robots. Conversely,
the solution provided in [30] relies only on visual information. They efficiently compare subsets of SIFT
features extracted from the images to recognize places and obtain a mosaic of the seafloor. However,
this method requires all of the images that will contribute to the map when creating it.

For this work, we are interested in creating and expanding topological maps of underwater
environments using only visual information from different collaborative agents. Therefore, we required
a solution able to recognize places despite changes in appearance and points of view. Moreover, we are
interested in a solution that can create maps incrementally so a robotic agent can map the environment
while it is exploring it. As we have described for the aforementioned approaches, the methods
based on matching sequences of images have shown promising results when dealing with changes in
appearance. However, these kinds of methods have two main drawbacks that must be tackled for our
application: the methods are executed offline, that is, they require all of the images to create a map
and the typical sequence-based approaches use global descriptors that may not optimally manage
changes in point of view. To address these issues, we propose an incremental, sequence-based method
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for recognizing previously visited places that uses local visual features to improve the invariance to
the point of view from which the scenes are captured. Our work is based on the idea of matching
sequences of images from a similarity matrix like in FastSeqSLAM [21]. We use a voting scheme
combined with an inverted index of local features to incrementally calculate a similarity matrix, from
which candidate sequences of matching images can be found by looking for the trajectory lines with
the highest scores of similarity. In [18], those trajectory lines are defined by a set of slopes within
a certain range, however, as the similarity matrix is a raster 2D-structure, not all of these slopes will
necessarily define different trajectories. In our work, we consider the similarity matrix as a raster
image, therefore, we can define a sequence of images as a raster line in that matrix. The elements in
the line are obtained by applying Bresenham’s line algorithm [31]. It is worth noting that the similarity
matrix obtained from the voting scheme and local features is sparse enough to only start looking for
corresponding sequences of images at certain locations within the similarity matrix. It is important
to mention that other algorithms for line detection in raster images, as some variations of the Hough
transform [32,33] can be used. However, it will be necessary to execute any of these methods every
time a new image is processed. On the other hand, the use of the Bresenham’s line algorithm allows
to calculate the possible trajectories for searching for lines before starting the mapping method and
only evaluate them in certain locations to find if a candidate line represents a sequence of matching
images. We have also incorporated a visual odometry algorithm into our method that captures the
approximate spatial distribution of the images with respect to the environment.

We have executed different experiments in real-life scenarios to evaluate the performance of our
method for visual place recognition. In addition to the challenge of using images captured by different
agents under varying conditions, we have evaluated the performance for visual place recognition when
fewer images are utilized. This is intended to assess the applicability of our method to platforms where
one must reduce the number of images to process due to computational or storage limitations. As we
mentioned before, we intend for this method to be utilized directly on robotic platforms to create the
map while exploring. The experimental results show that our method overcomes all of these challenges.
Finally, we evaluated the impact of using a few images in the recovered spatial distribution of the maps
obtained using our approach. We have found that there are small differences in the spatial distribution
when using a few images but they are not impactful relative to the area covered by the map.

2. Method

In this section, we present our method for creating topological maps of a coral reef from visual
information provided by different agents. The overview of the proposed method is presented in
Figure 1. The topological map is represented as a graph G = {V, E} with nodes V and edges E. Each
of the nodes and edges of the graph contains the following information:

• Nodes: Each node contains an identification number l, an image Il and its visual features
Dl = (Fl , Zl). Fl = { fl,0, fl,1, ..., fl,1} is the list of (x, y) coordinates of each visual feature and
Zl = {zl,0, zl,1, ..., zl,k} is the list of 1D vectors describing the appearance of each feature. For this
work, we have utilized SURF [2] as feature extractor since it has shown good results for tracking
in underwater environments [34]. However, other methods can be used for extracting visual
features. In addition to that information, the graph contains the pose pl = (xl , yl , θl) of the image
with respect to the first node.

• Edges: An edge eij contains the spatial relation between two nodes Vi and Vj, i.e., their relative
position with respect to each other encoded as pij = (xij, yij, θij) and pji = (xji, yji, θji), where
(xji, yji) is the center of the image Ii with respect to the image Ij and θji is the orientation of image
i with respect to the x-axis of the image j and vice versa. An edge is added when a valid relative
position between the node i and j exists.
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Figure 1. General overview of the proposed approach.

With respect to the images, the following assumptions were taken into account:

1. The images are taken from above the coral reef with the image plane parallel to the seafloor.
2. During the exploration, the agent keeps approximately the same distance from the coral reef.

