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Abstract: Optical scatterometry is known as a powerful tool for nanostructure reconstruction due to
its advantages of being non-contact, non-destructive, low cost, and easy to integrate. As a typical
model-based method, it usually makes use of abundant measured data for structural profile
reconstruction, on the other hand, too much redundant information significantly degrades the
efficiency in profile reconstruction. We propose a method based on dependence analysis to identify
and then eliminate the measurement configurations with redundant information. Our experiments
demonstrated the capability of the proposed method in an optimized selection of a subset of
measurement wavelengths that contained sufficient information for profile reconstruction and
strikingly improved the profile reconstruction efficiency without sacrificing accuracy, compared with
the primitive approach, by making use of the whole spectrum.

Keywords: optical scatterometry; inverse problem; profile reconstruction; dependence analysis;
data refinement

1. Introduction

Nano-metrology is the only effective method that ensures the reliability and consistency of
nano-manufacturing [1–3]. Compared with other techniques such as scanning electron microscopy
(SEM), atomic force microscopy (AFM) [4], and near-field scanning optical microscope (NSOM) [5],
optical scatterometry [6,7], also known as optical critical dimension metrology or optical critical
dimension (OCD) metrology, is more suitable for monitoring, assessing, and optimizing the
nano-manufacturing processes due to its advantages of being non-contact, non-destructive, low in cost,
and easy to integrate, etc. Recently, optical scatterometry has been applied in many fields with great
success, such as the process control for back-end-of-the-line (BEOL) [8], the in-chip critical dimension
(CD), overlay metrology [9], and in-situ measurement of pattern reflow in nanoimprinting [10].

In general, optical scatterometry involves two procedures: the forward optical modeling
of sub-wavelength structures and the reconstruction of structural profiles from the measured
signatures [11]. Here, the general term signatures means the scattered light information from the
diffractive grating structure, which can be in the form of reflectance, ellipsometric angles, Stokes vector
elements, or Mueller matrix elements. The forward optical model describes the light-nanostructure
interaction by solving the complex Maxwell’s equations. There are many reliable forward-modeling
techniques such as the rigorous coupled-wave analysis (RCWA), the finite element method (FEM),
the boundary element method (BEM), or the finite-difference time-domain (FDTD) method. The profile
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reconstruction process conducted under a fixed measurement configuration is an inverse problem with
the objective of optimizing a set of floating profile parameters (e.g., CD, sidewall angle, and height)
whose theoretical signatures can best match the measured ones through regression analysis or library
search [12–14]. The measurement configuration is defined as a combination of specially selected
wavelengths and incident and azimuthal angles.

As a typical model-based method, abundant measured data is usually collected under the
measurement configurations with fixed incidence and azimuthal angles, but a wide waveband for
spectroscopic scatterometry, or with fixed measurement wavelength and azimuthal angle, but incidence
angular range for angle-resolved scatterometry. Taking the inverse structural profile reconstruction
in spectroscopic scatterometry as an example, the measurement sensitivities of unknown profile
parameters are affected by the fixed incident and azimuthal angles, which can be improved by
traversing their possible values; the size of fitting data usually directly depends on the number of
selected wavelength points within the waveband. A large sized measured data set should be used to
guarantee the fidelity of the fitting results, but on the other hand, too much redundant information
will significantly degrade the efficiency during the inverse problem solving process due to the frequent
iteration of the forward model. Moreover, the employment of the redundant information, which is
insensitive to the measurands in solving inverse problems, leads to the loss in precision as well.
Thus, an appropriate measurement configuration with high sensitivity and a small amount of fitting
data will benefit the measurement with both precision and speed.

