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Abstract: This study addresses the dual resource constrained flexible job shop scheduling problem
(DRCFJSP) with a multilevel product structure. The DRCFJSP is a strong NP-hard problem, and
an efficient algorithm is essential for DRCFJSP. In this study, we propose an algorithm for the DRCFJSP
with a multilevel product structure to minimize the lateness, makespan, and deviation of the workload
with preemptive priorities. To efficiently solve the problem within a limited time, the search space
is limited based on the possible start and end time, and focus is placed on the intensification rather
than diversification, which can help the algorithm spend more time to find an optimal solution
in a reasonable solution space. The performance of the proposed algorithm is compared with
those of a genetic algorithm and a hybrid genetic algorithm with variable neighborhood search.
The numerical experiments demonstrate that the strategy limiting the search space is effective for
large and complex problems.
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1. Introduction

Several changes have occurred with the onset of the mass customization era following the
traditional mass production era. Additionally, multipurpose machines and manufacturing processes
have been adapted to flexible production systems producing a batch of small quantity [1]. In response
to this trend, scheduling studies have focused on flexible manufacturing processes and have actively
been conducted to solve the flexible job-shop scheduling problem (FJSP). In the FJSP research,
various constraints, such as sequence dependent setup time [2–4], learning effect [5], and dual resource
constraint [6–8], are considered depending on the manufacturing environment. This study deals with
the dual resource constrained flexible job-shop scheduling problem (DRCFJSP) under the consideration
of the worker’s skill level for machines and multilevel product structures (MLPS).

Research on the complexity of processes has been conducted, but there has been little research
to reflect the complexity of product structures. The majority of the literature assumes a product
structure composed of simple sequential operations for a job, which is very different from the
bill of materials (BOM) structure that is widely used in manufacturing industries, especially for
products requiring assembly processes. In several advanced planning and scheduling (APS) studies,
the product complexity was reflected through the concept of MLPS. MLPS is a hierarchical tree that
expresses the product structure and is essential for products requiring assembly processes. The top
node of tree is a final product. Each child node of the tree represents a component or part of the
product. With the MLPS, the operations for all the child nodes associated with the parent node
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must be performed, and then the operation for the parent node can be conducted. Chen et al. [9]
developed a mixed integer programming model, which reflected the MLPS as a constraint; however,
they only solved small-size problems with two orders. Dayou et al. [10] solved a multiobjective
APS problem using a genetic algorithm (GA). To solve the structural problem of an MLPS, two
chromosomes were constructed for the operation priority and machine assignment, respectively.
The priority was randomly assigned through the operation priority chromosome, and the solution
was constructed by assigning a feasible solution with the highest priority to a machine through the
machine assignment chromosome. The performance and efficiency of the algorithm have been proven
by experiments in 5 orders, 50 operations, and 20 machines. Chansombat et al. [11] focused on the
determination of the operation sequence using the Bat algorithm. To solve the structural problems
of the MLPS, the operation sequence was first determined and the solution feasibility was derived
by correcting the misplacement of the items. In this study, unlike previous studies that separately
determined the operation sequence and machine assignment, we propose a time-based integrated
initial solution algorithm that allocates feasible operations and available resources (machine and
worker), based on the priority rules that maintain solution feasibility and local search algorithms that
narrow the search space using the earliest possible start time (EPST) and latest possible start time
(LPST). In addition, previous studies determined the batch size based on the individual order quantity
without considering the inventory level of the subparts and machine-dependent batch size, which is
not suitable in environments where inventories exist and the batch size is required for the machine
efficiency. Therefore, we combine the quantity of the subcomponents required for each order and
generate the operations based on the inventory level and batch size.