However, in different explorations, the agent can move to other distances.
3. The images from a single agent should be presented to the method in the same order as they were

captured during the exploration. This is intended to exploit their temporal and spatial coherence.
4. The proposed method is intended to be used in an offline and online mode, that is, the map can

be created once the exploration has finished and all of the images are available (offline mode) or
while exploring the environment (online mode). To deal with both cases, the method is designed
to process the images incrementally, that is, they are processed one by one as they are extracted
from a camera during exploration or read from a storage device after exploring. Therefore, when
processing image It, we do not know any information about It+1. The main parts of the method
are described in detail in the following sections.

2.1. Keyframe Selection for Adding Nodes to the Map

Although it is possible to add every image of the sequence to the map, it will increase the
processing time as more information has to be processed. Additionally, considering the typical frame
rate of the cameras (30 or 60 frames per second), it is very likely that consecutive images contains
repeated visual information. Therefore, only certain images (keyframes) are added to the graph and
used in the rest of the processing pipeline. In this work, the keyframe selection criteria is based on
keeping the overlapping area between them less than a maximum value olmax.

Let IL be the image added as the last node in the graph and It the current image, then It is added
to the graph if the overlapping area between both images is less than a threshold olmax. To calculate
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the overlap, the relative position of It with respect to IL is required. This relation is encoded as a rigid
transformation Aab defined as:

Aab =

 α11 α12 α13

−α12 α11 α23

0 0 1

 =

 cos θab sin θab xab
− sin θab cos θab yab

0 0 1

 , (1)

where a = L and b = t. Then, this transformation is applied to the four corners of IL to obtain
the corners’ position of It with respect to IL, as shown in Figure 2. The overlap is calculated as the
intersecting area of the rectangles defined by the two sets of corners divided by the area of IL. In the
case of raster images (e.g., those obtained from digital cameras), the overlapping area can be calculated
by simply counting the pixels in the intersecting area.

Image a Image b

Image b

Image a

A
ab

Overlap area

Figure 2. Example of the overlap calculation. Given two images Ia and Ib, the visual features between
both images are matched. From those matches, a rigid transformation Aab is obtained. After that,
we can calculate the intersection between both frames and its area.

To find a rigid transformation between two images Ia and Ib, we need to find the common visual
features in both of them by following the next procedure:

1. For each visual feature descriptor za,r in Za, its two most similar descriptors zb,q1 and zb,q2 in Zb

are found. If the ratio between
‖za,r−zb,q1

‖
‖za,r−zb,q2

‖ is less than a threshold ρ, then the pair of indexes (r, q1)

is stored in a set mab. The matching of descriptors is efficiently performed using the Fast Library
for Nearest Neighbors search (FLANN) [35]. This is specialized to work on high-dimensional
spaces, which is the case for the 64-dimensional descriptors obtained with SURF.

2. Step 1 is applied to obtain the pairs of corresponding features from image Ib to Ia and stored
in mba.

3. Only the pairs of indexes (r, q) that appear in both mab and mba are kept and stored in a set m.

Given the set of matching features m, the rigid transformation in (1) can be estimated by finding
the matrix A∗ that minimizes the following expression:

A∗ = arg min
Aab

∑
(r,q)∈m

‖ fa,r − Aab fb,q‖, (2)

where ‖ · ‖ is the Euclidean norm. It is important to mention that the features’ positions f are extended
to be of the form (x, y, 1) so they can be multiplied by the rigid transformation as defined in (1).
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Although ALt can be estimated directly from IL and It there can be some cases where not enough
corresponding features are found, causing a bad estimation of the rigid transformation. That is why ALt
is calculated by concatenating all the rigid transformations between consecutive frames from IL to It:

ALt = AL,k Ak,k+1...At−1,t, (3)

where k is the index of the next image in the sequence after image IL was added to the graph. This
way, the rigid transformation is more likely to be correctly estimated as the displacement between
consecutive images Ik and Ik+1 is smaller than between the last keyframe IL and the current image It.
Then, if the overlap between IL and It is less than the maximum overlap olmax, It and its associated
visual features are used to created a node VL+1. Otherwise, image It is not added to the graph, but its
rigid transformation is preserved to estimate the transformation from the next image. The position for
the new added node is obtained from the rigid transformation:

A0,L+1 = A0,L AL,t, (4)

where A0,L can be obtained from the pose information in VL with the expression (1). The pose in VL+1

can be extracted from the rigid transformation A0,L+1 with the following expression:x
y
θ

 =

 α13

α23

arctan α12
α11

 . (5)

An edge eL,L+1 is also added to graph with the relative positions between node VL and VL+1

which can be obtained from AL,t. The pose pL,L+1 and pL+1,L can be obtained from AL,t and its inverse
A−1

L,t by following the expression (5) respectively.
This process can be executed as the images are read from the storage or a camera and does not

depend on knowing information about the next frame. Finally, it is important to mention that when
the graph is empty the first image is added directly as node V0 with pose p0 = (0, 0, 0).