Many instrument optimization and spectrum denoising methods have been proposed with
the objective of improving the quality of measured data [15–17]. As the measurement precision
mainly depends on the sensitivity of model parameters, several approaches based on local sensitivity
analysis (LSA) also have been developed to determine optimal incident and azimuthal angles for
spectroscopic scatterometry [18–21]. We have previously provided an optimization method based
on global sensitivity analysis (GSA) to determine an optimal combination of the fixed incident and
azimuthal angles corresponding to the best measurement precision [22]. However, the present
measurement-configuration optimization methods only focus on the improvement of measurement
precision, the speed of the reconstruction process has not been considered. Usually, a vector consisting
of several data points at multiple measurement wavelengths or incidence angles is calculated by
a forward model to match the measured spectrum. The forward model’s computing time linearly
depends on the number of selected data points and it will be called frequently, therefore, it is highly
desirable to find an appropriate strategy that can select the measurement configurations containing
sufficient information for structural parameter reconstruction to enhance the measurement speed
without sacrificing the accuracies, especially for the nanostructures whose forward model is very
complex and time-consuming.

In this paper, we propose to refine the measured signatures by identifying and removing the
measurement configurations with redundant information based on dependence analysis before
the reconstruction process. As for the mathematical inverse problem, Twomey’s pioneer work
on atmospheric measurements has demonstrated that in a chosen set of data the most linearly
independent measurements contain all the information needed for an inverse problem solution [23–25].
Then, Assaad estimated additional reflectance values using the several acquired independent
measurements to obtain a larger set of measurement data in optical scatterometry, which is desired to
reduce the uncertainty range of the parameter estimates [26]. Inspired by these analyses, we conducted
information content analysis of the measured signatures based on dependence-analysis theory for
optical scatterometry. The analysis was conducted by the eigen-decomposition of the Jacobian matrix
JJT in the linear model to allocate the most independent measurements in the acquired data set. The few
remaining independent measurements were then adopted to reduce the reconstruction time, which is
crucial for real-time and in-process applications.

It should be noted that this paper does not intend to discuss the existence and uniqueness
of the inverse problem in optical scatterometry with respect to measurement conditions, which is
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a tough and still open issue in mathematics [27–29]. The main purpose of this paper is to provide
an effective approach to choose a subset of measurement configurations from the whole optical
wavelength spectrum or angular range that contains sufficient information for efficient structural
profile reconstruction without sacrificing accuracy. The selected subset of measurement configurations
may not be unique; its size may not be the smallest, but it should provide a higher reconstruction
accuracy than its randomly selected counterparts and a higher reconstruction efficiency than the
primitive approach that analyzes the whole optical wavelength spectrum or angular range.

2. Method

The inverse problem in optical scatterometry is described as an objective to minimize a least-square
function, which can be generally expressed as:

χ2 =
N∑

i=1

{
[yi − f(x, ai)]

Twi[yi − f(x, ai)]
}
, (1)

where, x = [x1, x2, . . . , xm]T represents a column vector of m profile parameters (e.g., CD, sidewall
angle, and height) and f(x, ai) is a column vector containing the calculated signature according to the
forward optical model under the ith measurement configuration ai. The measurement configuration
ai is a combination of fixed azimuthal angle ϕ, fixed incident angle θ, and the ith measurement
wavelength λi for spectroscopic scatterometry, namely ai = [ϕ, θ, λi]T, and is a combination of fixed
azimuthal angle ϕ, fixed measurement wavelength λ, and the ith incident angle θi for angle-resolved
scatterometry, namely, ai = [ϕ, θi, λ]T. Correspondingly, the N in Equation (1) denotes the number of
measurement configurations, which can be the number of measurement wavelengths for spectroscopic
scatterometry or the number of incidence angles for angle-resolved scatterometry. The column vector
yi = [yi1, yi2, . . . , yil]T consists of the corresponding measured signature under the same measurement
configuration ai. Here, the value of l depends on the specific types of the measured signature. If the
measured signature is reflectance, l = 1, while if the measured signature is a Mueller matrix, l = 16
(or l = 15 for the normalized Mueller matrix). The weighting matrix wi is a l × l positive definite matrix,
which is usually chosen to be the inverse of the covariance matrix of the measured signature under the
ith measurement configuration ai. In this case, Equation (1) relates to the commonly used multivariate
chi-square statistics χ2. Writing the right side of Equation (1) in a matrix expression, the solution x̂ of
the inverse problem can be obtained by:

