
applied
sciences

Article

Multi-Scenario Cooperative Evolutionary Algorithm
for the β-Robust p-Median Problem with
Demand Uncertainty

Jianmai Shi 1,* , Xiaolei Zheng 2, Bo Jiao 1 and Rui Wang 1

1 Science and Technology on Information Systems Engineering Laboratory, College of System Engineering,
National University of Defense Technology, Changsha 410073, China; jiaobonudt116@163.com (B.J.);
ruiwangnudt@gmail.com (R.W.)

2 National Defense University, Beijing 100091, China; frostday1023@163.com
* Correspondence: jianmaishi@gmail.com

Received: 18 September 2019; Accepted: 30 September 2019; Published: 5 October 2019
����������
�������

Abstract: In this paper, we studied the solution approach for the β-robust p-median problem with a
large number of scenarios for the uncertain demands. The concept of neighborhood scenarios was
introduced to describe the scenarios with a higher similarity than others. By utilizing knowledge
from the solutions of neighborhood scenarios and the parallel search strategy, a novel multi-scenario
cooperative evolutionary algorithm was proposed to solve the problem for all scenarios in one run.
The proposed algorithm was compared with the widely used location–allocation heuristic and genetic
algorithm through two practical cases, which were a network with 95 cities and a network with 668
demand nodes in an urban area. The computational results indicate that our algorithm can obtain
better solutions in a much shorter time.

Keywords: facility location; metaheuristic; robust; uncertain demand; scenario

1. Introduction

The p-median problem is one of the most well-studied facility location problems in the field
of management and operation research. In the classical p-median problem, a certain number of p
facilities are located among n candidate locations and m demand points are allocated to the p opened
facilities, while the objective is to minimize the sum of the transportation cost/distance to serve all of
the demand points. The p-median problem and its extensions have been widely used in many practical
situations including the location of plants, warehouses, distribution centers, hubs, and public service
facilities [1]. Previous study has proven that the p-median problem is Non-deterministic Polynomial
(NP) hard [2], and that its optimal solution is unlikely to be obtained through an exact approach with
polynomial complexity. Thus, various approximate heuristics have been developed to find optimal or
near optimal solutions.

The genetic algorithm (GA) is a kind of metaheuristic inspired by the biological evolution process,
which is one of the most efficient metaheuristics for solving the p-median problem. Hosage and
Goodchild [3] first reported the application of the GA for the p-median problem, and showed the
advantage of the GA in the generality for approaching difficult optimization problems. Alp et al. [4]
improved the efficiency of the GA for solving the p-median problem by integrating the greedy heuristic
in the evolution process, which showed better performance than the simulated annealing algorithm
proposed by Chiyoshi and Galvão [5]. Correa et al. [6] employed a heuristic “hypermutation” operator
in the GA to solve the capacitated p-median problem, which obtained better results from a comparison
with the Tabu search algorithm. Alba and Dominguez [7] compared a class of GA based heuristics

Appl. Sci. 2019, 9, 4174; doi:10.3390/app9194174 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2017-4019
http://dx.doi.org/10.3390/app9194174
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/19/4174?type=check_update&version=2

Appl. Sci. 2019, 9, 4174 2 of 13

with several other metaheuristics and reported their relative performances. Their experimental results
indicated that the GA based algorithm had advantages of wide applicability, low implementation
effort, and high accuracy. Kratica et al. [8] proposed two GAs with new coding schemes and genetic
operators for solving the single allocation p-hub median problem. Li et al. [9] investigated the impacts
of initial population generating strategies on the performance of the GA, and proposed an approach to
enhance the quality of the initial population. Experimental results showed that the computational
time could be reduced by improving the initial population. Herda [10] introduced the parallel strategy
in the GA to improve the efficiency in solving the capacitated p-median problem, and designed
two parallel GAs that could run on computing clusters with high performance. Memari et al. [11]
proposed a modified firefly algorithm, which was used to solve a supply chain network problem.
GA has also been used to efficiently solve many other problems in the industrial field such as
material handling control [12], the transportation–production problem [13], and the works transport
organization and control problem [14]. More metaheuristics in the facility location field can be found
in Mladenović et al. [1].

The p-median facility location problem is usually a long-term strategic decision problem,
and most of the above studies assume that the facilities’ operational environments is deterministic.
However, in practical situations, the fierce competition, changes in customer taste, community growth,
and economic vitality in the market area all make the demand quite uncertain in the planning period
and difficult to estimate. In this situation, the demand is assumed to be an uncertain parameter,
which can be modeled as a set of alternative future scenarios. Then, robust optimization approaches
can be utilized to minimize the maximum regret of the overall transportation cost [15]. Weaver and
Church [16] studied the p-median problem in a stochastic network, where the demand in each node
was modeled as a set of discrete scenarios. Chen et al. [17] investigated the uncertain p-median
problem, and developed an α-reliable mean-excess model to minimize the expected regret. Snyder and
Daskin [18] introduced the β-robust approach for the p-median problem with uncertainties, which can
be used to obtain a trade-off between the expected transportation cost/distance and the robustness.
The β-robust approach for facility location integrates the advantages of both the stochastic and robust
optimization methods. Then, Lim and Sonmez [19] further studied the β-robust facility relocation
problem under budget constraint. Sakalli and Atabas [20] employed both ant colony optimization
and the GA to solve a tactical production–distribution planning problem in an uncertain environment.
In most of the studies on robust facility location, in order to estimate the regrets under different scenarios,
the optimal solutions for all scenarios should be first obtained. The instance under each scenario usually
corresponds to a kind of classical facility location problem, which is NP-hard. The solving of each
scenario problem has to employ approximate heuristics such as the GA and Lagrangian heuristic [21],
which is time-consuming. When the number of scenarios is lower, all of the instances can be solved
through iteratively running an approximate heuristic. For example, nine scenarios were included
in the experiments of both [18,19]. However, in many practical situations, the uncertainties have to
be modeled as a larger number of scenarios, which means that the computational time would be
unaffordable by iteratively running traditional methods.