The majority of the literature on scheduling considers only the machine as a constrained
resource and ignores the constraints of worker availability required for the operations [12]. However,
considering that the number of workers is limited in some manufacturing industries, scheduling
without considering workers may be significantly different from the shop floor [6]. Studies have been
conducted to solve the problem of co-considering the workers and machines as the dual resource
constrained (DRC) scheduling problem. In particular, the dual resource constraints are investigated in
the job shop and flexible job shop environments. The DRCFJSP has been studied using metaheuristic
algorithms, such as GA [12,13], variable neighborhood search (VNS) algorithm [6,8], artificial bee
colony algorithm [14], and memetic algorithm [15], because DRCFJSP adds another subproblem of
worker assignment, which makes the problem complex, in addition to the machine assignment and
operation sequence determination [16]. For example, EIMaraghy et al. [12] proposed a GA algorithm
to solve the DRCFJSP in an environment with equal skill level of the workers. The allocation of the
operations, machines, and workers was expressed as three chromosomes, and the superiority of the
algorithm was proved by comparing it with the dispatching rules. Gong et al. [15] proposed a memetic
algorithm for the DRCFJSP with multiobjective functions. The aim of the proposed algorithm was
to minimize the makespan and workload of the machine and worker under the consideration of
different worker skill levels. Lei et al. [8] proposed an efficient algorithm for solving the DRCFJSP
by applying VNS. They demonstrated the performance of their algorithms in comparison with the
GA. Wu et al. [6] proposed a hybrid algorithm combining the VNS and GA to solve the DRCFJSP
considering worker’s learning ability. The VNS was applied to the populations, exhibiting a good
performance. They demonstrated that the GA-VNS exhibits a better performance and lower relative
percentage deviation than those of the GA and hybrid discrete particle swarm optimization.

The aforementioned metaheuristic algorithms are at risk of being isolated to the local optima due
to the characteristics of the algorithm. Therefore, most metaheuristic algorithms prevent the solution
from being isolated by introducing a wide variety of diversification, rather than concentrating on the
intensification, to compensate for the weaknesses of the regional search algorithm. However, it is
difficult to determine a feasible solution with many complicated constraints, and even intuitive
improvements focused on intensification within a limited time are difficult due to the problem
complexity. Therefore, exploring the solution space with a poor performance within the given
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computation time weakens the algorithm’s performance. Previous studies on the DRCFJSP were
conducted by mitigating some constraints, such as worker skill, batch size, and complex product
structure. In particular, the majority of the studies have developed algorithms for a simple product
structure, and the metaheuristic algorithms demonstrated good performances. In this study, to deal
with more complex problems with additional constraints, we propose a new local search algorithm that
identifies a good search space and focuses on the intensification of a more likely space to compensate
for the problem of diversification. In addition, the simple exchange of the operation sequence used in
most scheduling algorithms in MLPS requires the process of solution repair for the feasibility. This
results in heavy modification of the solution and increased computation time. Therefore, we use the
priority rules to create a reliable initial solution for the time-based integrated initial solution algorithm,
rather than the existing operation sequence expression, and derive an optimal schedule through the
local search algorithm that limits the exploration space. To the best of our knowledge, our study is the
first to propose an algorithm to solve the DRCFJSP that reflects the MLPS.

The remainder of this paper is organized as follows. Section 2 describes the environment and
assumptions for the problem. Section 3 explains the proposed algorithm. In Section 4, we discuss
the results based on the numerical experiments. Finally, some insights are discussed along with the
conclusion and future research directions in Section 5.

2. Problem Description

The DRCFJSP can be applied in various industries including automobile industry, equipment
industry [6] and electromechanical industry [17]. We consider DRCFJSP with an MLPS to deal
with the scheduling problem of manufacturing systems with assembly lines. There is a set
of orders, O = {O1, O2, ..., On}; a set of final products F = {F1, F2, ..., Fl}; a set of machines
M = {M1, M2, ..., Mm}; and a set of workers W = {W1, W2, ..., Wk}. An order, Oi, denotes a production
request for the final products, Fa, within the due date, DDi. MLPS is a hierarchical tree that
expresses the BOM structure for a final product and subcomponents. To produce each upper element,
various types of child components are required. In Figure 1, the numbers on the arcs connecting
each node represent the number of child components required to produce the parent node. Figure
1 illustrates an example of the MLPS for a final product, F1, in Chen et al. [9]. F1 is produced by
assembling one component S1 and two C1s, and C3 requires three successive processes, namely, P1,
P2, and P3. When more than one process is required to produce a component, the process name is
written along with the component name in the node. For example, in Figure 1, C3P1, C3P2, and C3P3
imply that the component C3 is processed in P1, P2, and P3, respectively.