2.2. Sparse Similarity Calculation

Before recognizing previously visited places, a measure of similarity between the images in required.
Ideally, the features in an image It would be compared against all the other images, thus obtaining
a similarity matrix S. Each entry (i, j) in this matrix contains the similarity between the node i and j.
However, the process of directly comparing the features from every image is computationally expensive.
An alternative is to calculate an approximation S̄ to that similarity matrix S as shown in Figure 3.

The similarity matrix is updated every time a new node is added to the graph. Let VL be the
last added node to the graph and V0:L−δ the set of all nodes from 0 to L− δ with δ the number of
ignored nodes before the last one (this is to avoid recognizing recently added images since they are
likely to be similar to the one currently being added). We initialize a vector of votes with L− δ zeros.
Then, for each descriptor zL,r ∈ ZL, the most similar descriptor zM,q1 and the second most similar
descriptor zN,q2 from all the features in the set V0:L−δ are obtained, being M and N the images where

these features appear. If
‖zL,r−zM,q1‖
‖zL,r−zN,q2‖

is less than a threshold τ we sum 1 to the Mth entry in v. To find

the two most similar descriptors we utilized FLANN.
After the vector of votes has been calculated, it is normalized in the range [0, 1]. Then, it is

added as the last row in the matrix S̄. We add the necessary zeros into the matrix to keep a consistent
dimension since every newly stacked vector of votes is larger than the previous one. An example of
a similarity matrix obtained with this voting scheme is shown in Figure 3. Despite the noisy entries
with high similarity values, the diagonals resultant from the sequences of similar images can still be
observed. In the next section, we present a method to deal with these noisy entries by looking for
predefined sets of lines with high similarity.
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Figure 3. Comparison of a similarity matrix computed by matching directly the visual features and using
the voting scheme propose in this work. Each entry (i, j) in this matrix indicates the similarity between
image i and j. The darker an entry is, the more similar the associated images are. The main diagonals
were eliminated from these matrices as they only indicate that the same image is similar to itself.

2.3. Matching Sequences of Images

As seen in Figure 3, the obtained similarity matrix is sparse, as only a few entries contain non-zero
values. It can be seen that line-like patterns tend to appear in the matrix. Lines out of the main diagonal
indicate sequences of different images taken from the same place. Looking for those line-like patterns
is the core idea to match sequences of images in some approaches, for example, in SeqSLAM [18],
a set of lines, defined by a range of slopes (determined by a minimum and a maximum slope as well
as an increment), is utilized to look for possible sequences in the similarity matrix. These slopes are
related to the speed of the camera traversing the environment. However, in imagery obtained from
underwater explorations the speed of the camera is more difficult to enclose in a range, as it can
be significantly affected by external forces such as strong currents (either when attached to a robot
or held by a diver) in the environment. Additionally, when the camera is looking downwards and
the exploring agent travels through the same place in the opposite direction that it previously did,
the generated images in the sequence will have a reversed order. Therefore, it may be necessary to
define the set of lines to look for in a different way.

Other approaches use graph-searching techniques to find the sequences of images in the similarity
matrix that minimize a certain cost function [36,37]. By doing this, they can look for other more
general patterns for sequences of similar images instead of just lines, however, the computational
cost of searching for the shortest path in graph-based solutions is higher than simply evaluating
a predefined set of lines, as in SeqSLAM. For this work, we have followed the approach presented in
SeqSLAM in respect of looking for lines, but instead of using a set of lines defined in a range of slopes,
we look for all the possible set of lines starting at a certain point in the similarity matrix. This way
we can search for line-like independently of the speed of the camera or its direction when traversing
the environment. To do this, we treat the similarity matrix as a raster image and use Bresenham’s
line algorithm [31] to define the set of lines representing the possible sequences of similar images.
Bresenham’s line is a computer graphics algorithm that is used to draw lines efficiently between two
points in a raster image.

To reduce the computational cost of calculating the lines every time they are needed, we generate
them at the beginning of the algorithm. To do this, a grid of d + 1 rows and 2× d + 1 columns is
defined with the (0, 0) coordinate in the middle of the bottom row as shown in Figure 4. The value of
d indicates the length of the sequence to be found. Then, we apply the Bresenham algorithm to the
pair of points defined by (0, 0) and every point (xw, yw) in the perimeter of the grid. The Bresenham



Appl. Sci. 2019, 9, 261 9 of 22

algorithm will generate a sequence of integer coordinates cw = {(xw
0 , yw

0 ), ...} for every pair of points.
The set of all base lines cw will be denoted as C.