Motivated by the requirement of efficiently solving the β-robust p-median problem with a large
number of possible scenarios, a novel multi-scenario cooperative evolutionary (MSCE) metaheuristic
was proposed. The definition of the neighborhood scenario was introduced, which was used to
describe scenarios similar to each other. The major contribution of the MSCE algorithm is to utilize the
knowledge obtained in the solutions of neighborhood scenarios. As all of the scenarios are used to
model the uncertainties in a p-median problem, there are some similarities between these scenarios.
The basic observation is that the optimal solution of a scenario is close to another scenario, if these
two scenarios have higher similarities. Thus, the knowledge obtained in the solving of a scenario is
helpful to the solving of its neighborhood scenarios. There are two advantages of the MSCE algorithm
compared to other approximate heuristics. First, all scenarios are solved parallelly in one run of the
MSCE algorithm, which improves the efficiency of computational time. Second, in the parallel search

Appl. Sci. 2019, 9, 4174 3 of 13

process of MSCE, helpful knowledge is exchanged among neighborhood scenarios for a certain number
of iterations, which improves the performance in both optimality and efficiency.

The rest of this paper is organized as follows. The model methodology is presented in Section 2.
Section 3 proposes the MSCE algorithm and Section 4 presents the computational experiments.
Finally, the paper is concluded in Section 5.

2. Model Methodology

In this section, a 0–1 integer programming formulation for the β-robust p-median problem is
presented. The objective of the problem is to locate the number of p facilities required to minimize the
overall expected transportation cost for satisfying all of the demand, subject to the constraints that the
relative regret under each scenario is no more than β. In order to calculate the relative regret of a scenario,
the optimal solution under this scenario should first be obtained through solving a corresponding
deterministic p-median problem. The detail formulation is presented in the following subsections.

2.1. Notations

The main parameters and variables used in the model development are presented as follows.

Indices:
M Set of customer nodes, indexed by i;
N Set of potential facilities, indexed by j;
S Set of scenarios, indexed by s;
Parameters:
ci j the cost of supplying one unit to customer node i from facility j;
σis the demand of customer point i under scenario s;
p the number of facilities that can be opened;
qs the probability that scenario s may occur;
β a constant that represents the maximum relative regret permitted for each scenario;
z∗s the optimal objective function value of the problem under scenario s;
Decision variables:
Y j is 1, if facility j is opened in the robust optimization problem; otherwise 0;
Y js is 1, if facility j is opened in the problem under scenario s; otherwise 0;
Xi js is 1, if the demand of customer node i is supplied by facility j under scenario s; otherwise 0.

2.2. Subproblem Formulation for a Given Scenario

Under a given scenario, the problem is a classical p-median facility location problem, which can
be formulated as follows.

Ps : Minzs =
∑
i∈M

∑
j∈N

σisci jXi js (1)

Subject to ∑
j∈N

Y js = p (2)

Xi js ≤ Y js, ∀i ∈M, j ∈ N, (3)∑
j∈N

Xi js = 1, ∀i ∈M, (4)

Xi js, Y js ∈ {0, 1}, ∀i ∈M, j ∈ N. (5)

Objective function (1) is to minimize the total transportation cost. In Equation (2), the number
of opened facilities under scenario s is restricted to p. Constraint (3) ensures that the demand of the
customer node i can only be supplied by opened facilities. Constraint (4) ensures that each customer
node must be allocated to a facility. Constraint (5) is a standard integrality constraint.

Appl. Sci. 2019, 9, 4174 4 of 13

2.3. Problem Formulation for the β-Robust Situation with Multiple Scenarios

Through solving the model (Ps), we can obtain the optimal solution for the p-median facility
problem under any given scenario s, and calculate the corresponding optimal function value, z∗s.
Given a feasible solution for all scenarios, noted as X, the β-robust solution can be defined below.

Definition 1. Solution X is β-robust for all scenarios when the following constraints are satisfied:

zs(X) − z∗s
z∗s

≤ β, ∀s ∈ S, (6)

where zs(X) represents the objective value for solution X under scenario s.

Then, the β-robust p-median facility location problem with uncertain demand can be formulated
as follows.

β-P : Minz =
∑
s∈S

∑
i∈M

∑
j∈N

qsσisci jXi js (7)

Subject to ∑
i∈M

∑
j∈N

σisci jXi js ≤ (1 + β)z∗s, ∀s ∈ S, (8)

∑
j∈N

Y j = p, (9)

Xi js ≤ Y j, ∀i ∈M, j ∈ N, s ∈ S, (10)∑
j∈N

Xi js = 1, ∀i ∈M, s ∈ S, (11)

Xi js, Y js ∈ {0, 1}, ∀i ∈M, j ∈ N, s ∈ S. (12)

Objective function (7) is to minimize the expected overall transportation cost. Submitting function
(1) into (6), we can obtain Constraint (8), which ensures that the relative regret for any scenario s ∈ S
is no more than the required level β. The meaning of Constraints (9)–(12) is similar to the ones in Ps,
while all these constraints must be satisfied for all scenarios s ∈ S.