Figure 1. Example of multilevel product structure (Chen et al. [9]).

Several constraints are considered for an environment of DRCFJSP with MLPS. First, MLPS must
be considered to determine the schedule, i.e., a sequence of operations according to MLPS. For example,
in Figure 1, the operations for C1 and C2 must be executed before S1. Second, each item and subitem
can be processed only in the designated machines, and each worker can work on all machines.
The processing time of an item depends on the assigned machine and the skill level of the worker.
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Third, each machine and worker cannot simultaneously perform more than two operations. The same
type of item cannot be worked on machines at the same time. Finally, the production quantity is
determined based on the lot size and the total demand. It must be greater than the demand and must
be an integer multiple of the lot size.

In addition to the constraints, the following assumptions are made for the parameter values.

• The raw materials required for the operation of the items are sufficient.
• The operation setup time is small enough to be ignored.
• The lot-size of each operation is fixed.
• There is a difference in the skill level of each worker according to the machine; however, the

improvement in the worker’s skill level because of the learning effect is small enough to ignore.

This study aims to minimize the lateness, makespan, and maximum deviation of the workload
in the machines. Among these objective functions, lateness minimization has the highest priority,
followed by makespan minimization and workload balance; the function with the highest priority is the
most preferred. Equation (1) represents the objective function for lateness. Delays in delivery are one of
the most important factors in the manufacturing environment, because frequent delivery violations and
lateness cause financial damage by lowering the corporate trust and resulting in long-term declines in
orders. Equation (2) minimizes the makespan, which is used in many scheduling studies as a measure
of process productivity. Equation (3) represents the objective function for minimizing the deviation of
workload between machines, and is used to prevent the imbalance of workload between machines.
The notations used in this paper are summarized in Table A1

(G1) min
n

∑
i=1

(DDi −
[ Ci

CA

]
) (1)

(G2) min (max Ci) (2)

(G3) min (max WTj −min WTj) (3)

3. Algorithm Based on Limited Search Space

3.1. Algorithm Process

Considering MLPS, DRCFJSP is difficult to solve because of many complicated constraints,
especially complex product structure and dual resources. The development of an algorithm tailored
for the problem is very important to find an optimal solution within a limited time. The rational logic
behind the proposed algorithm is that spending more time within a good solution space is better than
randomly searching the entire solution space. That is, we want to begin with a good initial solution
and not spend much time on checking the feasibility of the solution generated from the local search
algorithm. Therefore, we propose a time-based integrated initial solution algorithm in Section 3.2 and
a local search algorithm in Section 3.3.

Figure 2a is a flow chart of the proposed algorithm, and Figure 2b,c shows GA and GA-VNS,
respectively. The proposed algorithm has three unique features compared to GA and GA-VNS. First,
the time-based integrated initial solution algorithm is used to find a good initial solution. In contrast
to the method of randomly selecting an initial solution, the performance of the algorithm is improved
and the computation time based on the three priority rules is reduced. Second, the limited search
space algorithm is used to efficiently find candidate solutions. The problem with many constraints is
a large infeasible space, and it is not easy to generate candidate solutions that do not change much
compared to existing solutions while maintaining feasibility. Based on the concept of EPST and LPST
for guaranteeing solution feasibility, we spend more time on generating candidate solutions within the
limited search space. Third, we do not use a mutation operator to focus on intensification. A mutation
operator can be introduced for diversification but it requires additional computation time.
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Figure 2. Flowcharts of the algorithms. (a) Proposed algorithm; (b) GA; (c) GA-VNS.

3.2. Initial Solution

This section explains the time-based integrated initial solution algorithm. Using this algorithm,
an initial solution is generated by assigning appropriate workers and operations to the available
machines over time based on several priority rules. Before applying the priority rules, the operations are
generated based on the inventory level and batch size as follows. First, the required production quantity
is determined by comparing the order quantity and initial inventory level. Second, the operation
quantity is determined as a multiple of the batch size at the time bucket with a positive production
quantity. Third, the production quantity at the next time bucket is determined when the operation
quantity is greater than the production quantity. The second and third steps are repeated as needed,
and the same process is applied to the subitems according to the MLPS.