(0,0)(-5,0)

(-5,5) (5,5)

(5,0)

(5,3)

One of the lines that is added 
to the set of base lines C.

d = 5

Figure 4. Calculation of the base lines. The Bresenham algorithm is applied to every pair of points
defined by the central point (blue) and all the points in the grid’s perimeter (yellow).

To incrementally find a matching sequence of images in S̄, it is only necessary to find lines starting
in the last row of the similarity matrix. Only the entries (ispk , jspk ) in the last row with similarity values
higher than a threshold µ are taken into account as starting points. Let Csp =

{
Cspk

}
be the set of

sequences obtained from translating C to every starting point (ispk , jspk ). The set Cspk can be obtained
from C by adding (ispk , jspk ) to every coordinate pair in it. After that, the line c∗ with the highest
average sequence score from all Cspk is obtained. If the average score of c∗ is greater than a minimum
value λ the pair of images in that line are considered to be a matching sequence. Then, the matching
node for VL is Vu, where u = jsp∗ is the second coordinate in c∗’s starting point. The process of finding
the matching sequence is depicted in Figure 5.

To confirm that node VL and Vu represent the same place, a valid relative position between them
should exists. To do find that relative position we apply the same process described in Section 2.1. If a
valid relative position is found, edge eL,u is added to the graph to connect both nodes.

Similarity matrix

Starting
point 1

(sp
1 )

Similarity row 
associated to 
current node V

L

Starting
point 2

(sp
2 )

Starting
point 3

(sp
3 )

Starting
point 4

(sp
4 )

Evaluated 
sequences, C

sp

Line with the 
highest score, c*

Figure 5. Given a similarity matrix S̄, we look for the starting points with scores greater than the
threshold µ in the last row. Then, we evaluate the score for every predefined line in C translated to each
starting point ((ispk , jspk )). The winning sequence c∗ is the one with highest score from all sequences.
In this example is the matching sequence starts in point 2.

2.4. Graph Optimization and Scale Adjusting

The process described so far is useful to obtain a topological representation of the environment.
However, some spatial inconsistencies can arise from accumulation of small errors when concatenating
the relative positions between nodes. This is more notorious when recognizing previously
visited places.
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To improve the spatial consistency of the topological map, a graph-based position adjustment
method can be used. In Figure 6 we show an example of a topologically correct map and its associated
mosaic with spatial inconsistencies after a previously visited place has been recognized and how it can
be corrected with a graph-based position adjustment method.

Without graph optimization With graph optimization

These images belong to the 
same place but this can not be 
observed in this map due to 
spatial inconsistencies.

In this map, the spatial 
inconsistencies have been 
corrected and the images from 
the same place are closer to 
each other.

Figure 6. Comparison of a topological map with and without pose optimization.

To correct the spatial inconsistencies in our map, a graph-based position adjustment method, akin
to the one presented in [38], has been utilized. The main idea is to find the poses P∗ = {p∗i } for each
node i in the graph G = {V, E} in such a way that the following expression is minimized:

P∗ = arg min
P

∑
(i,j)∈E

g(pi, pj)
TΩijg(pi, pj), (6)

where (i, j) are the pair of nodes connected by the edges in the set E. The difference function g(pi, pj)

is defined as:

g(pi, pj) =

(xi − xj) cos θj − (yi − yj) sin θj − xij
(xi − xj) sin θj + (yi − yj) cos θj − yij

θi − θj − θij

 . (7)

The function g(pi, pj) calculates the error between the position difference of Vi with respect to Vj;
and their relative position in edge eij. In Equation (6), a matrix Ωij is required, which is defined as the
inverse of the covariance matrix Σij associated to the relative position pij. In this work, we assume that
the covariance matrix is defined as diag(α|xij|, β|yij|, γ|θij|). Although more complex models can be
utilized, we have obtained good results using that simple definition. For this paper, we have employed
α = β = γ = 0.02.

Given the definition of g(pi, pj) and Ωij; P∗ can be found by minimizing the non-linear expression
in (6). We have follow the procedure described in [38], which is based on approximating (7) by its first
order Taylor expression around the nodes’ positions in the graph before the adjustment, that is,

g(pi, pj) ≈ g( p̂i, p̂j) + Ji( p̂i)∆pi + Jj( p̂j)∆pj, (8)

where p̂i and p̂j are the positions before adjustment and Ji( p̂i) is the Jacobian of g(pi, pj) with respect
to pi evaluated in p̂i and Jj( p̂j) is the Jacobian of g(pi, pj) with respect to pj evaluated in p̂j. After
substituting the linear approximation (8) in (6), a quadratic expression in terms of ∆pi and ∆pi is
obtained. That expression can be differentiated for all ∆pi to obtain a system of linear equations and
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solved by any proper method to obtain ∆p∗i for every node i in the graph. The adjusted position p∗i for
a node i is obtained from:

p∗i = p̂i + ∆p∗i . (9)

This procedure is executed only when a previous visited place is recognized. The presented
process is useful to correct spatial inconsistencies due to cumulative errors in the concatenation of rigid
transformations, however, another source of spatial inconsistencies is the scale difference between the
images from the same place. Figure 7 contains an example of images taken from the same place but at
different distances away from the scene.