3. Multi-Scenario Cooperative Evolutionary Algorithm

From the above model methodology, we can see that all of the subproblems Ps (s ∈ S) should be
solved first, then the problem β-P can be solved based on the optimal solutions of Ps. Subproblem Ps is
a typical p-median problem, which is usually solved by approximate metaheuristics [1]. When the
number of scenarios is huge, it becomes quite time-consuming to obtain all of their (near) optimal
solutions by repeatedly running a metaheuristic in the current literature. Thus, a multi-scenario
cooperative evolutionary (MSCE) algorithm was developed to calculate the solutions for all scenarios in
one run. The basic idea is that the optimal solutions to a set of (Ps) subproblems have higher similarities
if the corresponding scenarios are similar to each other. The scenarios with higher similarities are called
neighborhood scenarios. In the MSCE algorithm, the search processes for solving all (Ps) subproblems
are parallelly conducted, and the knowledge of the solutions for similar scenarios is extracted and
exchanged among these scenarios for a very certain number of iterations. The utilization of knowledge
from the solutions of similar scenarios accelerates the convergence of the algorithm and helps find
better solutions.

3.1. Solution Encoding

The solution of the p-median problem is encoded as a set with p elements, where each element
represents the index of a selected facility for opening. For example, in a 5-median problem with 15

Appl. Sci. 2019, 9, 4174 5 of 13

potential facility locations, {2,5,6,12,15} is a code that represents a feasible solution, and the potential
locations, 2,5,6,12, and 15, are selected to establish facilities. This encoding strategy has been widely
used in GA based algorithms [4,9], and can ensure that Constraint (2)/(9) is automatically satisfied.

3.2. Greedy Heuristics for Generating Initial Solutions

In this section, two greedy heuristics are presented to help generate near-optimal initial solutions
for the subproblems under each scenario and the β-robust problem.

3.2.1. Greedy Adding Heuristic

The main idea of the greedy adding heuristic (GAH) is to find the potential facility locations
sequentially with an attempt that can decrease the most value of the objective function (1), and add
them into a set of open facilities one by one until the number of open facilities reaches p. The idea of
the GAH has been utilized to solve different facility location problems [22,23].

The main procedure of the GAH is as follows.

1 Input: the parameters in model Ps;
2 the stopping criteria;
3 Output: the solution of Ps.
4 Step 0: Initialize
5 let Qo be the set of opened facilities and initialize Qo = ∅;
6 let Qu be the set of unopened facilities and initialize Qu = N.
7 Step 1: calculate the objective value
8 For j ∈ Qu Do
9 let Qoj = Qo\ j and calculate function (1) to obtain zsj for Qoj;
10 End for
11 Step 2: find and add
12 find j∗ = argmin

{
zsj, j ∈ Qu

}
;

13 add j∗ into Qo, and Qo = Qo ∪ j∗;
14 remove j∗ from Qu, and Qu = Qu\ j∗;
15 Step 3: Check stopping criteria
16 If the number of elements in Qo < p Do
17 go to Step 1;
18 Else
19 stop the algorithm and output the solution;
20 End if

3.2.2. Greedy Deleting Heuristic

The greedy deleting heuristic (GDH) can be viewed as a reverse process of GAH. First, all potential
facilities in set N are assumed to be opened. Then, the facilities are closed one by one until the number
of opened facilities is equal to p. In each process of closing one facility, the one whose closing can
make the minimum objective value is found and deleted from the set of opened facilities. This greedy
deleting strategy was also utilized by Berman et al. [24] and Alp et al. [4] for solving facility location
problems. When the GAH is utilized to solve the β-P problem, only the one satisfying Constraint (8)
can be deleted in each deleting operation.

The main procedure of the GDH is as follows.

Appl. Sci. 2019, 9, 4174 6 of 13

1 Input: the parameters in model β-P;
2 the stopping criteria;
3 Output: the solution of β-P.
4 Step 0: Initialize
5 let Ro be the set of opened facilities and initialize Ro = N;
6 let Ru be the set of unopened facilities and initialize Ru = ∅.
7 Step 1: calculate the feasible objective value
8 For j ∈ Ro Do
9 Let Roj = Ro\ j;
10 calculate the function (1) for solution Roj and check Constraint (8);
11 If solution Roj can satisfy Constraints (8) for all scenarios Do
12 calculate function (7) for solution Roj and note as z j;
13 End if
14 End for
15 Step 2: find and delete
16 find j∗ = argmin

{
z j

}
;

17 delete j∗ from Ro, and Ro = Ro\ j∗;
18 Step 3: Check stopping criteria
19 If the number of elements in Ro > p Do
20 go to Step 1;
21 Else
22 stop the algorithm and output the solution;
23 End if

3.3. Knowledge Exchange with Neighborhood Scenario

The neighborhood relations between the scenarios are defined based on the distances between
their demand vectors.

Definition 2. The distance between two scenarios s and s′ is defined as follows:

Dss′ =

√∑
i∈M

(σis − σis′)
2 (13)

where s and s′ ∈ S are the index of scenarios.

It can be seen that the smaller the value of Dss′ , scenario s is more similar to scenario s′.
The optimal solution of the subproblem under scenario s should be similar to that of the subproblem
under scenario s′ if scenarios s and s′ are similar to each other. Thus, the knowledge obtained
from the solution of subproblem s should be helpful in optimizing subproblem s′. Based on this
observation, three neighborhood knowledge utilizing (NKU) operators are employed to utilize the
helpful knowledge in the solutions of the neighborhood scenarios.

(1) NKU operator based on random exchange
Let Ys be the set of opened facilities in a local optimal solution found in the search process of

solving subproblem corresponding scenario s and Ys′ be that of scenario s′. Let YC be the common
facilities appearing in Ys and Ys′ , that is YC = Ys

∩Ys′ . As there are similarities in the optimal solutions
of scenario s and its neighborhood scenarios s′, the common part YC is thought to be useful and is kept
in the new solution. The other part of the solution Ys′ , that is Ys′/YC, may also be part of the optimal
solution of scenario s. Thus, some of the uncommon parts in Ys and Ys′ are randomly exchanged to
form new solutions. To illustrate, we considered an instance with 15 potential facilities and p = 5.
Let Ys = {1, 3, 7, 10, 12} be a local optimal solution of scenario s and Ys′ = {1, 3, 5, 8, 14} be a local optimal
solution of its neighborhood scenario s′. Then YC = {1, 3}, Ys/YC = {7, 10, 12}, and Ys′/YC = {5, 8, 14}.
Some of the uncommon parts in Ys and Ys′ are randomly selected (e.g., 10 in Ys/YC and 8 in Ys′/YC)

Appl. Sci. 2019, 9, 4174 7 of 13

and exchanged to form two new solutions, {1, 3, 7, 8, 12} and {1, 3, 5, 10, 14}. Finally, the better one of
the two new solutions is selected.