After generating a list of operations, three types of priority rules are applied for the initial
assignment: operation rule, machine rule, and worker rule. First, in the case of the operation rule,
a higher priority is randomly assigned to the orders that need to be fulfilled within a day, and a lower
priority is assigned to the other orders. Second, according to the machine rule, an available machine
with a smaller number of executable items has a higher priority. Figure 3 illustrates an example
explaining the machine rule. There are three machines (M1, M2, and M3) and five items (I1,1,1, I1,1,2,
I1,1,3, I2,0,1, and I3,0,1). All five items are executable on M1, and I1,1,1, I1,1,2 and I2,0,1 are executable on
M2. M3 only produces item I1,1,1. Therefore, the number of executable items of M1, M2, and M3 are
5, 3, and 1, respectively. According to the machine rule, M3 has the highest priority; thus, item I1,1,1

is assigned to M3, as depicted in Figure 3a. Then, M2 becomes available with the smallest number
of executable items; thus, an item is assigned to M2. In this manner, all the items are assigned to
the machines. In contrast, Figure 3b illustrates an example where an available machine with a larger
number of executable items has a higher priority. In this case, most of the items are assigned to M1,
and M3 becomes idle. This example demonstrates that the proposed machine rule is highly likely to
derive a better solution in terms of the idle time, makespan, and workload of the machine. Finally,
the worker rule identifies a worker with the highest skill for a machine among the available workers
at the beginning of the production. To efficiently derive an initial solution, an available machine is
selected based on the machine rule, and an appropriate worker with the highest priority is selected.
Then, the item with the highest priority is assigned to the selected machine. Figures 4 and A1 depict
the flowchart and pseudocode for the time-based integrated initial solution algorithm.



Appl. Sci. 2019, 9, 4005 6 of 15

Figure 3. Workload.

Figure 4. Pseudocode for initial solution generation.

3.3. Local Search

In this section, we propose a local search algorithm, named the limited search space (LSS)
algorithm, to avoid the fluctuation of the solution performance. Candidate solutions are generated
through the exchange of operations between different machines. First, after randomly selecting
an operation, a list of exchangeable operations is generated by checking the machine compatibility and
available time buckets. Machine compatibility can be easily checked by using the given data on the
designated machines. The available time buckets in which an item can be processed is determined
based on the EPST and LPST. EPST refers to the earliest time when all the sub items or raw materials
are prepared so that the item is ready for the operation. LPST refers to the latest time that an item
must be processed to avoid the delay of finished goods when compared to the previous solution.
This process of checking the machine compatibility and available time buckets limit the search space;
therefore, solution feasibility is always guaranteed even if there are many other constraints.

Next, the randomly selected operation is exchanged with an operation in the list of exchangeable
operations to generate a candidate solution. The processing times of the exchanged operations can be
changed depending on the worker skill level assigned to the machine. When the completion time of the
operation is delayed when compared to the previous solution, it affects the schedules of the following
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operations. To maintain the efficiency of the algorithm, the same amount of delay is applied to all
the operations that begin after the operation that causes the delay. Then, the candidate is generated
by modifying the operation’s start time to be as early as possible based on the updated EPST and
availability of worker and machine. Figure 5 depicts the pseudocode for the candidate generation.

Finally, the solution is updated based on the performance improvement in terms of the objective
functions. Two approaches are employed for the solution update: limited space full search (LSFS)
and limited space interactive search (LSIS). LSFS generates all possible candidate solutions using the
list of exchangeable operations and determines the best solution. When a better solution is obtained,
the solution is updated and moves to the first step of the algorithm. Otherwise, the algorithm is ended.
In contrast, LSIS generates only one candidate solution and calculates the objective function value.
When the objective function is improved, the solution is updated and immediately moves to the first
step of the algorithm and searches a different part of the solution space. Otherwise, the next candidate
solution is generated. After generating the candidate solutions one by one, the algorithm stops when
the solution is not improved.