Figure 7. Example of images taken from the same place but at different distances from the scene.

The issue of different scales between images from the same scene occurs when dealing with
images from different explorations, as we have assumed that during the same exploration, the agent
will remain at a constant distance from the coral reef. To tackle this issue, we calculate the relative
scale between the images from the two explorations. We will denote the map obtained from a previous
exploration as G0 and G1 as the one currently being created. To calculate the relative scales between
G0 and G1, first, we need to recognize the same place in both maps. This is achieved by executing the
procedure in Section 2.3. Once the same place in both graphs has been identified, the scale sa,b between
both images can be estimated by solving the same expression in (2) with Aab defined as:

Aab =

 α11 α12 α13

−α12 α11 α23

0 0 1

 =

 sa,b cos θa,b sa,b sin θa,b xa,b
−sa,b sin θa,b sa,b cos θa,b ya,b

0 0 1

 . (10)

As we assumed that the distance from the camera to the coral reef is kept constant during the
same exploration, we only need to calculate the relative scale between G0 and G1 the first time that the
same place is recognized. Once sa,b and the transformation Aab between a pair of images from G0 and
G1 have been obtained, it is only necessary to rescale the relative positions (x, y) from all the edges in
G1 including the one that will be created when new images are processed. After that, every time the
graph-based pose adjustment method is executed, G1 will be automatically aligned with respect to G0.

3. Results

In this section, we describe the performed experiments and the obtained results. First, the datasets
and the experimental setup is described. The first part of the experiments focused on evaluating the
recognition of previously visited places using visual information taken under different conditions and
the effect of the variation of the maximum overlap olmax for keyframe selection. We have compared
our approach against a Bayesian one [8], SeqSLAM [18], and FAB-MAP [39]. The second part of the
experiments shows the effect of varying olmax on the spatial distribution of the positions with respect
to the topological maps that use all of the images in the dataset.
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3.1. Datasets

The compared methods have been evaluated on four underwater datasets taken under different
conditions, including a recently published dataset [40]. Within these four datasets we have included a
pair of datasets obtained from the same place while a diver and a robot were exploring the coral reef.

The first dataset [40] includes several trajectories of a simulated underwater robot navigating
above an static coral reef mosaic. From that dataset, we have taken a trajectory suggested in [40] to
evaluate place recognition algorithms. In this paper, we have dubbed this collection of images the FURG
dataset. We refer to the second dataset as Expo1 (from the name of the diving site) and it was extracted
from a video recorded by a robot exploring a coral reef in real-life conditions. The underwater robot
that we utilized to record the video is from the Aqua family of amphibious robots [41,42] manufactured
by Independent Robotics (http://www.independentrobotics.com/). These two datasets are utilized
to evaluate the performance of the proposed method to recognize places from images taken during the
same exploration.

The next datasets are composed of two groups of images that were extracted from videos of the
same coral reef during different explorations. We will refer to the first of these two datasets as Pearls.
The images in this dataset were recorded by two divers using different cameras moving above a coral
reef at different depths. The second dataset is composed of images captured by a diver and our robotic
platform navigating above the same coral reef. We will refer to this dataset as Expo2. For both pairs
of datasets, the different agents tried to follow the same path during the exploration, however, they
were not instructed to follow it exactly. To avoid using all of the images from the recorded videos, we
extracted 1 frame per second of each video. Since the exploration was performed at a low speed this
sampling rate is sufficient for our experiments. Some examples of the images contained in each of
those datasets are shown in Figure 8. Also, we have summarized the important information about each
dataset in Table 1. The number of images per dataset in Table 1 is the value obtained after the sampling.

FURG Expo1 Expo2 
(Diver)

Expo2 
(Robot)

Pearls
(Diver 1)

Pearls
(Diver 2)

Figure 8. Examples of the images contained in each dataset. In the case of Pearls and Expo2 dataset we
show images from the same place taken by the different agents (in the same row).

Table 1. Information about the datasets utilized for evaluation.