(2) NKU operator based on the GAH
In the NKU operator based on the GAH, the common parts of the solutions for scenario s and its

neighborhood scenario s′ are also kept in the new solution. The number of facilities in YC is usually
less than p. In this situation, the number of p−

∣∣∣YC
∣∣∣ facilities are selected by the GAH from all of the

unopened facilities (N/YC) to form a new solution.
(3) NKU operator based on the GDH
In the NKU operator based on the GDH, the opened facilities in Ys and Ys′ are united to form a

set YU = Ys
∪Ys′ . Then, the facilities in YU are deleted one by one using GDH until the number of

facilities is equal to p.
The above three NKU operators can exchange some useful knowledge between the solutions of a

scenario and its neighborhood. In the MSCE algorithm, these NKU operators are randomly employed.

3.4. Local Search

After the knowledge is exchanged between the solutions of a scenario and its neighborhood, a new
solution is generated for the scenario. Then, using this new solution as a starting node, some local
searches are conducted to improve the solution. Two local search operators are employed in the
local search.

(1) Random exchange
In the random exchange local search operator, a random number of opened facilities in the current

solution is randomly selected and exchanged with the same number of facilities randomly selected
from the unopened facilities.

(2) Neighborhood exchange
The neighbor exchange local search operator is designed based on a definition of neighborhood

facility, which is introduced as follows.

Definition 3. The kth neighborhood facility of facility j is the facility that is the kth closest to facility j among all
of the other potential facilities.

In this operator, the randomly selected facilities only exchange open decisions with their
neighborhood facilities. For example, {2, 5, 7, 10, 12} are the first five closest facilities of 3. If facility 3 in
the solution is selected and exchanged with an unopened facility, one of the unopened facilities in set
{2, 5, 7, 10, 12}will be selected for exchange with 3.

3.5. Framework of MSCE

For conducting the MSCE algorithm, the neighborhood scenarios/facilities for each scenario/facility
are first found in the initialization step. Then, the GAH algorithm is employed to calculate a local
optimal solution for all scenarios, which serve as the starting search point. The GDH algorithm is used
to calculate a local optimal solution for the β-P problem, as it has more opportunities to generate a
feasible solution that satisfies Constraint (8). In the second step, the useful knowledge on solving a
scenario subproblem is extracted and utilized to generate a new solution by randomly employing one
of the three NKU operators. In the third step, a number of local search operations are conducted from
the new solution obtained in Step 2. The local search process is parallelly conducted and the number of
iterations is set as 100. In the fourth step, the local optimal solution obtained in Step 3 is checked to see
if it can improve the objective of its neighborhood scenarios. The last step is to check if the stopping
criteria are satisfied.

The main procedure of the MSCE algorithm is presented as follows:

Appl. Sci. 2019, 9, 4174 8 of 13

1 Input: the parameters in model Ps and β-P;
2 the stopping criteria;
3 Ns, the number of neighborhood scenarios.
4 Output: the optimal solutions for all Ps (s ∈ S) and β-P.
5 Step 0: Initialize
6 calculate the distances between each two scenarios and obtain their neighborhoods;
7 calculate the distances between each two facilities and obtain their neighborhoods.
8 Step 1: Generate initial solutions by greedy heuristics
9 For i = 1: |S| Do
10 calculate the solution for subproblem s by GAH heuristic;
11 End for
12 calculate the solution for β-P by GDH heuristic.
13 Step 2: Exchange knowledge between neighborhood scenarios
14 For s = 1: |S| Do
15 randomly select a NKU operator to generate a new solution;
16 End for
17 generate a new solution for β-P by the NKU operator based on GDH;
18 Step 3: Parallel local search
19 Parfor all Ps (s ∈ S) and β-P Do
20 For i = 1: T Do
21 generate a new solution by a randomly selected local search operator;
22 update the solution if the newly generated one is better;
23 End for
24 End parfor
25 Step 4: Update solutions for neighborhood scenarios
26 For all Ps (s ∈ S) and β-P Do
27 For i = 1: Ns Do
28 update neighbor i’s solution if the solution of scenario s is better;
29 End for
30 End for
31 Step 5: Check stopping criteria
32 If one of the stopping criteria is satisfied Do
33 stop the algorithm and output the solutions;
34 Else
35 go to Step 2;
36 End if

In this paper, the number of neighborhood scenarios, Ns, was set as 20. The number of local
search iterations, T, was set as 100. Two stopping criteria were applied: (1) the number of iterations
conducting Step 2 was over 1000, and (2) if there was no improvement in the solution for 10 iterations
conducting Step 2.

4. Computational Experiments

In this section, the performance of the proposed algorithm was analyzed based on the
computational experiments for two practical cases. All of the experiments are conducted on an
Intel(R) Core i7, 2.70 GHz, CPU 16GB of a RAM computer with Windows 10 system. All algorithms
were implemented by MATLAB (2016a, MathWorks, Natick, MA, USA).