Figure 5. Pseudocode for candidate solution generation.

4. Numerical Experiments

The superiority of the proposed algorithm is demonstrated through its comparison with the GA
and GA-VNS. The overall algorithm structure of GA and GA-VNS is based on the previous study by
Wu et al. [6]. As shown in Figure 2, GA proceeds through the procedures of initialization, selection,
crossover, and mutation. The algorithm proposed by Wu et al. [6] was partially modified because
it is not suitable for MLPS. In their problem, a final item requires a simple sequence of operations,
and the order for a final item occurs only once. Therefore, it is easy to construct an operation sequence
chromosome based on the final item. However, this is not appropriate when we consider MLPS and
multiple orders for each item. The representation of the operation sequence chromosome based on
the final item has a problem of uniqueness. Therefore, the decoding process is modified to consider
the MLPS. The feasible suboperations required for the final product are selected based on the MLPS,
and the sequence of suboperations is randomly selected if there are multiple feasible suboperations.
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The encoding and other parameter settings, such as crossover, mutation, elite, and tournament, are the
same as those in the algorithm proposed by Wu et al. [6]. In particular, selection is performed through
the elite tournament, and VNS is applied to the top 50% of the candidate s in the case of GA-VNS.

4.1. Evaluation of the Initial Solution Algorithm

To verify the effectiveness of the initial solution algorithm, we solve small scale problems.
The experiment environment is described as follows.

• The number of final items is five , and they have the BOM structure in Figure 6. In cases 1 and 2,
a BOM can have up to two subparts for the upper part. In cases 3 and 4, the BOM structure is
extended up to four levels.

• The time horizon is composed of seven time buckets, and the number of finished product s
required in each time bucket can be up to 30.

• The processing time of each operation is randomly generated within a range from 1 to 15 time units.
• The number of machines is five. On an average, each machine can work on processing 30% items,

and designated machines are randomly assigned.
• Capacity is either low or high. In the case of low capacity, the available time unit per day is 2000,

and in the case of high capacity, 4500 units per day are available.
• The number of workers is three. The skill level of each worker is randomly generated within

a range from 50 to 100%.
• Initial inventory level is zero.
• The lot size is 30.

Figure 6. Product structure used in numerical experiment. (a) The MLPS of Case 1 & 2; (b) The MLPS
of Case 3 & 4.

Tables 1 and 2 show numerical results with simple a BOM structure, as shown in Figure 6a.
Order data is randomly generated within a range from 1 to 30, and other data remain the same.
The performances of LSFS and LSIS are compared with those of GA, GA-VNS, and LSFS without initial
solution algorithm, and LSIS without initial solution algorithm. In addition, the performance measures
used are the objective function values (G1, G2, and G3) explained in Section 2 and computation time.
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Table 1. Result of Case 1 (low capacity: 2000; high capacity: 4500).

Algorithm
Low Capacity High Capacity

G1 G2 G3 Time (s) G1 G2 G3 Time (s)

GA 17 15,789 5012 828 3 15,224 6616 864
GA-VNS 17 17,449 7780 2461 3 16,349 6037 2313

LSFS (w/o init) 20 20,325 6254 7200 4 19,573 5616 7200
LSIS (w/o init) 20 20,063 6254 2187 4 19,638 6363 6455

LSFS 7 10,794 3997 1122 2 13,841 5495 1911
LSIS 7 10,794 3997 1119 2 13,841 5495 955

Table 2. Result of Case 2 (low capacity: 2000; high capacity: 4500).