^
x = arg min

x∈Ω

{
[y− f(x, a)]Tw[y− f(x, a)]

}
, (2)

here, Ω is the associated profile parameter domain.
The use of χ2 is built on top of the belief that the measurement errors are normally distributed

with zero mean, namely, the measured signature y can be expressed as:

y = f(x̂, a) + ε, (3)

where ε is a vector of multiple random and independent variables with each element subjected to
a normal distribution with zero mean. Assuming a profile parameter vector x is close enough to the
true or nominal parameter vector x* under a measurement configuration ai, and the function f(x, ai)
is sufficiently smooth, then the function value f(x, ai) can be expanded in the vicinity of x* using the
first-order Taylor expansion formulation [30]:

f(x, ai) ≈ f(x∗, ai) + J(x∗, ai) · ∆x, (4)
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where J(x*, ai) is the Jacobian matrix with respect to x at x = x* and ∆x represents the error in x and is
given by ∆x = x − x*. The differences between the measured signatures and the expected values can be
expressed as:

∆yi ≈ J(x∗, ai) · ∆x + εi. (5)

To determine the degree of independence among N measurements, Equation (5) is multiplied by
an arbitrary factor ηi and is summed over all i, to give:

N∑
i=1

ηi∆yi =
N∑

i=1

ηiJ(x∗, ai) · ∆x +
N∑

i=1

ηiεi, (6)

where,
N∑

i=1
η2

i = 1. Then, the difference ∆yj for a certain measurement configuration j can be expressed

as [23]:

∆y j = −η
−1
j

∑
i, j

ηi∆yi + η−1
j

 N∑
i=1

ηiJ(x∗, ai) · ∆x +
N∑

i=1

ηiεi

. (7)

The first term of Equation (7) on the right side is completely dependent on the other differences
and represents the predictable part of ∆yj; the bracketed expression on the right side is unpredictable
and independent of the other measurements. When the first term in the bracketed expression does not
exceed the second random measurement error part, Equation (7) provides a way for predicting ∆yj
from other measurements, in other words, the ∆yj is redundant information and can be obtained by
others; this is based on: ∣∣∣∣∣∣∣

N∑
i=1

ηiJ(x∗, ai) · ∆x

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

N∑
i=1

ηiεi

∣∣∣∣∣∣∣. (8)

It follows that the smaller the left term of Equation (8), the better the prediction. The question of

mutual independence can thereby be examined by considering the minimal value of
∣∣∣ηT
· J(x∗, a)

∣∣∣2,
which can be achieved by a suitable selection of ηi. Here, η is a N dimensional vector consisting of
elements ηi (i = 1, 2, ..., N).

According to the Schwartz inequality, the minimum value of
∣∣∣ηT
· J(x∗, a)

∣∣∣2 is equal to the smallest
ζmin of the eigenvalues of the matrix J(x∗, a) · JT(x∗, a) when the ηi values are equal to the N components
of the corresponding eigen-vector. If the condition by the Equation (8) holds, the difference ∆yi
that corresponds to the smallest ηi of the eigen-vector for ζmin is the most linearly dependent.
Consequently, the value of ∆yi can be calculated by the first term on the right side of Equation (7)
from the other measurement differences with no loss of information. Therefore, we can identify the
redundant measurement configuration by:

aredundant
i = argmin

a∈P
[η(ai)], (9)

here, P is the associated configuration domain.
The optimization procedure can be summarized as follows:
Firstly, give a slight deviation from the nominal dimensions of the investigated sample by

calculating the signature difference ∆yi = [∆yi1, ∆yi2, . . . , ∆yil]T (i = 1, 2, . . . , N) under N measurement
configurations according to Equation (5);

Secondly, for each element ∆yij (j = 1, 2, . . . , l) in ∆yi, carry out the eigen-analysis according
to Equations (6)–(9) to identify and eliminate the measurement configurations with redundant
information one-by-one; since at least m measured data points are required to determine the m
unknown parameters for any mathematical inverse problem in theory [21–24], the achieved set Sj will
contain m non-redundant measurement configurations;
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Thirdly, considering that different Sj may contain identical measurement configurations, the union
of Sj for all j = 1, 2, . . . , l is the final set of non-redundant measurement configurations, namely,

Sopt =
l
∪

j=1
S j. (10)

After that, the inverse problem described in Equation (2) should be solved under the above
achieved measurement configurations, namely, a ∈ Sopt.