4.1. Illustration of Two Practical Cases

Two typical networks for facility location were selected to test the proposed algorithm. The first
was a case with 95 cities distributed in Hunan Province in China, noted as H-95, and the distribution of
the cities is presented in Figure 1a. Each city represents both a demand node and a potential location
for opening a new facility. The distance between each two nodes was assumed to be the greatest circle

Appl. Sci. 2019, 9, 4174 9 of 13

distance, which was calculated through their practical longitudes and latitudes. The excepted demand
of each customer node was estimated through the population in the city. In each scenario, the realizing
demand of each node was assumed to have three possible levels, which were the excepted demand,
25% higher, or lower than the excepted demand. In the experiment of the 95-node instance, 100 possible
scenarios for the demands were generated by randomly selecting a demand level for each node.

Appl. Sci. 2019, 9, x 10 of 14

excepted demand of each customer node was estimated through the population in the city. In each
scenario, the realizing demand of each node was assumed to have three possible levels, which were
the excepted demand, 25% higher, or lower than the excepted demand. In the experiment of the 95-
node instance, 100 possible scenarios for the demands were generated by randomly selecting a
demand level for each node.

The second case was based on 668 demand nodes distributed in the urban area of Changsha in
China, noted as C-668, which are presented in Figure 1b. Among the 668 nodes, 150 nodes were
selected as the potential locations for opening new facilities. The distance between each pair of two
nodes was estimated by the Manhattan distance based on their practical longitudes and latitudes.
The excepted demand in each node was estimated by the population surrounding the demand node.
In this case, the realizing demand of each node in a scenario was assumed to have five possible levels,
which were 50%, 75%, 100%, 125%, and 150% of the excepted demand. Additionally, 100 possible
demand scenarios were generated through randomly selecting a demand level for each node. In both the H-95 and C-668 cases, the probability that each scenario may occur was generated
randomly, and =1s

s S
q

∈
 . The cost ijc was set as the distance between node i and j.

(a) (b)

4.2. Experimental Results and Analysis

In the experiment, the value of p was set as 10, 20, and 30, respectively for both the H-95 and
C-668 cases. Thus, we had six instances with different sizes, and all were solved by the proposed
MSCE algorithm 51 times. The parameters of the MSCE algorithm were set as per the illustration in
Section 3.5. To illustrate the performance of the MSCE algorithm, a location and allocation
heuristic (LAH) was also used to solve all instances. The LAH algorithm is a commonly used
approach for solving different facility location problems including the p-median problem, and can
provide relatively good solutions [23,25]. More details of the LAH can be found in Jia et al. [23].
The average results by the MSCE for 51 runs and the results by the LAH for all instances are
presented in Figure 2. We can see that the MSCE algorithm outperformed the LAH algorithm
for all scenarios in the six different instances.

Figure 1. Node distribution for the two practical cases. (a) Ninety-five cities in Hunan Province and
(b) 668 demand points in Changsha city.

The second case was based on 668 demand nodes distributed in the urban area of Changsha
in China, noted as C-668, which are presented in Figure 1b. Among the 668 nodes, 150 nodes were
selected as the potential locations for opening new facilities. The distance between each pair of two
nodes was estimated by the Manhattan distance based on their practical longitudes and latitudes.
The excepted demand in each node was estimated by the population surrounding the demand node.
In this case, the realizing demand of each node in a scenario was assumed to have five possible levels,
which were 50%, 75%, 100%, 125%, and 150% of the excepted demand. Additionally, 100 possible
demand scenarios were generated through randomly selecting a demand level for each node.

In both the H-95 and C-668 cases, the probability that each scenario may occur was generated
randomly, and

∑
s∈S

qs = 1. The cost ci j was set as the distance between node i and j.

4.2. Experimental Results and Analysis

In the experiment, the value of p was set as 10, 20, and 30, respectively for both the H-95 and
C-668 cases. Thus, we had six instances with different sizes, and all were solved by the proposed
MSCE algorithm 51 times. The parameters of the MSCE algorithm were set as per the illustration in
Section 3.5. To illustrate the performance of the MSCE algorithm, a location and allocation heuristic
(LAH) was also used to solve all instances. The LAH algorithm is a commonly used approach for
solving different facility location problems including the p-median problem, and can provide relatively
good solutions [23,25]. More details of the LAH can be found in Jia et al. [23]. The average results by the
MSCE for 51 runs and the results by the LAH for all instances are presented in Figure 2. We can see that
the MSCE algorithm outperformed the LAH algorithm for all scenarios in the six different instances.

The statistical results for the computational time of the MSCE algorithm in all instances is reported
in Table 1. It can be seen that the computational time increased as the size of the instance became
bigger. Considering there were 100 scenarios in each instance, the computational time was acceptable
for solving the problem.

Appl. Sci. 2019, 9, 4174 10 of 13
Appl. Sci. 2019, 9, x 11 of 14

(a) (b) (c)

(d) (e) (f)

Figure 2. The computational results for H-95 and C-668. (a) H-95 with p = 10; (b) H-95 with p = 20; (c)
H-95 with p = 30; (d) C-668 with p = 10; (e) C-668 with p = 20; and (f) C-668 with p = 30.

The statistical results for the computational time of the MSCE algorithm in all instances is
reported in Table 1. It can be seen that the computational time increased as the size of the instance
became bigger. Considering there were 100 scenarios in each instance, the computational time was
acceptable for solving the problem.

Table 1. The computational time of 51 runs for all 100-scenario instances.