Algorithm
Low Capacity High Capacity

G1 G2 G3 Time (s) G1 G2 G3 Time (s)

GA 21 14,952 5520 955 2 15,982 5068 899
GA-VNS 19 16,694 5672 2449 1 16,074 3497 2561

LSFS (w/o init) 21 16,574 5125 1115 6 18,106 5697 1749
LSIS (w/o init) 21 16,574 5125 1138 5 18,346 5697 1362

LSFS 8 9514 5055 3028 2 10,966 3838 1118
LSIS 8 9514 5055 1721 2 10,966 3838 1126

The results show that LSFS and LSIS with the initial solution algorithm are better than other algorithms.
In particular, the performance gap between the algorithm with initial solution and without initial solution
algorithm is quite large. As mentioned in the previous section, the main concept of the proposed algorithm
is to begin with a relatively good starting point and improve the solution within the limited search space.
It is also interesting that the computation time of LSIS and LSFS becomes shorter when the initial solution
algorithm is applied. In other words, the performance of LSS-based algorithms is heavily dependent on
the initial starting point, and the proposed initial solution algorithm plays a critically important role in
achieving good performance. In addition, the performance of LSFS and LSIS is even worse than GA-based
algorithms when the initial algorithm is not applied. Different from GA-based algorithms, the proposed
algorithm does not use a mutation operator, and it can be worse than GA-based algorithms. The difference
in the performances of LSFS and LSIS is not large. However, in terms of computation time, LSIS tends to
be slightly superior to LSFS.

Next, we consider a more complex BOM structure shown in Figure 6b. We note that the proposed
algorithm is terminated after 7200 seconds because it requires more computation time because of the
complex BOM structure. Tables 3 and 4 summarize the results. In most cases, LSFS and LSIS perform
better than the other algorithms, but GA performs well in case 3 with low capacity. Because of the nature
of a small-size problem, in some cases, GA can be better than the strategy limiting the search space and
requiring efforts in the local search, which is less efficient than randomly searching for a larger solution
space. In both cases, the initial solution algorithm improves the performance of the algorithm.

Table 3. Result of Case 3 (low capacity: 2000; high capacity: 4500).

Algorithm
Low Capacity High Capacity

G1 G2 G3 Time (s) G1 G2 G3 Time (s)

GA 31 66,058 13,715 7119 30 66,222 14,396 6968
GA-VNS 31 65,290 15,119 18,637 28 14,907 19,598 18,776

LSFS (w/o init) 35 71,623 28,029 7200 35 71,623 28,029 7200
LSIS (w/o init) 35 71,623 28,179 7200 33 74,393 22,358 7200

LSFS 35 42,030 23,492 7200 25 42,170 17,537 7200
LSIS 35 42,030 23,492 7200 25 42,170 17,597 7200
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Table 4. Result of Case 4 (low capacity: 2000; high capacity: 4500).

Algorithm
Low Capacity High Capacity

G1 G2 G3 Time (s) G1 G2 G3 Time (s)

GA 31 70,146 13,346 9102 29 70,421 9432 9121
GA-VNS 29 67,457 19,511 25,124 30 70,150 21,991 24,444

LSFS (w/o init) 35 69,979 18,473 7200 35 76,612 19,561 7200
LSIS (w/o init) 35 70,219 18,818 7200 35 76,612 19,111 7200

LSFS 30 40,542 24,581 7200 29 44,108 27,505 7200
LSIS 30 40,542 24,641 7200 29 44,108 27,105 7200

4.2. Extended Experiments

The FJSP can be categorized into total FJSP and partial FJSP according to the machine compatibility.
Cases 5 and 6 represent the partial FJSP, where each operation can be processed only on some
machines [18], whereas case 7 represents the total FJSP, where each operation can be processed
on all the machines. For extended experiments, we used a simple BOM structure, as in Figure 6a, and
increased the problem size including the numbers of final items, machines, and workers.

In case 5, the data used for the experiments are same as those used in the previous section except
for order data. In the cases of GA and GA-VNS, 10 iterations were performed with 20 populations due
to the limitations in the computational time, unlike in previous studies that performed more than 20
iterations with over 100 populations. The other parameters are similar to those in the study conducted
by Wu et al. [6] (ratio of crossover: 0.5; ratio of mutation: 0.5; ratio of elite: 0.2; ratio of VNS: 0.5).
Table 5 presents the results of a numerical experiment in case 5. In this case, GA exhibits the best
performance, as presented in Table 5.

Table 5. Result of Case 5 (low capacity: 2000; high capacity: 4500).