It is noted that the above refinement of measurement configurations involves the calculation
of the Jacobian matrix J(x*, ai), which is typically only valid at the vicinity of x. To ensure that the
refinement results of measurement configurations are valid in the changes of profile parameters, it is
necessary to repeat the above refinement process of measurement configurations at k different values
of x. In this case, the final set of non-redundant measurement configurations will be the union of the
achieved set at each value of x. Here, the value of k depends on the types of measured signatures as
well as the complexity of the nanostructure under measurement. As a rule of thumb, k should take
a relatively large value for a complicated nanostructure with a simple type of measured signature,
such as reflectance.

3. Experiments

3.1. Experimental Setup

We took spectroscopic scatterometry as an example to demonstrate the capability of the proposed
method in identifying and eliminating the measurement configurations with redundant information.
The experiments were carried out by a commercial Mueller matrix ellipsometer (ME-L ellipsometer,
Wuhan Eoptics Technology Co., China). As schematically shown in Figure 1, the system layout of the
dual rotating-compensator ellipsometer in order of light propagation is PCr1(ω1)SCr2(ω2)A, where P
and A stand for the fixed polarizer and analyzer, respectively, Cr1 and Cr2 refer to the 1st and 2nd
frequency-coupled rotating compensators, respectively, and S stands for the sample [31,32]. The 1st
and 2nd compensators rotate synchronously at ω1 = 5ω and ω2 = 3ω, respectively, where ω is the
fundamental mechanical frequency. With the light source used in this ellipsometer, the spectral range is
from 200 to 1000 nm, covering the spectral range of 300–900 nm used in this work. The beam diameter
can be changed from the nominal values of ~3 mm to a value less than 200 µm with the focusing lens.
The two arms of the ellipsometer and the sample stage can be rotated to change the incidence and
azimuthal angles in experiments. Except for the reflectance and ellipsometric angles of the sample
under measurement, the 16 Mueller matrix elements also can be obtained with the dual-rotating
compensator setting. An in-house developed MATLAB® (version R2017a, The MathWorks, Inc.,
Natick, MA, USA) program for analyzing the measured signatures ran on a workstation equipped
with double 2.0 GHz Intel Xeon CPUs. The forward optical model in this program was developed
based on rigorous coupled-wave analysis (RCWA) [33–35], and the inverse optical scattering problem
was solved through the commonly used Levenberg-Marquardt (LM) algorithm [36].
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Figure 1. Principle and instrument of the dual rotating-compensator Mueller matrix ellipsometer.

3.2. Experimental Results on 2D Grating

The first investigated sample was a 2D Si grating whose SEM cross-section image is shown in
Figure 2. The optical properties of Si were taken from Reference [37]. As depicted in Figure 2, the cross
section of the Si grating could be characterized by a symmetrical trapezoidal model with top width (W),
grating height (H), sidewall angle (SWA), and period (P), whose dimensions obtained from Figure 2
were W = 350 nm, H = 472 nm, SWA = 87.63◦, and P = 800 nm.
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Figure 2. Scanning electron microscopy (SEM) cross-section image of the investigated 2D Si
grating sample.