Cases M/N p
Computational Time (seconds)

Average Standard Deviation

H-95 95/95
10 122.861 37.353
20 318.011 66.745
30 642.455 164.929

C-668 668/150
10 531.771 115.468
20 1,211.889 370.137
30 1,985.167 452.943

The GA is also widely used to solve p-median problems. Here, we utilized the standard

framework of the GA and the general operators used in Medaglia et al. [26] to solve the problem. No
enforcements on the initial population and genetic operators were considered as these would usually
further increase the computational time. The population size of GA was 100 and the maximum
number of evolution generations was 1000. The GA will also stop if there is no improvement in the
solution for 100 generations. The mutation probability was 0.1. The GA was run 51 times for each
scenario individually. When we solved the instances for H-95 and C-668 with p = 10, we found that
the statistical results on the total computational time by GA for all 100 scenarios (as presented in
Figure 3) were relatively large. The experiments for the other larger size instances became
unacceptable with time. Thus, we report the results for these two instances here. The solution
obtained by the GA was very close to that by the MSCE algorithm. We present the relative value of
the GA to the MSCE in Figure 4. As shown in Figure 4a, among the results of 100 scenarios for the H-
95 case with p = 10, where 15% obtained by the GA was better than that of the MSCE; 7% obtained by

Figure 2. The computational results for H-95 and C-668. (a) H-95 with p = 10; (b) H-95 with p = 20;
(c) H-95 with p = 30; (d) C-668 with p = 10; (e) C-668 with p = 20; and (f) C-668 with p = 30.

Table 1. The computational time of 51 runs for all 100-scenario instances.

Cases M/N p
Computational Time (Seconds)

Average Standard Deviation

H-95 95/95
10 122.861 37.353
20 318.011 66.745
30 642.455 164.929

C-668 668/150
10 531.771 115.468
20 1211.889 370.137
30 1985.167 452.943

The GA is also widely used to solve p-median problems. Here, we utilized the standard framework
of the GA and the general operators used in Medaglia et al. [26] to solve the problem. No enforcements
on the initial population and genetic operators were considered as these would usually further increase
the computational time. The population size of GA was 100 and the maximum number of evolution
generations was 1000. The GA will also stop if there is no improvement in the solution for 100
generations. The mutation probability was 0.1. The GA was run 51 times for each scenario individually.
When we solved the instances for H-95 and C-668 with p = 10, we found that the statistical results on
the total computational time by GA for all 100 scenarios (as presented in Figure 3) were relatively large.
The experiments for the other larger size instances became unacceptable with time. Thus, we report
the results for these two instances here. The solution obtained by the GA was very close to that by
the MSCE algorithm. We present the relative value of the GA to the MSCE in Figure 4. As shown in
Figure 4a, among the results of 100 scenarios for the H-95 case with p = 10, where 15% obtained by
the GA was better than that of the MSCE; 7% obtained by the GA was worse than that of the MSCE;
and the other 78% were equal to each other. Among the results of the 100 scenarios for the C-668 case
with p = 10, only 5% obtained by GA was better than that of MSCE, while 93% obtained by the MSCE
was better than that of the GA. Thus, the MSCE performed much better than the GA in the C-668 case.

Appl. Sci. 2019, 9, 4174 11 of 13

The main reason may be that the neighborhood scenarios in the C-668 case had higher similarities,
and more helpful knowledge could be utilized by the MSCE algorithm. In all, compared with the GA,
the MSCE algorithm could obtain similar or better results, while the computational time of the MSCE
was much shorter than that of the GA.

Appl. Sci. 2019, 9, x 12 of 14

the GA was worse than that of the MSCE; and the other 78% were equal to each other. Among the
results of the 100 scenarios for the C-668 case with p = 10, only 5% obtained by GA was better than
that of MSCE, while 93% obtained by the MSCE was better than that of the GA. Thus, the MSCE
performed much better than the GA in the C-668 case. The main reason may be that the neighborhood
scenarios in the C-668 case had higher similarities, and more helpful knowledge could be utilized by
the MSCE algorithm. In all, compared with the GA, the MSCE algorithm could obtain similar or better
results, while the computational time of the MSCE was much shorter than that of the GA.

(a) (b)

Figure 3. The statistical results of the total computational time for all 100 scenarios by the genetic
algorithm (GA). (a) H-95 with p = 10; (b) C-668 with p = 10.

(a) (b)

Figure 4. The relative objective value obtained by the GA compared to that of the multi-scenario
cooperative evolutionary (MSCE). (a) H-95 with p = 10; (b) C-668 with p = 10.

5. Discussion and Conclusions

The main motivation behind the use of the MSCE algorithm was to sufficiently utilize the
knowledge obtained from the solutions of neighborhood scenarios to improve the overall search
efficiency of solving all scenarios. The computational results for the two practical cases (H-95 and C-
668) with 100 scenarios confirmed that the proposed algorithm could obtain better solutions in a
much shorter time when compared to the LAH algorithm and GA. The algorithm was suitable for
solving problems with a large number of scenarios, as more similar scenarios would be found in a
large set of scenarios. If there are a small number of scenarios that are quite different to each other in
the problem, there would not be many similarities between these optimal solutions, that is, the MSCE
algorithm cannot find sufficient useful knowledge. In this situation, the traditional approximate
metaheuristics may be more suitable.

Figure 3. The statistical results of the total computational time for all 100 scenarios by the genetic
algorithm (GA). (a) H-95 with p = 10; (b) C-668 with p = 10.

Appl. Sci. 2019, 9, x 12 of 14

the GA was worse than that of the MSCE; and the other 78% were equal to each other. Among the
results of the 100 scenarios for the C-668 case with p = 10, only 5% obtained by GA was better than
that of MSCE, while 93% obtained by the MSCE was better than that of the GA. Thus, the MSCE
performed much better than the GA in the C-668 case. The main reason may be that the neighborhood
scenarios in the C-668 case had higher similarities, and more helpful knowledge could be utilized by
the MSCE algorithm. In all, compared with the GA, the MSCE algorithm could obtain similar or better
results, while the computational time of the MSCE was much shorter than that of the GA.

(a) (b)

Figure 3. The statistical results of the total computational time for all 100 scenarios by the genetic
algorithm (GA). (a) H-95 with p = 10; (b) C-668 with p = 10.