Algorithm
Low Capacity High Capacity

G1 G2 G3 Time (s) G1 G2 G3 Time (s)

GA 4 7696.6 3279.2 2662.8 0 8215 3782.5 2953.5
GA-VNS 8 9200.8 3421.6 9475.7 0 12,121.7 3062.5 21,155.3

LSFS 6 8683.3 3541.6 9357.8 2 7899.2 2909.2 16,097.2
LSIS 7 8785 3503 4090 1 9135 4092.5 1532.9

Case 6 represents a larger problem in comparison with case 5, with 20 final items, 10 workers,
and 10 machines. The environment contains more flexible processes, and the machines can process
an average of 50% of the items. Due to the practical constraints on the computation time, the experiment
was conducted by reducing the scale to 10 populations and 10 iterations. Additionally, the proposed
algorithm was terminated after 7200 s. Table 6 summarizes the results of the numerical experiment
in case 6. As the problem becomes larger, the strategy limiting the search space becomes more
efficient, which is different from the results of case 5. The LSS algorithm with LSFS and the LSS with
LSIS are better than the GA-based algorithms in terms of all performance measures. The results
demonstrate a good performance with a significant difference in terms of lateness in a shorter
computation time. For example, at low capacities, the total delayed time units was 9 for the LSFS
and LSIS with a computation time of 7200 s. However, the total delayed time units was 70 and 52
for the GA and GA-VNS, respectively, with a computation time of over 9000 s. At high capacities,
the lateness is reduced in all algorithms; however, the LSS-based algorithms perform better than the
GA-based algorithms.
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Table 6. Result of Case 6 (low capacity: 2000; high capacity: 4500).

Algorithm
Low Capacity High Capacity

G1 G2 G3 Time (s) G1 G2 G3 Time (s)

GA 70 16,235.8 6049.5 9068.7 6 18,694 5599.4 6978.4
GA-VNS 52 14,304.8 5231.6 19,612 6 16,531.9 5824.5 17,293

LSFS 9 9110 3258 7200 0 11,850.6 6863.6 7200
LSIS 9 9179 3258 7200 0 10,795.7 3826.5 7200

Case 7 assumes the most flexible environment, in which all the machines can operate at all items.
The number of final items, workers, and machines are 30, 10, and 10, respectively. Experiments are
conducted under the same conditions as those of case 6. Table 7 presents the results of a numerical
experiment in case 7. The result of case 7 is similar to that of case 6. Both LSS-based algorithms
outperform the GA-based algorithms in a shorter time. LSIS is more efficient than LSFS even in
an environment with low capacity, which explores more search space in a shorter time as the problem
becomes more complicated. Although the search space is limited, LSFS determines all the possible
candidate solutions at each iteration. Therefore, it takes a longer time and does not perform well for
more complex problems.

Table 7. Result of Case 7 (low capacity: 4500, high capacity: 9000).

Algorithm
Low Capacity High Capacity

G1 G2 G3 Time (s) G1 G2 G3 Time (s)

GA 82 30,953.5 5686.7 15,064 13 30,808.7 5096.6 14,714.3
GA-VNS 79 28,964.9 4801.3 38,014 12 28,862.3 5899.6 38,677.4

LSFS 31 19,396 7247.4 7200 0 27,981.7 7639.4 7200
LSIS 29 19,396 6849 7200 0 27,981.0 7223.0 7200

Figures 7 and 8 illustrate the relative performance in comparison with the best solution, as the
problem size increases in each capacity condition. The relative performance is calculated using
Equation (4). The objective function values are normalized, and the best and worst solutions become
1 and 0, respectively. In terms of lateness, the objective function with the highest priority, the GA
algorithm generates the best solution when the problem size is small, and the performance of LSIS
is not the worst. However, as the problem size increases, LSIS generates the best solution or one
that is very close to the best solution, and the performance of the GA algorithm becomes the worst.
The performance of GA-VNS is similar to that of GA for cases 6 and 7. With respect to the makespan,
the trend of the result is similar to that of the lateness, when the capacity is low. At high capacities,
the LSS-based algorithms generate the best solutions or those that are very close to the best solution in
all the cases. As for the third objective function, none of the algorithms outperform the others because
this study considers a preemptive multiobjective approach, wherein the performance depends on the
first and second objective functions.