In this case, the profile parameters under study were W, H, and SWA, while the grating period
P was fixed at its nominal dimension, namely, m = 3. The measured signature contained 15 Mueller
matrix elements normalized to the first element, namely, l = 15. As mentioned above, the measurement
configuration a = [ϕ, θ, λ] was defined as a combination of fixed azimuthal angle ϕ, fixed incident
angle θ, but a wide waveband λ for spectroscopic scatterometry. As a simple example to demonstrate
our data refinement method, here, the incident and azimuthal angles were fixed at θ = 65◦ and
ϕ = 30◦, the wavelength covered a fixed range of 300~900 nm with a step of 5 nm. We assumed
that the dimensions of the three profile parameters under investigation had a deviation of about 1%
from their nominal values. The differences of the 15 Mueller matrix elements between the actual
and nominal profiles were calculated by our forward RCWA model under each wavelength point
according to Equation (5). After considering all the 15 Mueller matrix elements and the wavelengths
used, the enanalysis and eigen-analysis procedures described above were performed on the differences.
According to Equations (6)–(9), the wavelength points with redundant information were identified
and eliminated from the set of measured signatures in a repetitive manner. Since the investigated
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sample shown in Figure 2 is a simple structure, and the model output Mueller matrix had 15 elements,
we achieved the 3 × 15 optimized data sets by traversing the three profile parameters and the 15
Mueller matrix elements. Through merging the same wavelengths into one for the 3 × 15 optimized
data sets, the remaining unions Sopt, containing 19 points, were obtained and shown by the black circles
in Figure 3, which are supposed to contain enough information needed for the profile reconstruction of
the 2D Si grating.Appl. Sci. 2019, 8, x 7 of 12 
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Figure 3. Fitting results of the calculated and the ellipsometer-measured Mueller matrix elements with
the incidence and azimuthal angles fixed at θ = 65◦ and ϕ = 30◦, respectively.

To examine the validity of the remaining information, regression analysis was conducted to
reconstruct the three profile parameters from the full spectral range of 300–900 nm, the optimal
spectrum containing 19 points, and the spectrum of 19 random points. The non-linear LM algorithm
was applied to fit the measured 15 Mueller matrix elements with the modeled ones, which converged
very quickly to a minimum when a suitable initial condition was chosen. During the fitting procedure,
the root-mean-squared error (RMSE) was used to quantify the goodness of fit, which summed over all
the measurement wavelengths the differences between the measured data and model-generated data.
The lower the RMSE value, the better the fit or agreement between the measured and model-generated
data. Figure 3 presents the fitting result of the model-calculated best-fit Mueller matrix elements (black
circles) and the measured spectrum including (red lines) 19 optimal points.

Table 1 shows the extracted profile parameter values for the fits and the SEM-measured values.
The uncertainties associated with the SEM-measured values were estimated by manually measuring
the SEM micrographs. The uncertainties appended to the scatterometry-determined values were
estimated from 30 repeated measurements. All uncertainties correspond to a 95% confidence level.
As shown in Table 1, the parameters W, H, and SWA of the 2D grating, extracted by fitting the optimized
spectrum, approximately agree with the ones obtained by using the full spectrum, while the former
method is over three times faster than the later one; the time spent between the optimal and random
measuring modes is slightly different, and the reason may be that the former iterations are a little



Appl. Sci. 2019, 9, 4091 8 of 12

smaller than the latter during the profile reconstruction procedure as that latter has more sufficient
information. Figure 3 shows that the model-calculated 15 Mueller matrix elements match well with the
measured spectrum. The experiments performed on the 2D Si grating provide preliminary evidence
that the advantages of the proposed method are in speeding up the reconstruction procedure and
effectively improving the precision of the extracted parameters.

Table 1. Comparison of fitting results of the 2D grating extracted from different spectrum and
SEM measurements.

Measuring Mode Dimensions (nm/◦)
RMSE

Time
(s)W /nm H /nm SWA /◦

SEM 350.3 ± 4.74 472.1 ± 4.87 87.63 ± 0.611 — —
Full spectrum 347.3 ± 0.17 468.9 ± 0.20 86.89 ± 0.019 9.44 548
Optimal (19) 347.4 ± 0.15 476.9 ± 0.12 87.27 ± 0.008 8.27 143
Random (19) 345.2 ± 0.74 486.4 ± 0.86 86.31 ± 0.103 13.59 225