(a) (b)

Figure 4. The relative objective value obtained by the GA compared to that of the multi-scenario
cooperative evolutionary (MSCE). (a) H-95 with p = 10; (b) C-668 with p = 10.

5. Discussion and Conclusions

The main motivation behind the use of the MSCE algorithm was to sufficiently utilize the
knowledge obtained from the solutions of neighborhood scenarios to improve the overall search
efficiency of solving all scenarios. The computational results for the two practical cases (H-95 and C-
668) with 100 scenarios confirmed that the proposed algorithm could obtain better solutions in a
much shorter time when compared to the LAH algorithm and GA. The algorithm was suitable for
solving problems with a large number of scenarios, as more similar scenarios would be found in a
large set of scenarios. If there are a small number of scenarios that are quite different to each other in
the problem, there would not be many similarities between these optimal solutions, that is, the MSCE
algorithm cannot find sufficient useful knowledge. In this situation, the traditional approximate
metaheuristics may be more suitable.

Figure 4. The relative objective value obtained by the GA compared to that of the multi-scenario
cooperative evolutionary (MSCE). (a) H-95 with p = 10; (b) C-668 with p = 10.

5. Discussion and Conclusions

The main motivation behind the use of the MSCE algorithm was to sufficiently utilize the
knowledge obtained from the solutions of neighborhood scenarios to improve the overall search
efficiency of solving all scenarios. The computational results for the two practical cases (H-95 and
C-668) with 100 scenarios confirmed that the proposed algorithm could obtain better solutions in a
much shorter time when compared to the LAH algorithm and GA. The algorithm was suitable for
solving problems with a large number of scenarios, as more similar scenarios would be found in a
large set of scenarios. If there are a small number of scenarios that are quite different to each other in
the problem, there would not be many similarities between these optimal solutions, that is, the MSCE
algorithm cannot find sufficient useful knowledge. In this situation, the traditional approximate
metaheuristics may be more suitable.

Appl. Sci. 2019, 9, 4174 12 of 13

In this work, six instances with different sizes generated from two practical cases were tested
and compared in the experiment. In future research, more experiments for different cases should be
conducted to further test the performance of the proposed algorithm. The proposed algorithm can
also be extended to solve many other optimization problems under uncertain scenarios, for example,
the path planning problem in [27], the portfolio optimization problem in [28], and the vehicle routing
problem with uncertain demand [29]. Aside from the LAH and GA, other metaheuristics can be
compared with the MSCE algorithm. Three neighborhood knowledge utilizing operators are designed
to draw and use the helpful knowledge in solutions of neighborhood scenarios. It would be a valuable
direction to study new learning strategies for utilizing the similarities among scenarios, then, a more
efficient algorithm can be developed.

Author Contributions: Methodology, J.S. and R.W.; Validation, X.Z.; Formal analysis, J.S. and X.Z.;
Investigation, B.J.; Data curation, J.S.; Writing—original draft preparation, J.S.; Writing—review and editing, X.Z.;
Visualization, B.J.; Supervision, J.S.; Funding Acquisition, J.S.

Funding: This research was supported by the National Natural Science Foundation of China (grant nos. 71771215,
61773390), the Natural Science Fund of Distinguished Young Scholars in Hunan (grant no. 2018JJ1035), the key
project of National University of Defense Technology (ZK18-02-09), and a project from the Department of Education
of Guangdong Province (Grant no. 2018KTSCX245).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Mladenović, N.; Brimberg, J.; Hansen, P.; Moreno-Pérez, J. The p-median problem: A survey of metaheuristic
approaches. Eur. J. Oper. Res. 2007, 179, 927–939. [CrossRef]

2. Cornuejols, G.; Fisher, M.L.; Nemhauser, G.L. Location of Bank Accounts to Optimise Float: An Analytic
Study of Exact and Approximate Algorithms. Manag. Sci. 1977, 23, 789–810. [CrossRef]

3. Hosage, C.M.; Goodchild, M.F. Discrete space location-allocation solutions from genetic algorithms.
Ann. Oper. Res. 1986, 6, 35–46. [CrossRef]

4. Alp, O.; Erkut, E.; Drezner, Z. An efficient genetic algorithm for the p-median problem. Ann. Oper. Res. 2003,
122, 21–42. [CrossRef]

5. Chiyoshi, F.; Galvão, R.D. A Statistical Analysis of Simulated Annealing Applied to the p-Median Problem.
Ann. Oper. Res. 2000, 96, 61–74. [CrossRef]

6. Correa, E.S.; Steiner, M.T.A.; Freitas, A.A.; Carnieri, C. A Genetic Algorithm for solving a capacitated
p-median Problem. Numer. Algorithms 2004, 35, 373–388. [CrossRef]

7. Alba, E.; Dominguez, E. Comparative analysis of modern optimization tools for the p-median problem.
Stat. Comput. 2006, 16, 251–260. [CrossRef]

8. Kratica, J.; Stanimirović, Z.; Tošić, D.; Filipović, V. Two genetic algorithms for solving the uncapacitated
single allocation p-hub median problem. Eur. J. Oper. Res. 2007, 182, 15–28. [CrossRef]

9. Li, X.; Xiao, N.; Claramunt, C.; Lin, H. Initialization strategies to enhancing the performance of genetic
algorithms for the p-median problem. Comput. Ind. Eng. 2011, 61, 1024–1034. [CrossRef]

10. Herda, M. Parallel genetic algorithm for capacitated p-median problem. Procedia Eng. 2017, 192, 313–317.
[CrossRef]

11. Memari, A.; Ahmad, R.; Jokar, M.R.A.; Rahim, A.R.A. A New Modified Firefly Algorithm for Optimizing a
Supply Chain Network Problem. Appl. Sci. 2019, 9, 7. [CrossRef]

12. Gola, A.; Klosowski, G. Development of computer-controlled material handling model by means of fuzzy
logic and genetic algorithms. Neurocomputing 2019, 338, 381–392. [CrossRef]

13. Burduk, A.; Musial, K. Genetic algorithm adoption to transport task optimization. Adv. Intell. Syst. Comput.
2016, 527, 366–375.