Relative per f ormance =
Current value − Minimum value

Maximum value − Minimum value
(4)

Figure 7. Comparison of optimal performance at low capacity.
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Figure 8. Comparison of optimal performance at high capacity.

5. Conclusions

This study addressed the DRCFJSP under the consideration of worker’s skill and the MLPS.
Due to the complexity of the problem, we proposed an efficient algorithm, limiting the search
space to solve the complex DRCFJSP with three objective functions to minimize lateness, makespan,
and machine workload distribution, which were improved sequentially. The algorithm was composed
of a time-based integrated initial solution algorithm and LSS algorithm. The time-based integrated
initial solution algorithm was tailored to the problem domain and modified the existing encoding
method due to the unique characteristics of the MLPS. The LSS algorithm used the concept of EPST
and LSPT to restrict the movement in the solution space, such that the previous solution was not
considerably changed. In the limited search algorithm, the solution was updated using LSFS or LSIS.

Numerical experiments demonstrated that the proposed algorithm has an advantage for a complex
problem when compared to the GA-based algorithms in terms of time and performance. In particular,
when the problem size was small, the proposed algorithm was not always better than GA. In some cases,
GA performed better than the proposed algorithm. However, for large-sized problems, we obtained
better solutions in a shorter computation time by limiting the search space.

Further research is needed to develop extended models and algorithms considering additional
constraints and uncertainties in the production system, such as the learning effect. The workers’
skill levels can be improved as the same work is repeated, and thus the efficiency can be changed.
Various types of uncertainties must also be considered in future works. Because the actual
manufacturing environment has various uncertainties, this research can be expanded to reflect the
uncertain processing time, demand fluctuation, and machine failure. To overcome these issues,
robust optimization and stochastic programming approaches can be applied.
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Abbreviations

The following abbreviations are used in this manuscript:

DRC Dual-resource constrained
DRCFJSP Dual-resource constrained flexible job shop scheduling problem
FJSP Flexible job shop scheduling problem
APS Advanced planning and scheduling
MLPS Multi-level product structure
EPST Earliest possible start time
LPST Latest possible start time
LSS Limited search space
LSFS Limited space full search
LSIS Limited space interactive search
GA Genetic algorithm
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VNS Variable neighborhood search
GA-VNS Hybrid genetic algorithm with variable neighborhood search

Appendix A

Table A1. Notations and symbols.

Notation Explanation

i order index, i = 1, 2, 3, ..., n
j machine index, j = 1, 2, 3, ..., m
k worker index, k = 1, 2, 3, ..., w
a finished goods index, a = 1, 2, 3, ..., a
n number of orders
m number of machines
w number of workers
M a set of machine M = {M1, M2, ..., Mm}
W a set of worker W = {W1, W2, ..., Wk}
F a set of final item F = {F1, F2, ..., Fa}
Iα b-th stage c-th sub item of the final product a, where α is index set as α = (a, b, c)
OL operation list to produce
ML a set of machines that can be operated
ML

′
a set of idle machines

WL allocable worker list
ISα status of item Iα, (if item Iα is ready to be processed : 0, otherwise : 1)
MSj status of machine Mj, (if machine Mj is idle : 0, otherwise : 1)
WSk status of worker Wk, (if worker Wk is idle : 0, otherwise : 1)
Aj list of operation that are selected from OL and can be produced on machine Mj
t current time state
DDi due date of order Oi
Ci completion time of order Oi
pα processing time of item Iα

p
′

β processing time of operation β considering Work skills
SLj,k worker Wk of worker’s skill level for machine Mj, (SLj,k ∈ [0.5, 1])
WTj total working time of machine Mj
CA maximum working time per day
MCj completion time of machine Mj
cα completion time of item Iα

IVα inventory of item Ia,b,c
SIα,x inventory of the x-th sub item of Iα

Nα,x the amount of x-th sub item required to produce Iα

LT lot size
sβ original start time of operation β

s
′

β modified start time of operation β
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Figure A1. Initial allocation process.
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