3.3. Experimental Results on 3D Grating

The second sample was a photoresistive grating consisting of a cylinder array deposited on
silicon with a bottom anti-reflective coating (BARC), which is a 3D grating whose SEM cross-section
image is shown in Figure 4. The 3D grating of the cylinder array was chosen for this study due to
the high computation effort of its forward optical model. As depicted in Figure 4, the cross section
of the 3D grating is characterized by a model with cylinder diameter (D) and height (H1), BARC
height (H2), and periods of arrays in two directions (Px and Py). The dimensions obtained from
Figure 4 are D = 226.7 nm, H1 = 355.1 nm, H2 = 104.3 nm, and Px = Py = 835 nm. In our experiments,
optical properties of the photoresist were modelled by a two-term Forouhi–Bloomer model [38], whose
eight undetermined parameters were determined by measuring a photoresist film deposited on the
silicon substrate using the above ellipsometer and were A1 = 0.006029, A2 = 0.020598, B1 = 14.195303
eV, B2 = 14.196431 eV, C1 = 50.523937 eV2, C2 = = 50.537878 eV2, n (∞) = 1.436087, and Eg = 4.774050 eV.
Similarly, optical properties of the BARC were modelled using the Tauc–Lorentz model [39], whose
five undetermined model parameters were obtained as ε1 (∞) = 1.42680, Eg = 3.45971 eV, A = 21.14955,
E0 = 9.94921, C = 0.98767. For more details about physical meanings of the above parameters, one can
consult References [38,39], which are omitted here for brevity.
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Figure 4. SEM cross-section image of the investigated 3D grating sample.

Here, the investigated profile parameters of the 3D grating included the D, the H1, and the H2,
namely, m = 3, while the two grating periods were fixed at their nominal dimensions. In contrast to
the experiment settings above, the incidence and azimuthal angle were fixed at θ = 65◦ and ϕ = 0◦,
and the terms of N, C, and S parameters versus wavelength were used as measured signatures, which
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were derived from ellipsometric Psi (Ψ) and Delta (∆) and taken as N = cos (2Ψ), C = sin (2Ψ) cos
(∆), and S = sin (2Ψ) sin (∆). Considering that the investigated 3D sample deviated largely from its
nominal values, its forward model was highly complex and nonlinear, and the model output was N, C,
and S, namely, l = 3, we assumed that the dimensions of the three profile parameters changed k = 6
times to ensure that the optimization procedure was stable, and the deviations were about ±1%, ±5%,
or ±10% from their nominal dimensions, respectively. According to our proposed method, 3 × 3 × 6
optimized data sets remained, then, the union Sopt of the remaining data sets, consisting of the 36
wavelength points shown in Figure 5, were achieved for the inverse problem solution.
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Figure 5. Fitting results of the calculated and the ellipsometer-measured N, C, and S parameters at the
incidence angle θ = 65◦ and azimuthal angle ϕ = 0◦.

In the same way, the regression analysis was performed to extract the three unknown profile
parameters, and the non-linear LM algorithm was also applied to fit the measured signatures with
the modeled ones. The extracted profile parameter values for the fits and the SEM-measured values
are shown in Table 2. The uncertainties appended to the SEM-measured and scatterometry-measured
values in Table 2 were estimated in a similar manner to those in Table 1. Figure 5 presents the fitting
result of the model-calculated best-fit N, C, and S parameters and the measured spectrum (black dots)
containing whole range (blue lines) and only 36 optimal points (red circles), respectively.

Table 2. Comparison of fitting results of the 3D photoresist grating extracted from different spectrum
and SEM measurements.