Dataset Frames Size (w × h)

FURG [40] 238 320 × 240
Expo1 164 480 × 270

Expo2 (Diver) 600 640 × 360
Expo2 (Robot) 300 420 × 262

Pearls (Diver 1) 442 640 × 360
Pearls (Diver 2) 300 640 × 360

http://www.independentrobotics.com/
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3.2. Loop Closure Detection

In this section, we present the ability of our method to recognize previously seen places in terms of
Precision-Recall curves for the aforementioned datasets. For comparison purposes, we have included a
Bayesian filter-based method to recognize places [8]. Also, we included FAB-MAP 2.0 [39] as it is one of
the most representative methods based on the Bag-of-Words paradigm. For FAB-MAP, we used the open
implementation described in [43]. Finally, SeqSLAM [18] has also been incorporated into the comparison
as it is an important piece of work among the sequence-based methods for detecting loop closures. For
SeqSLAM, we utilized its open implementation (OpenSeqSLAM: http://nikosuenderhauf.info/code).

From the ground truth of a dataset and the pair of images representing the same place detected
by the evaluated method, the Precision-Recall curve can be calculated. This curve relates the precision
and recall values when varying a threshold for accepting a pair of images as loop closure, i.e., a pair
of images taken from the same place. The precision is the ratio between the retrieved loop closures
that appear in the ground truth and all the loop closures detected by the evaluated method. The recall
indicates the ratio between the retrieved true loop closures by the method and all the possible loop
closures according to the ground truth. The desirable curve for a method is the one that reaches the
highest possible recall with a precision of 100%. This means that the method is very likely to recognize
the same place without confusing the location. This is important because a single false positive
detection can cause spatial and topological inconsistencies in the representation of the environment.
To get the ground truth pairs of corresponding images, we performed a direct comparison of the visual
features between all of the images included in a dataset. Then, we check that every pair of images truly
corresponded to the same place before adding it to the ground truth.

For our proposed approach, the Bayesian one presented in [8] and FAB-MAP, SURF [2] is used as
feature detector and descriptor. In the case of FAB-MAP, we built a new vocabulary from a collection
of underwater images captured during previous explorations. For FAB-MAP, its Precision-Recall
curve is computed by varying the threshold related to the minimum probability for loop closure
acceptance. As for SeqSLAM, the trajectory uniqueness threshold has been varied. In the Bayesian
filter-based approach we have varied the probability threshold related to the recognition of previously
visited places.

In our approach, we varied the minimum threshold λ for accepting two sequences of images as
taken from the same place. In Table 2, we present the rest of the parameters for our approach. It is
important to note that we have tested the aforementioned methods using three different maximum
overlap values olmax = {1.0, 0.5, 0.25} to select keyframes. The smaller olmax is, the fewer images are
used to build the topological map; thus, increasing the difficulty to recognize previously seen places.

Table 2. Parameter used for the proposed method.

Parameter Value Description

olmax 1.0, 0.5, 0.25 maximum overlap for keyframe selection
ρ 0.8 ratio for matching features (keyframe selection)
δ 15 ignored frames before current one
τ 0.8 ratio for matching features (similarity calculation)
d 5 sequence length
µ 0.8 minimum similarity for sequence starting point
λ varying minimum similarity for matching sequence

When all the images from each dataset are utilized (olmax = 1.0), as seen in Figure 9,
the proposed approach exhibits a good performance in terms of precision and recall, i.e., it is capable
of obtaining 100% precision with a good recall value. The more challenging cases can be observed in
Figures 10 and 11 when olmax = 0.5 and olmax = 0.25 respectively. This means that only consecutive
images with at most a 50% and 25% overlap are added to the topological map. This complicates the
visual place recognition since it is more likely that images from the same place share fewer visual

http://nikosuenderhauf.info/code
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features. Despite that, our approach reaches 100% precision but with a lower recall in comparison to the
case when olmax = 1.0. For the other approaches, we observed that the one based on Bayesian filtering
shows better results than our method in one of the datasets (Expo2 with olmax = 0.25) only in the recall
value. This is to be expected for the cases where there are not enough similar consecutive images,
which is more frequent when the overlap factor is reduced. Moreover, SeqSLAM performed poorly in
almost all of the datasets despite using the same idea of matching sequences of images as our approach.
However, SeqSLAM is based on calculating the similarity matrix based with global descriptors which
are not robust enough to handle changes in appearance due to point of view variations. This is more
common in the datasets containing images from different agents. It is remarkable that FABMAP
performed slightly better than our method in the FURG dataset, however, in this dataset, loop closures
can be detected more easily because the images are all from a static environment.
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Figure 9. Precision-Recall curves obtained with olmax = 1.0. This means that all the images in each dataset
are utilized. A method is not shown in a plot when it was not able to recognize previously seen places.
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Figure 10. Precision-Recall curves obtained with olmax = 0.5. A method is not shown in a plot when it
was not able to recognize previously seen places.
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Figure 11. Precision-Recall curves obtained with olmax = 0.25. A method is not shown in a plot when
it was not able to recognize previously seen places.