14. Gola, A.; Klosowski, G. Application of fuzzy logic and genetic algorithms in automated works transport
organization. Adv. Intell. Syst. Comput. 2018, 620, 29–36.

15. Snyder, L.V. Facility location under uncertainty: A review. IIE Trans. 2006, 38, 537–554. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2005.05.034
http://dx.doi.org/10.1287/mnsc.23.8.789
http://dx.doi.org/10.1007/BF02027381
http://dx.doi.org/10.1023/A:1026130003508
http://dx.doi.org/10.1023/A:1018982914742
http://dx.doi.org/10.1023/B:NUMA.0000021767.42899.31
http://dx.doi.org/10.1007/s11222-006-8079-7
http://dx.doi.org/10.1016/j.ejor.2006.06.056
http://dx.doi.org/10.1016/j.cie.2011.06.015
http://dx.doi.org/10.1016/j.proeng.2017.06.054
http://dx.doi.org/10.3390/app9010007
http://dx.doi.org/10.1016/j.neucom.2018.05.125
http://dx.doi.org/10.1080/07408170500216480

Appl. Sci. 2019, 9, 4174 13 of 13

16. Weaver, J.R.; Church, R.L. Computational procedures for location problems on stochastic networks. Transp. Sci.
1983, 17, 168–180. [CrossRef]

17. Chen, G.; Daskin, M.S.; Shen, Z.M.; Uryasev, S. The a-reliable mean-excess regret model for stochastic facility
location modeling. Nav. Res. Logist. 2006, 53, 617–626. [CrossRef]

18. Snyder, L.V.; Daskin, M.S. Stochastic p-robust location problems. IIE Trans. 2006, 38, 971–985. [CrossRef]
19. Lim, G.; Sonmez, A. γ-Robust facility relocation problem. Eur. J. Oper. Res. 2013, 229, 67–74. [CrossRef]
20. Sakalli, U.S.; Ataba, I. Ant Colony Optimization and Genetic Algorithm for Fuzzy Stochastic

Production-Distribution Planning. Appl. Sci. 2018, 8, 2042. [CrossRef]
21. Shi, J.; Zhang, G.; Sha, J. A Lagrangian based solution algorithm for a build-to-order supply chain network

design problem. Adv. Eng. Softw. 2012, 49, 21–28. [CrossRef]
22. Jain, K.; Mahdian, M.; Saberi, A. A new greedy approach for facility location problems. In Proceedings

of the 34th Annual ACM Symposium on Theory of Computing, Montreal, QC, Canada, 19–21 May 2002;
pp. 731–740.

23. Jia, H.; Ordóňez, F.; Dessouky, M. Solution approaches for facility location of medical supplies for large-scale
emergencies. Comput. Ind. Eng. 2007, 52, 257–276. [CrossRef]

24. Berman, O.; Drezner, Z.; Wesolowsky, G. Locating service facilities whose reliability is distance dependent.
Comput. Oper. Res. 2003, 30, 1683–1695. [CrossRef]

25. Taillard, E.D. Heuristic methods for large centroid clustering problems. J. Heuristics 2003, 9, 51–73. [CrossRef]
26. Medaglia, A.L.; Villegas, J.G.; Rodríguez-Coca, D.M. Hybrid biobjective evolutionary algorithms for the

design of a hospital waste management network. J. Heuristics 2009, 15, 153–176. [CrossRef]
27. Zhao, T.; Huang, J.; Shi, J.; Chen, C. Route Planning for Military Ground Vehicles in Road Networks under

Uncertain Battlefield Environment. J. Adv. Transp. 2018, 2018, 2865149. [CrossRef]
28. Zhou, X.; Wang, H.; Peng, W.; Ding, B.; Wang, R. Solving multi-scenario cardinality constrained optimization

problems via multi-objective evolutionary algorithms. Sci. China Inf. Sci. 2019, 62, 1–18. [CrossRef]
29. Sungur, I.; Ordónez, F.; Dessouky, M. A robust optimization approach for the capacitated vehicle routing

problem with demand uncertainty. IIE Trans. 2008, 40, 509–523. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/trsc.17.2.168
http://dx.doi.org/10.1002/nav.20180
http://dx.doi.org/10.1080/07408170500469113
http://dx.doi.org/10.1016/j.ejor.2013.02.033
http://dx.doi.org/10.3390/app8112042
http://dx.doi.org/10.1016/j.advengsoft.2012.03.003
http://dx.doi.org/10.1016/j.cie.2006.12.007
http://dx.doi.org/10.1016/S0305-0548(02)00099-0
http://dx.doi.org/10.1023/A:1021841728075
http://dx.doi.org/10.1007/s10732-008-9070-6
http://dx.doi.org/10.1155/2018/2865149
http://dx.doi.org/10.1007/s11432-018-9720-6
http://dx.doi.org/10.1080/07408170701745378
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model Methodology
	Notations
	Subproblem Formulation for a Given Scenario
	Problem Formulation for the -Robust Situation with Multiple Scenarios

	Multi-Scenario Cooperative Evolutionary Algorithm
	Solution Encoding
	Greedy Heuristics for Generating Initial Solutions
	Greedy Adding Heuristic
	Greedy Deleting Heuristic

	Knowledge Exchange with Neighborhood Scenario
	Local Search
	Framework of MSCE

	Computational Experiments
	Illustration of Two Practical Cases
	Experimental Results and Analysis

	Discussion and Conclusions
	References