Measuring Mode Dimensions (nm)
RMSE

Time
(hour)D /nm H1 /nm H2 /nm

SEM 226.7 ±
28.32 355.1 ± 2.05 104.3 ± 1.30 — —

Full spectrum 249.8 ± 2.56 344.3 ± 1.44 107.6 ± 0.62 28.77 14
Optimal (36) 250.4 ± 2.21 343.9 ± 1.03 106.4 ± 0.51 17.45 4.5
Random (36) 262.4 ± 2.38 338.7 ± 2.42 108.1 ± 0.89 26.50 6
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From Table 2, the three average values of the 3D grating dimensions extracted using 36 optimal
points are very close to the values obtained using the full range spectrum, but the extracted parameter
D has about a 25 nm deviation from the SEM-measured value, which is probably caused by the
obvious non-uniformity of the grating surface depicted in Figure 4, and the SEM-measured values
include estimation errors in manually measuring the SEM micrographs. Table 2 also shows that the
proposed method results in the lowest value of RMSE, the highest measurement precision, and the
least time cost. It is observed from Figure 5 that the best-fit N, C, and S parameters using the optimized
spectrum are in better agreement with the measured signatures compared to those of the full range.
Consequently, we may conclude that the proposed dependence-analysis-based data-refinement method
can be applied to determine several optimal measurement points without any loss in the accuracies for
profile reconstruction in optical scatterometry.

4. Conclusions

In summary, we proposed a method to identify and eliminate the measurement configurations
with redundant information based on dependence analysis in optical scatterometry. By assuming that
the dimensions of profile parameters under investigation have some deviation from their nominal
values, the differences between the actual and nominal dimensions were calculated by the forward
optical model under each measurement point. A formulation was derived to identify the measurement
configurations with redundant information through performance of a dependence analysis followed
by an eigen-analysis. By eliminating redundant information from the measured data in a repetitive
manner, a few optimal points remained and were used for the reconstruction process.

Experiments performed on a 2D Si grating and a 3D photoresist grating revealed that the
reconstructed grating profiles from the optimally selected subset of measurement wavelengths according
to the proposed method have a higher accuracy than those from the randomly selected counterparts
with a higher efficiency than the analysis making use of the whole spectrum. This suggests that the
proposed dependence-analysis-based data-refinement method can be a powerful tool to enhance the
reconstruction speed of nanostructure metrology using scatterometry without sacrificing the accuracies,
especially for the nanostructures whose forward model is very complex and time-consuming.

Author Contributions: Conceptualization, X.C. and Z.D.; methodology and formal analysis, Z.D. and Y.S.;
writing—original draft preparation, Z.D.; writing—review and editing, X.C., Z.D., X.W., Y.S., H.J., and S.L.;
supervision, Z.D., Y.S., and X.C.; project administration, Y.S. and X.C.; funding acquisition, Z.D., Y.S., X.C., and S.L.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos. 51775217,
51727809, and 51525502), the Natural Science Foundation of Hubei Province of China (Grant Nos. 2018CFB290
and 2018CFB559), the China Postdoctoral Science Foundation (Grant Nos. 2016M602269 and 2019M652633), the
National key research and development program of China (Grant No. 2017YFF0204705), and the National Science
and Technology Major Project of China (Grant No. 2017ZX02101006-004).

Acknowledgments: The authors would like to thank Zhimou Xu from the School of Optical and Electronic
Information of Huazhong University of Science and Technology, and Shanghai Micro Electronics Equipment Co.,
Ltd. (Shanghai, China) for preparing the samples.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fang, F.Z.; Zhang, X.D.; Gao, W.; Guo, Y.B.; Byrne, G.; Hansen, H.N. Nanomanufacturing – Perspective and
applications. CIRP Ann. Manuf. Technol. 2017, 66, 683–705. [CrossRef]

2. Bundary, B.; Solecky, E.; Vaid, A.; Bello, A.F.; Dai, X. Metrology capabilities and needs for 7nm and 5nm logic
nodes. Proc. SPIE 2017, 10145, 101450G.