In Table 3, we show the number of keyframes utilized for each value of olmax and, in Table 4,
the total number of detected visual features identified by SURF that were utilized in our approach,
the Bayesian filter-based method, and FABMAP. There is a drastic decrease in the number of visual
features required to recognize previously visited places when olmax is reduced. This can be beneficial
when we have limited computational resources regarding processing power and/or storage as fewer
features have to be processed and stored.
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Table 3. Added images to the topological map for every test when varying olmax.

Test Keyframes at olmax = 1.0 Keyframes at olmax = 0.5 Keyframes at olmax = 0.25

FURG 238 60 43
Expo1 164 78 53
Expo2 900 156 102
Pearls 742 201 132

Table 4. Detected visual features for every test when varying olmax.

Test Features at olmax = 1.0 Features at olmax = 0.5 Features at olmax = 0.25

FURG 157,078 39,980 28,505
Expo1 192,704 90,596 61,336
Expo2 1,608,114 168,710 110,045
Pearls 1,521,917 269,952 179,549

In Figure 12, we show some examples of recognized places using our approach in the Expo2 and
Pearls datasets. These datasets are composed of images taken by different agents. For Pearls, the difference
is mainly in the point of view. Particularly, the images captured by the second diver were taken closer
to the coral reef, therefore providing the map generated with the images from the first diver with more
detailed visual information of the coral reef. Alternatively, in Expo2, there are variations in illumination,
color, and point of view of the images, making it the most difficult dataset from which to recognize places.
In this case the images from the robot complements the map created with the information captured by
the diver with images of the same places from a closer point of view as can be appreciated in the figure.
It is important to mention that despite the nodes are oriented with respect to the direction of the agent
when it was exploring, the proposed method is able to recognize the same place, as shown in some of the
examples of Figure 12. These examples along with the Precision-Recall curves shows that it is possible
for two different agents to cooperate to create a single representation of the environment, adding in some
cases other views from the same part of the coral reefs.

These experiments demonstrate that our approach represents a feasible option for visual place
recognition even when the images are captured by different agents. Moreover, our method can
recognize places when only a few keyframes are utilized. In particular, we have observed that an
overlap factor of 0.5 is a good compromise between the number of features and keyframes added to
the map and the Precision-Recall performance.

3.3. Topological Mapping

In the previous section, we evaluated the Precision-Recall curves of the proposed algorithm using
different overlap factors for keyframe selection. Our solution obtained good results despite using very
few images relative to the ones originally contained in each dataset. In this section, we compared the
spatial distribution of the nodes in the graph obtained when using only a few images (olmax = 0.5, 0.25)
with respect to the maps obtained when using all of the images in the dataset (olmax = 1.0).

To measure the difference between the graphs with respect to their nodes’ spatial distribution,
the first step is to align the nodes in each graph with respect to the map when olmax = 1.0. Two
nodes from different graphs are considered as corresponding if they contain the same image. Then,
the difference in spatial distributions is measured as the mean distances between the corresponding
nodes. To align the maps, we found that the rigid transformation (1) will minimize the distances
between the corresponding nodes. We use the same approach utilized to solve (2), however, instead
of using the positions of the matching features between images, the position of corresponding nodes
is used.
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Expo2 (Diver) Expo2 (Robot)

Pearls (Diver 1) Pearls (Diver 2)

a)

b)

c)

d)

Figure 12. Examples of recognized places from images taken from different agents. (a) In this example
the image taken by the underwater robot is from the same place than the one taken by a diver but
rotated approximately 90◦ to the right. (b) The same place is captured in both images but the one
captured by the robot is closer to the coral reef than the one captured by the diver. Moreover, the image
captured by the robot is more illuminated. (c) These images were taken from the same place but the
one captured by the second diver is closer to the coral reef and rotated approximately 90◦ to the left
with respect to the one captured by the first diver. In addition to that, the second one is more bluish
than the first one. (d) In this case the image captured by the second diver is closer to the coral reef and
rotated to the approximately 90◦ left with respect to the one captured by the first diver.

The mean distance between the corresponding nodes in the compared graphs is shown in Table 5.
The distances are in pixels as the node’s positions were estimated in the image space of each dataset.
Additionally, we show the aligned graphs in Figure 13 for each dataset. We can observe from Table 5
that the distances are small compared to the typical image size from the dataset (Table 1). Moreover,
it can be noticed that the distances are larger when using olmax = 0.25. That is expected since fewer
images are utilized when olmax = 0.25, therefore, affecting the estimation of positions. Despite the
differences in the corresponding nodes’ positions, we observe a good similarity in appearance for the
mosaics built for each graph in Figure 14.