3. Sunkoju, S.; Schujman, S.; Dixit, D.; Diebold, A.; Li, J.; Collins, R.; Haldar, P. Spectroscopic ellipsometry studies
of 3-stage deposition of CuIn1

_
XGaXSe2 on Mo-coated glass and stainless steel substrates. Thin Solid Films

2016, 606, 113–119. [CrossRef]
4. Lereu, A.L.; Passian, A.; Farahi, R.H.; Abel-Tiberini, L.; Tetard, L.; Thundat, T. Spectroscopy and imaging of

arrays of nanorods toward nanopolarimetry. Nanotechnology 2012, 23, 045701. [CrossRef]

http://dx.doi.org/10.1016/j.cirp.2017.05.004
http://dx.doi.org/10.1016/j.tsf.2016.03.050
http://dx.doi.org/10.1088/0957-4484/23/4/045701


Appl. Sci. 2019, 9, 4091 11 of 12

5. Hansen, H.N.; Carneiro, K.; Haitjema, H.; Chiffre, L.D. Dimensional micro and nano metrology. CIRP Ann.
Manuf. Technol. 2006, 55, 721–743. [CrossRef]

6. Huang, H.T.; Kong, W.; Terry, F.L., Jr. Normal-incidence spectroscopic ellipsometry for critical dimension
monitoring. Appl. Phys. Lett. 2001, 78, 3983–3985. [CrossRef]

7. Matthias, W.; Johannes, E.; Jürgen, P.; Max, S.; Alexander, D.; Bernd, B. Metrology of nanoscale grating
structures by UV scatterometry. Opt. Express 2017, 25, 2460–2468.

8. Faruk, M.G.; Zangooie, S.; Angyal, M.; Watts, D.K.; Sendelbach, M.; Economikos, L.; Herrera, P.; Wilkins, R.
Enabling scatterometry as an in-line measurement technique for 32nm BEOL application. IEEE Trans.
Semicond. Manuf. 2011, 24, 499–512. [CrossRef]

9. Kim, Y.N.; Paek, J.S.; Rabello, S.; Lee, S.; Hu, J.; Liu, Z.; Hao, Y.; McGahan, W. Device based in-chip critical
dimension and overlay metrology. Opt. Express 2009, 17, 21336–21343. [CrossRef] [PubMed]

10. Patrick, H.J.; Gemer, T.A.; Ding, Y.F.; Ro, H.W.; Richter, L.J.; Soles, C.L. Scatterometry for in situ measurement
of pattern flow in nanoimprinted polymers. Appl. Phys. Lett. 2008, 93, 233105. [CrossRef]

11. Paz, V.F.; Peterhänsel, S.; Frenner, K.; Osten, W. Solving the inverse grating problem by white light interference
Fourier scatterometry. Light Sci. Appl. 2012, 1, e36.

12. Chen, X.; Liu, S.; Zhang, C.; Jiang, H. Measurement configuration optimization for accurate grating
reconstruction by Mueller matrix polarimetry. J. Micro/Nanolith. MEMS MOEMS 2013, 12, 033013. [CrossRef]

13. Zhu, J.; Liu, S.; Zhang, C.; Chen, X.; Dong, Z. Identification and reconstruction of diffraction structures in optical
scatterometry using support vector machine method. J. Micro/Nanolith. MEMS MOEMS 2013, 12, 013004. [CrossRef]

14. Zhang, C.; Liu, S.; Shi, T.; Tang, Z. Fitting-determined formulation of effective medium approximation for 3D
trench structures in model-based infrared reflectrometry. J. Opt. Soc. Am. A 2011, 28, 263–271. [CrossRef]
[PubMed]

15. Zallat, J.; Aïnouz, S.; Stoll, M.P. Optimal configurations for imaging polarimeters: Impact of image noise and
systematic errors. J. Opt. A Pure Appl. Opt. 2006, 8, 807–814. [CrossRef]

16. Zaharov, V.V.; Farahi, R.H.; Snyder, P.J.; Davison, B.H.; Passian, A. Karhunen-Loève treatment to remove noise
and facilitate data analysis in sensing, spectroscopy and other applications. Analyst 2014, 139, 5927–5935.
[CrossRef] [PubMed]

17. Mu, T.; Chen, Z.; Zhang, C.; Liang, R. Optimal configurations of full-Stokes polarimeter with immunity to
both Poisson and Gaussian noise. J. Opt. 2016, 18, 055702. [CrossRef]
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