Table 5. Mean distance between corresponding nodes with respect to graph obtained with olmax = 1.0.

Dataset Mean Distance when olmax = 0.5 [pixel] Mean Distance when olmax = 0.25 [pixel]

FURG 1.3871 ± 1.3236 1.9961 ± 2.1683
Expo1 13.6007 ± 12.3608 16.1195 ± 13.7317
Expo2 81.5906 ± 67.6119 90.0958 ± 97.3288
Pearls 48.1898 ± 32.3899 81.1770 ± 95.8126
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Figure 13. Obtained graphs from applying our method to each dataset varying the overlap factor olmax.
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4. Discussion

The results of this study indicate that our approach is able to create consistent topological
representations of underwater environments using only visual information. As the results in Section 3.2
have shown, the proposed method is able to recognize previously seen places by the same agent or
a different one despite reasonable changes in appearance or points of view. It is important to note
that the proposed method has achieved 100% precision for the tested datasets, which means that
it is possible to configure our method to increase the likelihood of correctly recognizing previously
seen places. However, by using a configuration that increases precision, the recall decreases, as
shown in the Precision-Recall curves. This means that the method won’t be able to recognize all
of the places. Moreover, we evaluated the proposed methodology using fewer images than those
originally contained in the dataset and obtained good results with regard to the Precision-Recall.
The ability to map an environment using only a few images is useful, especially when the mapping
platform has limited computational or storage ability. In addition to the visual place recognition, our
method can also generate an approximation of the spatial structure of the explored environments even
when that information is obtained from different sources, as shown in the experiments in Section 3.3.
We observed that the recovered spatial structure is slightly affected when limited to only a few images
relative to when using all of the available visual information. Despite the many strengths of our
approach, it remains important to increase the number of recognized places by using visual features
that describe more uniquely every image.

5. Conclusions

In this paper, a novel method is proposed for creating topological maps of underwater
environments using visual information provided by different exploring agents. As the visual
information that is utilized was captured under different conditions and by different agents, a robust
method to recognize previously seen places is needed. Without a robust approach, the collaboration
between different agents to create a map would be more difficult. Our solution centers on
sequence-based methods since they have shown good results in challenging environments with
strong changes in appearance. Moreover, our method deals with images incrementally, which allows it
to create a map online. Toward this end, we calculate the similarity matrix required in sequence-based
methods, but in an incremental manner. A voting scheme combined with local visual features is
utilized to generate a similarity vector (containing the similarity between the current image and the
previous ones) that is added as the last row in the current similarity matrix. The calculated matrix
is sparse enough to only look for sequences of matching images at certain points. In addition to the
topological information between the images, the map also incorporates an approximation of the spatial
structure by concatenating the relative positions between images. To maintain consistency in spatial
structure, every time a place from previous images is recognized, the positions in the graphs are
adjusted. Finally, to reduce the amount of repeated information that is added to the map we used a
sampling method that only adds consecutive images with maximum intersecting areas.

The proposed method has been evaluated with regard to the Precision-Recall ability to recognize
previously visited places when using images captured by different agents and when varying the
keyframe selection criteria. As presented in the results, the proposed approach manages those factors
by striking a compromise between the Precision-Recall and the number of keyframes added to the map.
After, we compared the spatial structure of the map obtained after reducing the number of keyframes.
We observed that there is no significant difference between the spatial structures when our method
uses fewer images than those contained in the original dataset.

In terms of future work, we are interested in testing other types of local features, distinctive
enough to require only a few of them, thereby, improving the scalability of the proposed approach.
In particular, we are interested in testing the use of features obtained using deep convolutional neural
networks as these have shown promising results in matching visual patterns.
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Abbreviations

The following abbreviations are used in this manuscript:

FABMAP Fast Appereance-Based Mapping
SeqSLAM Sequence Simultaneous Localization and Mapping
SIFT Scale-Invariant Feature Transform
SURF Speed-Up Robust Features
ORB Oriented FAST and Rotated BRIEF
BRIEF Binary Robust Independent Elementary Features
FAST Features from Accelerated Segment Test
RatSLAM Rodent Hippocampal Model for Simultaneous Localization and Mapping
PHOG Pyramid Histogram of Oriented Gradients
CNN Convolutional Neural Network
MGRAPH Multi-GRAPh Homography-based method
FLANN Fast Library for Approximate Nearest Neighbors
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